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The distribution of rural settlements is a complex outcome of human adaptation 
to natural conditions and socioeconomic development throughout history. 
Scientifically revealing the spatially varying relationships between the distribution 
of rural settlements and the related factors is fundamental for effective planning 
and management. In this study, we focus on the North China Plain to analyze the 
spatially varying relationships between the distribution of rural settlements and 
the related factors using both traditional statistical and geographically weighted 
regression models. Our findings reveal that both the number and the area of rural 
settlements at the county level are increasing from north to south and from west 
to east. The results of the traditional regression model suggest that total area, 
total population, road density, precipitation, road length, slope, longitude, and 
temperature significantly influence the rural settlement area, while those influencing 
the number of rural settlements are longitude, latitude, road length, road density, 
river length, and river density. Moreover, the regression coefficients are constant 
in the global model, while both the magnitude and the sign of the corresponding 
parameters in the local model are spatially varying. However, the value of the 
coefficients in the global model are within the range of the coefficients in the 
local model and most coefficients in the local model share the same sign with 
that the global model. Our results also reveal that the local model outperforms 
the global model with the same explanatory variables, indicating a smaller Akaike’s 
information criterion (AIC) and a reduced Moran’s I in model residual. Finally, this 
study also highlights the importance of the cautious and scientific interpretation 
of the varying relationships, especially when the unexpected results are obtained.
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Introduction

China has experienced unprecedented urbanization (Chen et al., 2019; Seto et al., 2011). 
However, there are still 4.77 million people living in rural areas, accounting for 33.84% of the 
national population in 2023. In addition, due to the rapid urbanization, the landscape and 
function of rural settlements in China have changed dramatically (Chen et al., 2024; Gong 
et al., 2022; Ma et al., 2019; Qu et al., 2021; Tian et al., 2014; Zhu et al., 2014; Zhu et al., 2020), 
leading to many problems (Ye and Chuai, 2023), one of which is the loss of high-quality 
farmland (Dong et al., 2016; Li and Song, 2019; Lin et al., 2023; Ma et al., 2024; Su et al., 2011). 
Such changes also threaten sustainable development in China. While most of the research is 
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focused on the urban areas, the issues affecting rural settlements have 
long been neglected comparatively (de la Fuente et al., 2024; Li and 
Song, 2023; Su et al., 2011; Tian et al., 2007).

A few studies investigating the spatial pattern of the rural 
settlements are mainly conducted on a small scale (Chen et al., 2024; 
Jia et al., 2020; Ma et al., 2022). Taking Daxing district of Beijing as 
an example, Tan and Li (2013) studied the changing pattern of rural 
settlements. Xi et  al. (2015) explored the spatial morphology 
evolution of rural settlements induced by tourism using three 
villages in the Yesanpo tourism area. Tian et al. (2014) classified the 
rural settlement land dynamic modes of Beijing into edge-expansion, 
dispersion, and urban encroachment. Chen and Ye (2014) compared 
the differences in pattern and driving forces between urban and 
rural settlements in the coastal region of Ningbo in China. 
Furthermore, other researchers have focused on the hollowed 
villages, optimization of rural settlements, spatial reconstruction of 
rural settlements, and rural transformation development (Bi and 
Yang, 2023; Kong et al., 2021; Qu et al., 2021; Rao et al., 2023; Yin 
et al., 2023; Zhao et al., 2019).

A few other studies analyzed the driving factors of rural 
settlements, mainly using a qualitative method or from a global 
perspective (Chen et al., 2022; Li et al., 2023; Li et al., 2020; Ran et al., 
2024). Yang et al. (2019) reveal the spatial patterns of rural settlements: 
road traffic accessibility and geographic factors in Guangdong 
Province, China. Tan and Li (2013) discussed the underlying 
influences of the evolution of rural settlements qualitatively. Zhou 
et al. (2013) provided a theoretical analysis of the factors influencing 
the evolution of rural settlements. Long et al. (2009) gave an account 
of the driving forces of change in rural settlements from the peasants’ 
perspective. Song and Li (2020) studied the spatial pattern evolution 
of rural settlements from 1961 to 2030 in Tongzhou District, China. 
Li et al. (2015) analyzed the driving forces of the changing per capita 
rural housing land using spatial regression models. Tan et al. (2023) 
analyzed the driving forces of rural settlements in the Northwest 
Sichuan Plateau using the Geodetector.

Although these studies are helpful and enhance our understanding 
of rural settlements, they are not sufficient. Especially the study of 
rural settlements at a larger scale and the study of the related driving 
forces from a local perspective is urgently needed.

