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Introduction

The global demand for food is driving the need for high-performance, sustainable
agricultural systems that incorporate advanced technologies for monitoring, control, and
decision-making. With the population expected to reach 9.7 billion by 2050, agriculture
must boost productivity while maintaining sustainability. Precision agriculture (PA)
addresses this challenge by using advanced technologies to increase yields, reduce resource
waste, and minimize environmental impacts (Gebbers and Adamchuk, 2010; Delgado
et al., 2020; El-Kader and El-Basioni, 2020). This “fourth agricultural revolution” is
reshaping farming through innovations in data analytics, communication, and technology
(Mohindru et al., 2021; Abdel-Basset et al., 2024).

A key aspect of sustainable agriculture is the soil microbiome, especially the
rhizosphere, which promotes soil health and crop resilience while reducing environmental
harm. Next-generation sequencing (NGS) techniques, such as amplicon sequencing and
shotgun metagenomics, provide deep insights into microbial communities, their diversity,
and functional roles. These tools are vital for monitoring agricultural interventions,
identifying beneficial microbes, and detecting pathogens early to prevent crop diseases
(Elnahal et al., 2022).

Understanding the physical, biological, and chemical characteristics of soil is crucial
for optimizing crop management practices such as irrigation, drainage, and nutrient
management—key components of PA. The integration of advanced technologies like
artificial intelligence (AI), remote sensing, unmanned aerial vehicles (UAVs), big data
analytics, the Internet of Things (IoT), Global Positioning system (GPS), and Geographic
Information Systems (GIS) enables the precise management of spatial variability in fields.
UAVs, with their high spatial resolution and flexibility, have revolutionized soil and crop
monitoring, offering real-time data collection from difficult-to-reach areas (Boursianis
et al., 2022).

Integrating UAV-based remote sensing with soil metagenomics represents a
transformative step forward for PA and ecosystem restoration. The fusion of these
advanced tools not only enhances farming by improving resource efficiency but also
aligns with the broader objectives of sustainable agriculture, reducing the environmental
impact of farming by minimizing chemical inputs and fostering healthier, more resilient
ecosystems. As these technologies evolve and become more cost-effective and accessible,
their integration will likely become a standard practice in modern agriculture, driving
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widespread adoption and promoting a sustainable future for
global food production. We review the current advancements
in both fields, propose methods for integrating remote
sensing data with soil microbiome profiles, and present a
framework for implementing this integrated approach to optimize
precision farming.

Soil metagenomics

Soil is a diverse environment, home to billions of
microorganisms. Enhancing soil health can boost crop
productivity by 10–50%, and with plant growth-promoting
microbes, productivity can rise by 50–60% (Abram, 2015;
O’Callaghan et al., 2022). This reduces reliance on chemical
fertilizers, supporting sustainable agriculture. Metagenomics,
which sequences and analyzes environmental DNA, reveals
microbial diversity and aids in discovering therapeutic molecules,
biotechnological innovations, and sustainable practices (Abram,
2015; Garrido-Oter et al., 2018). It offers insights into microbial
community structures, including bacteria, archaea, and eukaryotes,
based on functional gene composition (Philippot et al., 2013;
Martínez-Porchas and Vargas-Albores, 2017). The workflow of soil
metagenomics will be discussed in detail further.

Soil sampling, library preparation, and
sequencing

Metagenomic studies involve collecting soil samples,
particularly from the rhizosphere, where soil microbes and
root secretions interact (Weaver, 1994; Brooks, 2015). Total DNA
is extracted from the samples using kits like Genejet Soil DNA
Kit (Thermo Fisher) or Fast DNA SPIN Kit (MP Biochemicals).
DNA is then enzymatically fragmented using library preparation
kits such as Nextera Tagmentation (Illumina) or Fragmentase

Abbreviations: AI, Artificial Intelligence; AREF, Auto-Regressive Error

Function; CNN, Convolutional Neural Networks; DESeq2, Di�erential gene

expression analysis based on the negative binomial distribution; DL, Deep
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GIS, Geographic Information Systems; GPS, Global Positioning System; IoT,

Internet of Things; KEGG, Kyoto Encyclopedia of Genes and Genomes;

k-NN, k-Nearest Neighbors; LAI, Leaf Area Index; LIDAR, Light Detection and

Ranging; LoRaWAN, Long Range Wide Area Network; MC, Moisture Content;
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Internet of Things; NDVI, Normalized Di�erence Vegetation Index; NGS,
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Communities by Reconstruction of Unobserved States; PLSR, Partial Least
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(New England Biolabs), with alternative methods including
acoustic shearing, sonication, and others (Sabale et al., 2020). DNA
concentration and purity are measured using Qubit and Nanodrop,
while integrity is assessed via agarose gel electrophoresis or
Agilent TapeStation. The DNA fragments are cloned into
bacterial plasmids, featuring elements like an origin of replication,
restriction sites, selective markers, and cloning sites (Granjou
and Phillips, 2019). Fragments are analyzed using a fragment
analyzer for quality and quantity. Sequencing is conducted on
platforms like Illumina, Pyrosequencing, Nanopore, and PacBio.
Post-sequencing, data are de-multiplexed and analyzed (Martin,
2011; Oulas et al., 2015; Mahmoud et al., 2019; Zhang et al., 2021).

Data processing

Pre-processing of soil metagenomics data begins with quality
control to filter out low-quality reads and remove adapter
sequences. Tools such as UCHIME, MG-RAST, RDP tools
(Bolger et al., 2014), KTrim, Trim Galore, and Trimmomatic
(Sun, 2020) are utilized for these tasks, ensuring sequences are
trimmed for uniform length and quality. Following trimming,
reads are further filtered to exclude sequences below specified
length thresholds, and errors are corrected while polymerase
chain reaction (PCR) duplicates are removed to enhance accuracy.
Denoising of metagenomic data is achieved using platforms like
MOTHUR and QIIME 2, with UCHIME used for detecting and
eliminating chimeric sequences (Santamaria et al., 2018). Post-
processing involves grouping reads by unique barcodes, removing
primers, and employing tools such as Taxator-tk (Dröge et al.,
2015) and MEGAHIT (Liu et al., 2015) for further taxonomic
and functional classification. Recent advancements in de novo

assemblers like Meta-IDBA, metaSPAdes, Ray Meta, and Contig
Extender allow for assembly of metagenomic reads into contigs,
particularly beneficial for sequencing novel microbial genomes
without prior reference sequences (Peng et al., 2011; Boisvert et al.,
2012; Kumar et al., 2018; Deng and Delwart, 2021). Subsequently,
reads are aligned to reference databases or assembled into contigs
for comprehensive taxonomic and functional analysis, facilitating
robust interpretation of soil microbial community data.

Data Analysis and interpretation

Metagenomic data processing forms the basis for taxonomic
and functional profiling, essential for understanding microbial
communities in soil. Tools like Krona, MEGAN, and phyloseq
in R visualize taxonomic diversity and abundance (Huson et al.,
2007; Ondov et al., 2011; McMurdie and Holmes, 2013). Functional
analysis begins with gene prediction using tools such as Prodigal
and MetaGeneMark, followed by annotation via KEGG, COG,
and Pfam databases using eggNOG-mapper and InterProScan
(Hyatt et al., 2010; Zhu et al., 2010). Pathway reconstruction is
achieved using KEGG and MetaCyc databases with HUMAnN2
(Franzosa et al., 2018) and PathoScope (Hong et al., 2014),
while functional capabilities are predicted by tools like PICRUSt,
and Tax4Fun (Langille et al., 2013; Sun et al., 2020). Statistical
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analyses, including DESeq2, edgeR, PCA, and NMDS, identify and
visualize differential taxa or functions. Integration of taxonomic
and functional data, along with network and ecological models,
further explores microbial interactions and their ecological roles
(Robinson et al., 2010).