Various methods, such as ordinary least squares, regression 
models, support vector machines, artificial neural networks, and 
cellular automata have been developed to investigate the land 
use change pattern (Gao and Li, 2011; Luo and Wei, 2009; Ma 
et al., 2024; Shafizadeh-Moghadam and Helbich, 2015; Song and 
Li, 2020). Among them, the traditional statistical models are the 
commonly used method to analyze the relationship between 
land use change and related driving forces. However, this is a 
kind of global model that only provides a group of parameter 
estimates representing the “average” level of driving forces by 
taking the study area as a whole. In contrast, geographically 
weighted regression (GWR) model, recently developed by 
Brunsdon et al. (1996) and Fotheringham et al. (2001), allows 
the spatial varying relationship by generating a group of 
coefficients for each locations. Moreover, several studies have 
reported that the GWR model outperforms the traditional 
statistical models and has the ability to reduce spatial 
autocorrelation in the model residual (Ivajnšič et al., 2014; Long 

et al., 2012; Rodrigues et al., 2014). Therefore, this model has 
been successfully introduced into many fields, such as water 
environment (Huang et al., 2015), air environment (Song et al., 
2014), health (Kauhl et  al., 2015), fire (Martínez-Fernández 
et  al., 2013), ecology (Su et  al., 2014), urban expansion 
(Guanglong et  al., 2017; Luo and Wei, 2009; Shafizadeh-
Moghadam and Helbich, 2015), and traffic (Hadayeghi et al., 
2010; Li et al., 2013; Xu and Huang, 2015), and so on. However, 
to the best of our knowledge, there is no application of GWR 
model in the field of rural settlements.

North China Plain is the political, economic, cultural, and 
transport center, the most important grain-producing region and 
is highly populated (Tian et  al., 2012). Both rural and urban 
settlements are widely spread and growing rapidly in this region 
(Tan et al., 2005; Tian et al., 2014). The proportion of the rural 
settlement areas in North China Plain within the national rural 
settlement area reaches up to 31.44% (Tian et al., 2007). Thus, the 
conflict between farmland protection and settlement expansion is 
severe. The distribution of rural settlements occurs as a result of 
human intelligence and survival of the fittest in natural selection. 
It reflects not only the land use and change, but also the livelihoods, 
lifestyles, and culture of the rural population. Thus, the 
distribution of rural settlements is fundamental to understanding 
the relationship between human beings and their environments 
(Tian et al., 2012). Moreover, it can also provide a reference for 
planning and management. Accordingly, studying the distribution 
of rural settlements of the North China Plain using GWR is of 
great value.

In this study, with the North China Plain as the study area, 
we attempt to model the relationship between the area, the number of 
rural settlements, and related driving forces using both traditional 
statistic and geographically weighted regression models at the county 
level. The following questions will be addressed: (1) what is the spatial 
distribution pattern of rural settlements in the North China Plain? (2) 
What are the main influences of the distribution of rural settlements? 
(3) Is the role of driving forces a constant for the entire study? (4) Does 
the local model outperform the global model?

Materials and methods

Study area

The North China Plain is located in the east of China, roughly 
between 32°and 40°N and 114°and 121E (Figure 1). It spans seven 
provinces and cities, including Beijing, Tianjin, Hebei, Shandong, 
Shanxi, Henan, Anhui, and Jiangsu, covering an area of 0.23 million 
km2. It is a flat terrain, with the highest elevation below 50 m. It lies in 
the warm temperate zone, with changing four seasons. The southern 
part is in the subtropical transition zone. The mean annual temperature 
ranges between 8°C and 15°C, and annual rainfall varies between 
500 mm and 900 mm. Both temperature and rainfall increase on going 
from north to south. Due to its favorable terrain conditions and 
abundant natural resources, this region has always been the political, 
economic, and cultural center of China. Beijing, the capital of China, 
is located at the north of the North China Plain. Despite rapid 
urbanization since reforms, many rural areas remain widely distributed. 
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The North China Plain has the highest density of rural settlements and 
the largest percentage of rural settlements in China (Tian et al., 2007). 
Furthermore, the rural settlement of the North China Plain accounts 
for 31.44% of the national rural settlements (Tian et al., 2007).

Data source and pre-processing

Rural settlement data
The data on the rural settlements were interpreted using Landsat 

8 images with 30 m resolution, which were collected in 2020 from the 
United States Geological Survey (USGS),1 considering the cloud cover 
and vegetation phenology.

1 http://glovis.usgs.gov/

Influencing factor data
Given the data accessibility, comparable to previous studies, and 

the actual situation of the North China Plain, 14 potential factors 
influencing the spatial distribution of rural settlement at the county 
level and covering physical, socioeconomic, and accessibility were 
selected (Table 1).

The selected potential physical factors include elevation, slope, 
temperature, precipitation. The DEM data set with a resolution of 
90 m was obtained from the resource and environmental science data 
platform, Chinese Academy of Sciences.2 The slope image was 
generated from the DEM data set. The meteorological data were 
sourced from the China meteorological data network.3 We obtained 

2 https://www.resdc.cn

3 http://data.cma.cn/

FIGURE 1

Location of the study area.

https://doi.org/10.3389/fsufs.2024.1519194
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
http://glovis.usgs.gov/
https://www.resdc.cn
http://data.cma.cn/


Yuan et al. 10.3389/fsufs.2024.1519194

Frontiers in Sustainable Food Systems 04 frontiersin.org

the related raster surface of the North China Plain by using Inverse 
distance weighting (IDW) interpolation. To get the mean value of 
potential influences at county level, we  first extracted the values 
corresponding to each rural settlement site from related raster 
surfaces, and then the mean value at the county level was calculated 
using the points that fall inside each county.

The socioeconomic data were collected from China Statistical 
Yearbook for Regional Economy, China County Statistical Yearbook, China 
City Statistical Yearbook, Hebei Economic Yearbook, Shandong Statistical 
Yearbook, Henan Statistical Yearbook, Anhui Statistical Yearbook, and 
Jiangsu Statistical Yearbook, and it included total population, rural 
population, rural per capita net income, the output value of primary 
(GDP1), secondary (GDP2), and tertiary (GDP3) industries for each 
county in 2020. Furthermore, the urbanization rate, the density of rural 
population, rural per capita net income, GDP per area, GDP1 per area, 
GDP2 per area, and GDP3 per area for each county were calculated. 
Finally, they were converted into spatial data by linking them to the 
corresponding county administrative divisions in ArcGIS 10.5.

The accessibility data represent the mean value of the distance to 
the national road, provincial road, and county road of all rural 
settlements within each county. The road map was obtained from the 
China electric map. Additionally, the administrative zoning map of 
China at the county level was provided by the Data Sharing 
Infrastructure of Earth System Science.4

Methods

The interpretation of rural settlement

The process of the interpretation of rural settlements mainly 
include three steps: remote sensing image cropping, the 

4 http://www.geodata.cn/main/

interpretation of image, and the revision of the preliminary 
interpretation results. First, the study area was divided into 
different parts with appropriate sizes according to the available 
part of the corresponding image. The availability was determined 
based on cloud-free conditions and the obvious differences 
between rural settlements and other classes. Then, the available 
part of the corresponding image was extracted using ENVI 5.1 for 
later use.

During the second step, the process of interpretation based on 
eCognition developer 8.9 mainly includes two parts: segmentation 
and classification. After several repeated attempts, the scale 
parameter of multiresolution segmentation is set to 125–130. The 
nearest neighbor algorithm is used to take the mean value of each 
sample as the feature space of the corresponding class. Finally, when 
the function of classification is run, we obtain the preliminary results 
of interpretation.

The third step is the artificial visual modification, which is the 
most time-consuming stage. The fundamental principle in this 
modification is revising the preliminary results of interpretation 
according to the corresponding image. It mainly consists of three 
aspects. First is the adding the rural settlement that was not identified 
in the preliminary results of interpretation but that which exists on the 
image. The second step involves deleting the rural settlements that 
were provided in the preliminary results of interpretation but that 
which do not exist on the image. Third, the scope of some settlements 
may be not be accurate, which need to be further reshaped according 
to the image.

Spatial regression

In this study, we investigated the spatial relationship between the 
amount and area of rural settlements and related factors at the county 
level. Considering the types of variables, both multiple liner regression 
and Poisson regression analyses were employed. Furthermore, they 
were carried out from both the global and local perspectives.

TABLE 1 The potential influencing factors of rural settlement distribution.

Category Variables Description

Physical Digital elevation model (DEM)

The mean value of all rural settlements within each county
slope

Temperature

Precipitation

Socioeconomic Urbanization Urbanization rate

D_rpop The density of rural population

Income Rural per capita net income

D_GDP GDP per area

D_GDP1 GDP1 per area

D_GDP2 GDP2 per area

D_GDP3 GDP3 per area

Accessibility D_nroad
The mean of the distance to national road, provincial road, 

county road of all rural settlements within each county
D_proad

D_croad

GDP1, GDP2, GDP3 is the output value of primary, secondary and tertiary industries, respectively.
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Before performing the regression analysis, all the independent 
variables were standardized (Dong et al., 2016). Pearson’s correlation 
coefficient was employed to confirm that the potential linear 
relationships existed between the dependent variable and 
corresponding independent variables. Stepwise regression was utilized 
to select the most important predictors at a significance level of 

0.05α =  and specify a useful regression model (Kauhl et al., 2015; 
Zhen et al., 2013).

Global model

Multiple linear regression
The total area of rural settlements is a continuous variable. Then, 

the multiple linear regression technique is applied, which can 
be described as follows Equation 1:

 
0y

n
n n

i o
xβ β ε

=
= + +∑

 
(1)

Where y is the estimated value of the dependent variable. 0β  
represents the intercept, and nβ  is the regression coefficient of the 
independent variable nx . ε  denotes the random error term.