Nutrient management plan

Common microbial species isolated from rhizosphere soil
using metagenomic approaches include Firmicutes, Bacteroidetes,
Proteobacteria, Actinobacteria, and others (Babalola, 2010; Santos
et al., 2019; Prasad and Zhang, 2022). Table 1 highlights
microbial species and their impact on soil quality. By promoting
beneficial microbes that fix nitrogen or solubilize phosphorus,
farmers can reduce reliance on synthetic fertilizers, enhancing
crop productivity, profits, and sustainability (Mendes et al.,
2013). Enzymes like sulfatases, dehydrogenases, and phosphatases
improve soil fertility, crop growth, and yield, reducing pesticide use
(Peng et al., 2018). Metagenomics also supports the development
of biofertilizers and microbial inoculants for agriculture and
offers cost-effective alternatives to traditional soil remediation
methods (Philippot et al., 2013, 2024). Several studies have
demonstrated the economic advantages of microbial inoculants
in agriculture. For instance, recurrent pre-sowing applications of
Pseudomonas fluorescens have significantly boosted maize growth,
reducing reliance on costly chemical fertilizers (Papin et al., 2024).
Investigations into microbiota responses to nitric oxide regulation
in Arabidopsis thaliana highlight the potential for enhancing
crop productivity through optimized plant-microbe interactions
(Berger et al., 2024). Moreover, trials using affordable microbial
nutrient solutions have underscored their role in improving food
security while offering cost-effective alternatives to conventional
agricultural practices (van der Velde et al., 2013).

Remote sensing

The appropriate spatio-temporal resolution required for PA
depends on various factors, including management objectives,
field size, and the capability of farm equipment to vary input
(irrigation, fertilizer, pesticide, etc.) application rates. While PA can
use a variety of sensors, this paper limits itself to those studies
that primarily used UAV image data (Shafi et al., 2019). UAVs
are transforming agriculture by offering precise, efficient, and
sustainable solutions for various farming practices. They help in
enhancing productivity, conserving resources, and promoting eco-
friendly practices. Recent studies predict that by 2025, the global
UAV industry for agriculture would increase at a compound annual
growth rate of 35.9% and reach $5.7 billion (Agriculture Drones

Market).

Drones and cameras

Aerial platforms such as UAVs or drones generally provide
higher spatial resolution (<5 meters) images compared to satellites
(Bochtis et al., 2023). Thus, UAVs and other ground-based

platforms offer greater flexibility in providing images at fine spatial
and temporal resolutions (more frequently) or as needed. The
hydrologic and climatic parameters—such as soil organic carbon,
soil moisture, soil characteristics, the normalized Difference
Vegetation Index (NDVI), leaf area index (LAI), groundwater,
and rainfall—as well as the health of the vegetation and soil are
monitored using unmanned aerial vehicles (UAVs) (Zhang et al.,
2022).

Equipped with various sensors, UAVs perform specialized
tasks: multispectral sensors capture plant health data in specific
light wavelengths, thermal cameras detect temperature changes
to identify irrigation or pest issues, and LIDAR creates detailed
topographic maps for land and water management (Maddikunta
et al., 2021; Tahir et al., 2023). However, global adoption of
drone technology varies due to differing legal, financial, and
physical conditions across countries. Supplementary Table S1 lists
the various drones that are recognized for their capabilities in
precision farming and improved crop management, ensuring
compliance with safety and operational standards of respective
aviation authorities.

Data collection and pre-processing

Data collection and preprocessing in precision agriculture
(PA) involve drones and IoT sensors, creating a comprehensive
dataset. IoT sensors, such as Decagon EC-5 for soil, Davis
Vantage Pro2 for weather, and GreenSeeker for crops, gather
key data on moisture, temperature, pH, nutrients, climate,
and crop health (García et al., 2020; Fuentes and Chang,
2022). Supplementary Table S2 highlights IoT sensors employed in
precision agriculture, emphasizing their importance in enabling
real-time, data-driven farming solutions.Connectivity networks
like LoRaWAN, NB-IoT, and 5G transmit this data through
gateways like Kerlink Wirnet Station. Flight planning software
like DJI Ground Station Pro and drones like DJI Phantom 4
RTK capture aerial images (KriŽanović et al., 2023), followed
by georeferencing and image stitching using tools like Agisoft
Metashape. Noise reduction in software like Pix4Dmapper
enhances image quality, while cloud computing supports secure
data storage and real-time analysis (Debauche et al., 2022).