Poisson regression
The number of rural settlements is a countable variable and 

Poisson regression Equation 2 may be  the appropriate model for 
determining it (Wei et al., 2024):
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Where ln(y) is the natural log of the number of rural settlements 
for each county. 0β  is a constant, and kβ  is the regression coefficient 
of the independent variable kx .

However, the regression coefficient of independent variables is 
assumed to be  constant across space in these two global models. 
Furthermore, the spatial effects (spatial autocorrelation and heterogeneity) 
of the dependent variables may make the results of regression models less 
reliable (Shafizadeh-Moghadam and Helbich, 2015; Zhen et al., 2013). 
Therefore, the corresponding local model, geographically weighted 
regression and geographically weighted Poisson regression, can serve as 
a supplement to the regression and may be more efficient.

Local model

Geographically weighted regression
Geographically weighted regression is used to model continuous 

responses such as the area of rural settlements for each county in this 
study. GWR can be  expressed as follows Equation 3 (Zhou and 
Lu, 2023):
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Where ( ),i iu v  denotes the coordinate location of the ith point; 
( )0 ,i iu vβ  is the intercept at location i; ( ),j i iu vβ  is the local estimated 

coefficient for ijx ; and iε  is the random error term.

Geographically weighted Poisson regression
Geographically weighted Poisson regression is used to locally 

predict the count variables such as the number of rural settlements for 
each county in this study. GWPR can be written as Equation 4 (Zhen 
et al., 2013):
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1
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j
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=
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Where ( ),j i iu vβ  is the regression coefficient for predictor ijx  at 
location ( ),i iu v .

The local model extends the corresponding global model by 
generating a local regression equation with a group of coefficients for 
each observation. The local coefficient is calculated based on the 
continuous function for the location ( ),i iu v . The closer the specific 
location, the higher the weight will be and vice versa.

The fixed Gaussian and adaptive bi-square kernel functions are 
commonly used to determine how many nearest-neighbor observations 
are taken into consideration per local regression. The fixed kernel 
function applies an optimal spatial kernel (bandwidth) over the space, 
while the adaptive kernel function ensures a certain number of nearest 
neighbors as local samples (Fotheringham et al., 2003; Luo and Wei, 
2009). The adaptive bandwidth is appealing especially when the 
distribution of the data point is heterogeneous (Fotheringham et al., 2003; 
Shafizadeh-Moghadam and Helbich, 2015). Thus, the adaptive bi-square 
kernel function Equation 5 is applied in this study as follows:
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Where i is the regression point index; j is the locational index; ijw  is 
the weight value of observation at location j for estimating the coefficient 
at location i. ijd  is the Euclidean distance between i and j; è is a fixed 
bandwidth size defined by a distance metric measure; ( )i kθ  is an adaptive 
bandwidth size defined as the k th nearest neighbor distance.

The selection of optimal bandwidth is based on the Akaike’s 
information criterion (AIC). Moreover, it can also be used to select the 
optimal model. A smaller AIC value is preferred.

Results

Spatial distribution of rural settlements

The total number and density of rural settlements in the study 
area is 144,941 and 0.51/km2, respectively, covering an area of 
26,214.23 km2, accounting for 10.30% of the North China Plain. The 
spatial distribution of rural settlements shows a clear spatial 
agglomeration feature, especially the density (Figure 2). The density 
of rural settlements within each county ranges from 0/km2 to 1.11/
km2, decreasing from the south to the north. Specifically, it is shaped 
like a ring with Henan–Anhui border as the high-value center in the 
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south of the North China Plain; it increases from west to east with its 
value ranging from 0.29/km2 to 0.81/km2 in the middle part; its 
low-value center looks like a horizontal “Y” around the Circum–Bohai 
Sea region. Similarly, the maximum percentage of rural settlements 
within a county is 17.81% found in the south of the North China Plain, 
and the minimum is located in the north of the study area. In addition, 
the rural settlements with <8.92% of the country are concentrated in 
the northeast of the North China Plain.

Results of Pearson’s correlation analysis

The Pearson’s correlation coefficients between the density of rural 
settlements and 15 standardized independent variables show that all 
variables except DEM and GDP1 have a significant correlation 
(Table  2). Only slope and the distance to provincial road show a 
significant correlation at the 0.05 level, while others are significant at 
the 0.01 level. The distance to county road, GDP, GDP2, GDP3, 
urbanization, and income have a negative correlation with the 
dependent variable, while others show a positive correlation.

Pearson’s correlation coefficients between the number of rural 
settlements within each county and 15 potential independent 
variables are shown in Table 3. Similar results were found, and all 
independent variables except the distance to national road and 
distance to provincial road have a significant correlation with the 
dependent variable. In addition to the distance to county road and 
slope at the level of significance of 0.05, other factors were 
significant at the level of 0.01. In addition, the distance to county 
road, slope, GDP, GDP2, GDP3, urbanization, and income show a 
negative effect.