Data analytics and AI

Precision farming is widely adopted due to the power of
AI, driven by machine learning (ML) and deep learning (DL)
(Khan et al., 2022; Ojo and Zahid, 2022; Hashmi and Kesakr,
2023). ML models analyze UAV-captured images, and AI-enabled
farm management systems use sensor data to provide real-time
recommendations for farmers. Machine learning (ML) approaches
like Support Vector Machines (SVM) and Random Forests were
applied for soil management to analyze soil temperature, moisture,
and drying patterns (Liakos et al., 2018; Sharma et al., 2021).
Models utilizing Decision Trees and Neural Networks were created
to predict soil pH and fertility (Suchithra and Pai, 2020), while
Multiple Linear Regression (MLR) and Support Vector Regression
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TABLE 1 Microbial community and its potential impact on soil quality.

Microorganism Type Function/role in soil Implications for soil quality References

Azospirillum brasilense Bacteria Nitrogen fixation Enhances soil fertility and plant growth Bashan et al., 2004

Pseudomonas fluorescens and other Pseudomonas spp Bacteria Plant growth promotion,
biocontrol; phosphate
solubilization

Suppresses soil-borne pathogens,
improves plant health, bioremediation

Weller et al., 2002;
Hariprasad et al., 2014

Rhizobium leguminosarum and other Rhizobium spp Bacteria Symbiotic nitrogen fixation Crucial for legume growth, improves
nitrogen content; soil restoration

Shameem et al., 2023

Bacillus subtilis Bacteria Decomposition, plant growth
promotion

Enhances nutrient cycling, plant disease
resistance

Earl et al., 2008;
Mahapatra et al., 2022

Streptomyces griseus Bacteria Antibiotic production,
decomposition

Suppresses pathogens, contributes to
organic matter breakdown

(Chen Y. et al., 2017;
Hong et al., 2019)

Methylobacterium spp. Bacteria Oxidation of methane, plant
growth promotion

Bioremediation, derine energy and
carbon for biomass

Kang et al., 2022

Clostridium thermocellum Bacteria Cellulose degradation Enhances organic matter
decomposition, nutrient cycling

Lynd et al., 2002

Mycobacterium smegmatis Bacteria Organic matter degradation;
fixing atmospheric hydrogen

Contributes to nutrient cycling and soil
health

Greening et al., 2014;
Walsh et al., 2019

Nitrosomonas europaea Bacteria Nitrification Converts ammonia to nitrate, important
for nitrogen cycling

Chain et al., 2003;
Sedlacek et al., 2016

Nitrobacter winogradskyi Bacteria Nitrification Converts nitrite to nitrate, important for
nitrogen cycling

Starkenburg et al., 2006

Trichoderma harzianum Fungi Biocontrol, decomposition Controls soil pathogens, enhances
organic matter decomposition

Harman et al., 2004;
Jamil, 2021

Penicillium chrysogenum Fungi Decomposition, antibiotic
production

Improves nutrient availability,
suppresses pathogens

Galeano et al., 2023

Aspergillus niger Fungi Decomposition Enhances release of potassium, nutrient
cycling

Ashrafi-Saiedlou et al.,
2024

Glomus intraradices Fungi Mycorrhizal symbiosis Improves plant nutrient uptake, soil
structure

Chen M. et al., 2017

Arbuscularmycorrhizal fungi Fungi Nutrient uptake, plant growth
promotion

Erosion control, bioremediation El-Sawah et al., 2021

Fusarium oxysporum Fungi Pathogen Can reduce soil health and plant
productivity

van Bruggen et al., 2015

Alternaria alternata Fungi Plant pathogen Can negatively affect plant health DeMers, 2022