Based on the results of Pearson’s correlation, factors that pass the 
significance test are the potential factors for the area and number of 

rural settlements and will be  used in the stepwise regression for 
exploratory analysis.

Results of the global models

Multiple linear regression analysis was performed using a stepwise 
method, and the results are shown in Tables 4, 5. Only precipitation, 

FIGURE 2

Spatial distribution of the density and percentage of rural settlement at the county level.

TABLE 2 Pearson’s correlation coefficients between the density of rural 
settlement and explanatory variables.

Explanatory variable R

D_nroad 0.178**

D_proad 0.166*

D_croad −0.246**

Dem 0.118

Slope 0.130*

Temperature 0.625**

Precipitation 0.682**

GDP −0.260**

GDP1 0.013

GDP2 −0.321**

GDP3 −0.218**

D_rpop 0.187**

Urbanization −0.172**

Income −0.366**

**Correlation is significant at the 0.01 level (two-tailed). *Correlation is significant at the 
0.05 level (two-tailed). R is Pearson’s correlation coefficient.
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GDP2 per area, income, and distance to county road enter the regression 
model for the density of rural settlements. In the regression equation, 
only precipitation has a positive coefficient, while others show a negative 
sign. In the final regression model for the number of rural settlements, 
the density of rural population, GDP2 per area, precipitation, and 
distance to county road act as the independent variables. Negative signs 
are observed for GDP2 per area and distance to county road. 
Furthermore, the Variance inflation factor of the two models all below 10 
indicates that multicollinearity does not pose a problem. The R2 value of 

multiple linear regression for the density and number of rural settlements 
is 0.56 and 0.40, respectively, indicating that the models perform well.

Results of local models

The local models were performed using the same data set with the 
corresponding final global models. The optimal bandwidth is 22 and 
18 for GWR and GWPR, respectively. The GWPR model calculates an 
additional global Poisson regression model, which can be compared 
to the results of the global multiple linear regression model and the 
local Poisson regression model (Kauhl et al., 2015). The results of the 
Poisson regression model are similar to those of the corresponding 
multiple linear regression model (Tables 5, 6).

Descriptive statistics of coefficients

In contrast to the constant coefficients in global model, both the 
magnitude and sign of the coefficients in the local model show a 
spatial variation (Table 7). In the GWR model, only the minimum 
coefficient of total population and total area is negative, but other 
statistics for coefficients of these predictors are positive. Most 
coefficients of precipitation and road length are positive, as evident 
from the positive median, upper quartile, and maximum of 
coefficients. The upper quartile and maximum of longitude, 
temperature, slope, and road density are positive; however, most 
coefficients of these predictors are negative according to the negative 
median, lower quartile, and minimum.

In the GWPR model, only the minimum coefficient of road length 
is negative, while other statistics are positive. On the contrary, the 
maximum coefficient of road density is the only positive variable, 
while other statistics are negative. The minimum and lower quartile 
coefficients of longitude and river length are <0, but the median, upper 
quartile, and maximum coefficients are positive. The minimum, lower 
quartile, and median of the latitude and river density are negative, 
while the upper quartile and maximum is positive.

Comparing the coefficients of the local and global models 
(Tables 4–7), it can be found that the coefficients of the global model 
fall into the range of coefficients of the local model. Furthermore, it is 
worth noting that the sign of the median of the coefficients in local 
models is the same as the sign of corresponding coefficients in the 
global models. In other words, despite the coefficients of the local 

TABLE 3 Pearson’s correlation coefficients between the percentage of 
rural settlement and explanatory variables.

Explanatory variable R

D_nroad 0.067

D_proad 0.105

D_croad −0.157*

Dem 0.239**

Slope −0.142*

Temperature 0.310**

Precipitation 0.302**

GDP −0.356**

GDP1 0.236**

GDP2 −0.309**

GDP3 −0.340**

D_rpop 0.525**

Urbanization −0.275**

Income −0.300**

**Correlation is significant at the 0.01 level (2-tailed). *Correlation is significant at the 0.05 
level (two-tailed). R is the Pearson’s correlation coefficient.

TABLE 4 Results of global multiple linear regression for the density of 
rural settlements.

Explanatory 
variable

Coefficients VIF

Intercept 0.00 –

Precipitation 0.583 1.20

D_GDP2 −0.191 1.27

Income −0.190 1.38

D_croad −0.134 1.21

R2 0.56

TABLE 5 Results of global multiple linear regression for the percentage of 
rural settlements.

Explanatory 
variable

Coefficients VIF

Intercept 6.03 –

D_rpop 0.472 1.04

D_GDP2 −0.286 1.05

Precipitation 0.145 1.17

D_croad −0.112 1.14

R2 0.40

TABLE 6 Results of global Poisson regression for the number of rural 
settlements.

Explanatory variable Coefficients

Intercept 6.12

Road density −0.49

Latitude −0.34

Road length 0.33

River length 0.10

Longitude 0.04

River density −0.11

AIC 16049.66

AIC is the Akaike’s information criterion.
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model showing both negative and positive effects simultaneously, they 
did follow a similar tendency of signs in the corresponding 
global models.

Spatial distribution of coefficients

The spatial distribution of coefficients of the GWR model is 
shown in Figure 3. It is detected that all coefficients have an obvious 
pattern of spatial heterogeneity. The coefficients of the total area 
ranges from −1.82 to 1.94. However, in large parts of the North China 
Plain, the total area shows an expected positive impact. In addition, 
the coefficients are relatively larger in the southern part than in the 
northern part, which matches with the spatial distribution of the total 
area (total area in Figures 3, 4). Both positive and negative effects are 
found in longitude. In the west, especially the southwest, it was 
dominated by the positive coefficients while the negative values are 
mainly concentrated in the east part, especially the southeast, which 
is similar to the distribution of longitude (Longitude of Figures 3, 4). 
Similarly, precipitation also indicates both positive and negative 
coefficients and their number is almost the same. In addition, the 
positive coefficients are mainly located in the south where the 
precipitation is relatively higher (Precipitation in Figures 3, 4). For 
temperature and slope, the negative and positive coefficients are 
crossed and distributed in the study area (Figure 3, temperature and 
slope). The coefficients of slope are relatively small compared to those 
of other influences, indicating it has a weaker impact on the 
distribution of the rural settlements. For total population, the expected 
positive value is widely spread in the study area with relatively large 
coefficients located in the north and middle part of the North China 
Plain, while the negative effect was only found in the north and some 
areas around the municipal district (Figure 3, Total population). It 
should be noted that the coefficients of total population range from 
−0.48 to 1.31, which is relatively small. The positive coefficients of 
road length also take a large proportion of the study area with the 
value decreasing from east to west, while the negative coefficients are 

mainly concentrated in the northwest part, where the road length is 
relatively small (road length in Figures 3, 4). On the contrary, the road 
density indicates a negative effect in most parts, while the positive 
values only occurred in the west and northeast (Figure 3, road density).

Figure 5 presents the coefficient surfaces of the six factors used in 
the GWPR model. Similar to the results of GWR, the coefficients also 
vary across the study area. All the six factors show both negative and 
positive effects on the number of rural settlements. The coefficients of 
longitude show a difference between the west and east, which matches 
the distribution of longitude. The negative coefficients of longitude are 
located in the east of the North China Plain, while the west mainly has 
a positive value (Longitude in Figures  4, 5). In most parts, the 
coefficients of latitude is <0, while the positive value only occurs in 
three belts in the direction of west–east in the north, middle, and 
south of the study area (Figure 5, Latitude). The negative coefficients 
of the river length is mainly located in the southeast and northwest, 
while most parts show a positive value (Figure 5, River length). In the 
most parts of the North China Plain (201 counties), road length has a 
positive coefficient. In contrast, the coefficients of road density are 
negative in large parts of the study area. It worth noting that the area 
with a negative coefficient of road length and the area showing a 
positive value of road density have some spatial intersection (Figure 5, 
Road length and Road density). The minority of coefficients of river 
density is positive and mainly distributed in the south of the study area 
(Figure 5, River density).

Comparisons between global and local 
models

Model performance
AIC is the frequently used criterion to evaluate the performance 

of models, and a lower AIC value is preferred (Fotheringham et al., 
2001). The AIC values of global and local models for the number of 
rural settlements are 16049.66 and 1392.00, respectively. The 
corresponding results for the area of rural settlement are 235.04 and 

TABLE 7 Descriptive statistics of coefficients in the local models.

Model Predictor Minimum Lower 
quartile

Median Upper 
quartile

Maximum

GWR

Total area −1.82 0.11 0.40 0.69 1.94

Longitude −3.60 −0.56 −0.04 0.36 1.43

Precipitation −3.28 −0.66 0.05 0.63 4.66

Temperature −3.88 −0.69 −0.11 0.21 4.20

Slope −0.73 −0.15 −0.04 0.11 1.08

Total population −0.48 0.09 0.36 0.61 1.31

Road length −1.04 −0.09 0.17 0.44 2.38

Road density −3.63 −0.40 −0.16 0.11 1.04

GWPR

Longitude −0.98 −0.23 0.10 0.38 1.22

Latitude −4.31 −0.91 −0.39 0.15 4.15

River length −4.48 −0.18 0.11 0.34 2.20

Road length −1.74 0.25 0.49 0.75 1.74

River density −3.70 −0.34 −0.15 0.16 3.95

Road density −2.23 −0.82 −0.52 −0.29 2.15
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3.81, respectively. Compared to the global models, the values of AIC 
from local models are much lower. All these results suggest that local 
models are superior in explaining the relationships between the area/
number of rural settlements and related factors.

Spatial autocorrelations in model residuals
The global Moran’s I of model residual is calculated to explore the 

spatial autocorrelation of the residual. The Moran’s I of global Poisson 
and multiple linear regression models is 0.12 and 0.08, respectively, 
with the corresponding p-value of 0.09 and 0.24. It indicates that there 
is no significant spatial autocorrelation in the residual of the global 
model. By contrast, the results of the local model, geographically 
weighted Poisson regression and geographically weighted regression, 
show a smaller Moran’s I (−0.01 and 0.00) and a larger p-value (0.94 
and 0.96), suggesting there is no problem of spatial autocorrelation in 
the residuals of the local model.

Discussion

Spatial pattern of rural settlements

The distribution of rural settlements in the North China Plain 
show obvious spatial characteristics, with both the number and area 

of the county decreasing from north to south and from east to west. 
However, this finding is inconsistent with the result of Tan and Li 
(2013) who reported that rural settlements were evenly distributed in 
rural areas in both 1970s and 2007. This can be because our study area 
is much larger. Our study area, the North China Plain, includes 201 
counties, while Daxing district, which is only equal to one county in 
area, was the study area in Tian et al. (2012) study. Moreover, the 
results of Tian et al. (2012) support this viewpoint.

Accordingly, it can be concluded that rural settlements are evenly 
distributed in the local distribution due to the landform (mainly flat 
plains), historical tradition, and the agricultural land system (Ma et al., 
2022; Tan and Li, 2013), while it shows an obvious spatial difference 
on a large scale owing to the natural conditions, customs, and house 
styles (Song and Li, 2020).

Influence of the spatial distribution of rural 
settlements

The results of Pearson’s correlation show that only elevation, GDP, 
and rural population have no significant relationship with the area and 
number of rural settlements. Besides, the rural per capita net income 
shows a negative correlation. The irrelevant correlation between 
elevation and the area of rural settlement is understandable given that 

FIGURE 3

Coefficients of explanatory variables in GWR.
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the North China Plain is a flat terrain with no great difference in 
elevation. GDP also having no significant relationship is also 
comprehensible, because GDP may have a main impact only on urban 
expansion (Chen et al., 2019; Seto et al., 2011).

However, it is very interesting that rural population has no 
significant relationship with the distribution of rural settlements and 
that rural per capita net income has a negative correlation with the 
distribution of rural settlements, which is in disagreement with 

previous studies (Long et al., 2009; Yang et al., 2019; Yin et al., 2023). 
One reason may be that the rural settlement area was decoupled from 
the rural population (Dong et al., 2021; Zhu et al., 2020). Tian et al. 
(2014) also found that Beijing experienced a 33.6% increase in the 
rural settlement land and a 34.8% decline in its rural population. 
Another possible explanation is that the farmer’s income is no longer 
the limitation for building rural houses. The farmer’s income of China 
is very low and has been a limitation for building new houses for a 

FIGURE 4

Distribution of the predictors.
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long time in the past. And at that stage, they used to build a more 
comfortable or spacious house when they can afford it (Qu et al., 
2021). However, China has undergone rapid development and entered 
a new growth stage, which has improved the farmer’s income 
significantly and no longer limits the development of the rural house. 
On the other hand, the majority of the next generation of farmers 
received good education in university or work in urban areas. And 
some of them would not return to rural areas. Thus, instead of 
building a new house in the rural area, they would save money for 
buying a house in the urban area. Last, but not the least, instead of 
rural residence land, other construction lands such as the industrial 
land has been the dominant component of rural settlement expansion 
(Kuang et al., 2016).

Interpretation of the spatially varying 
relationships

From the perspective of the magnitude of coefficients, the 
coefficients of the global model are constant within the range of the 
coefficients of the local model. It indicates that the global model only 
reflects the overall condition of the study area, while the local model 
provides more details for each location. It is in accordance with 

previous studies (Gao and Li, 2011; Guanglong et  al., 2017; Li 
et al., 2013).

From the perspective of the sign of coefficients, different from the 
invariable sign of coefficient in the global model, both negative and 
positive signs are included in the local model simultaneously in this 
study. In addition, some signs of coefficients are counterintuitive or 
unexpected. However, it is not uncommon in GWR or GWPR models 
and are consistent with previous studies (Chow et al., 2006; Hadayeghi 
et al., 2010; Luo and Wei, 2009; Wheeler and Calder, 2007; Xu and 
Huang, 2015; Zhen et al., 2013). Despite the unexpected results, they 
may make sense when considering the physical truth of the study area 
in some case (Zhen et al., 2013), which is also the case for this study. For 
example, although it is expected that the total population has a positive 
impact on the distribution of rural settlements, total population with 
negative signs are also identified in the north of the study area and some 
areas around the municipal district. It was a bit of surprise, but it was 
because most of these counties with negative signs are close to the 
municipal district or of relatively high level of development, where the 
level of urbanization is relatively high and the development of rural 
settlements is under good control and management.

However, still several other possible explanations for this problem 
should be  considered. First, the multicollinearity among some 
independent variables or the multicollinearity in local coefficients may 

FIGURE 5

Coefficients of explanatory variables in GWPR.
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be  one possible reason. Although there is no problem with 
multicollinearity among the independent variables in the global 
model as indicated by their value of VIF < 10 in this study, there still 
may be multicollinearity among some independent variables in the 
local model (Hadayeghi et al., 2010; Xu and Huang, 2015). Besides, 
correlated local coefficients also could be  a problem (Shariat-
Mohaymany et  al., 2015; Wheeler and Tiefelsdorf, 2005; Xu and 
Huang, 2015). The second possible reason is the significance of 
variables. Some variables may be less significant or even insignificant 
at all at some locations (Hadayeghi et al., 2010; Shariat-Mohaymany 
et  al., 2015; Xu and Huang, 2015). Moreover, the missing or 
mis-specified explanatory variables in the model may also make some 
contribution to the unexpected signs (Hadayeghi et al., 2010; Shariat-
Mohaymany et al., 2015). Finally, the bandwidth and the type of kernel 
function also have some influence on the range of the coefficients 
(Foody, 2003; Guanglong et al., 2017; Guo et al., 2008).

Consequently, the interpretation of the results of the local model 
should be done with caution and it is reasonable according to the reality 
of the study area, especially when counterintuitive signs are detected.

Advantages of the local model over the 
global model

In accordance with previous studies, our results also show that the 
local model, GWR, and GWPR, outperform the global model as 
evident by the lower AIC value (Guanglong et al., 2017; Luo and Wei, 
2009; Zhen et  al., 2013). Moreover, it does reduce the spatial 
autocorrelation in the model residual. However, we found that the 
local model helped reduce the spatial autocorrelation in residual even 
though there is no significant spatial autocorrelation problem in the 
global model. This result is a little different from previous studies (Gao 
and Li, 2011; Guo et al., 2008; Zhang et al., 2005; Zhen et al., 2013), 
which reported that the GWR model can reduce the spatial 
autocorrelations in residuals, especially while the significant spatial 
autocorrelation is found in the global model. Furthermore, our finding 
is inversed with Tu and Xia (2008) who found that the application of 
GWR may increase spatial autocorrelation if an ordinary least square 
(OLS) model does not have this problem.

Based on the shortcomings of the global model and the advantages 
of the local model, this article first reveals the driving factors of the 
spatial distribution of rural settlements from the global perspective, 
and then uncovers the spatial heterogeneity of the magnitude and 
direction of the driving factors from the local perspective. This is 
helpful to formulate different control measures for rural settlements 
according to the local conditions.

In addition, according to the basic principle of promoting rural 
revitalization by classification, the spatial heterogeneity of factors 
affecting the spatial distribution and evolution of rural settlements 
combined with the actual needs of China’s rural revitalization can 
be  taken into account, and differentiated rural revitalization 
promotion strategies can be formulated by classification.

Conclusion

Scientifically revealing the spatially varying relationships between 
the distribution of rural settlements and related factors is fundamental 

for planning and management. The North China Plain is the main 
grain-producing region and a densely populated area in China. The 
contradiction between cultivated land protection and settlement 
expansion is prominent and severe. Thus, in this study, we investigated 
the spatial relationship between the distribution of rural settlement in 
the North China Plain and the related influences using geographically 
weighted regression.

The results show that the distribution of rural settlement in 
the North China Plain show an obvious spatial pattern, with both 
the number and the area of rural settlements at the county level 
increasing from north to south and from west to east. The results 
of the traditional regression model suggest that total area, total 
population, road density, precipitation, road length, slope, 
longitude and temperature are the significant factors influencing 
the total area, while those influencing the total number of rural 
settlements is longitude, latitude, road length, road density, river 
length, and river density. In addition, the coefficients of these 
influences are constant in the global model. However, both the 
magnitude and the sign of the corresponding parameters in the 
local model show a spatial variation. More interesting is that the 
value of the coefficients in global model fall into the range of the 
coefficients in the local model, and most coefficients in the local 
model share the same sign with those in the global model. This 
indicates that there is a significant spatial heterogeneity in the size 
and direction of the influencing factors. Therefore, the control 
measures of rural settlements with regional differences should 
be formulated according to local conditions.

Our results also reveal that the local model outperforms the global 
model with the same explanatory variables, as indicated by the smaller 
AIC value. Furthermore, the local model does help to reduce the 
spatial autocorrelation in model residual even when it is insignificant 
in the global model.

Although the local model has many advantages over the global 
model and can more efficiently reveal the spatially varying 
relationship, our results also highlight the importance of the cautious 
and scientific interpretation of the variations, especially when the 
unexpected results are obtained.
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