(SVR) were used to estimate pH and Soil Organic Matter (SOM)
in paddy soils (Yang et al., 2019). Partial Least Squares Regression
(PLSR) was used to predict moisture content (MC), total nitrogen
(TN), and soil organic carbon (SOC) (Morellos et al., 2016).
Soil moisture was estimated by combining the Auto-Regressive
Error Function (AREF) with Gradient Boosting and k-Nearest
Neighbors (k-NN) (Johann et al., 2016). Extreme LearningMachine
(ELM) integrated with a Self-Adaptive Evolutionary agent (SaE)
was used to assess soil temperature (Nahvi et al., 2016), while
ELM was employed to forecast surface humidity (Acar et al., 2019).
Lastly, Random Forests and SVM were used to estimate SOC and
TN in Moroccan soils (Reda et al., 2019). Several studies also
advanced ML and image recognition techniques for seed sorting
and counting (Li et al., 2021; Nehoshtan et al., 2021; Laudari
et al., 2022; Ekramirad et al., 2024). Deep Learning, especially
Convolutional Neural Networks (CNNs), revolutionized plant
disease and pest detection, allowing rapid and accurate diagnosis,
which is crucial for minimizing crop loss (Mohanty et al., 2016;
Ramcharan et al., 2017; Too et al., 2019; Argüeso et al., 2020). These

methods optimize agricultural processes like planting, irrigation,
and fertilization, enhancing productivity. Table 2 highlights key soil
parameters detected using UAV technologies across various crops,
showcasing advancements in PA research. AI models further refine
resource use by recommending precise amounts of water, fertilizer,
and pesticides, reducing waste and minimizing environmental
impact. These models also simulate different farming scenarios,
helping farmers assess and select the most effective strategies
(Marvuglia et al., 2022).

Actionable insights

Complex data is simplified into actionable insights for
farmers, delivered to farmers via mobile apps and dashboards,
providing real-time updates, visualizations, and alerts. For
instance, farmers receive notifications about pest outbreaks
with suggested treatments or alerts about sudden soil moisture
drops with actionable irrigation advice. Farmers implement these
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TABLE 2 Optimum soil parameter ranges detected by UAV technologies in diverse crops.

Soil parameter Optimum range Detection method Crop Source

Soil moisture 50–75% field capacity UAV thermal and multispectral imaging Wheat, Maize Hunt et al., 2019; Zhang et al., 2023

Soil pH 6.0–7.5 UAV spectral analysis Rice, Soyabean Yang et al., 2020; Alabi et al., 2022

Organic matter content 2–4% UAV hyperspectral imaging Rapeseed Guo et al., 2020

Nitrogen content (N) 0.2–0.5% UAV multispectral analysis Potato, Wheat Liu et al., 2022; Fan et al., 2023

Phosphorus content (P) 10–30 ppm UAV hyperspectral imaging Wheat, Barley Kefauver et al., 2017; Mazur et al.,
2023

Potassium content (K) 100–300 ppm UAVmultispectral analysis Wheat, Potato Ma et al., 2023; Mazur et al., 2023

Soil texture Loam UAV digital terrain modeling Various fields Song et al., 2023

Electrical conductivity (EC) 0.2–0.6 dS/m UAV electromagnetic induction Corn, Soybeans, Alfalfa Guan et al., 2022

Soil compaction <1.2 g/cm3 UAV LiDAR scanning Sugarbeet, Corn Lindenstruth, 2020; Killeen et al.,
2024

Soil temperature 18–25◦C UAV thermal imaging Various fields Basurto-Lozada et al., 2020

recommendations and provide feedback, which helps refine the
system’s accuracy and relevance over time. This feedback loop,
combined with adaptive learning, enhances the system’s predictive
capabilities for future growing seasons. The benefits include
optimized operations through precise irrigation, fertilization, and
pest control, increased yields from timely interventions, and
sustainable practices by reducing chemical use and promoting
efficient resource allocation. This practice empowers farmers to
make informed decisions, boosting productivity, profitability, and
sustainability in agriculture.

Integrating metagenomic and UAV
data for precision agriculture

Various studies highlight the power of integrating advanced
technologies for sustainable agriculture. Remote sensing and
metagenomics have been used to monitor biodiversity and
microbial diversity in agricultural landscapes (Herzog and
Franklin, 2016; Lewin et al., 2024). The combination of exascale
computing, AI, and multi-omics data supports plant biology
research and the UN’s Sustainable Development Goals (Streich
et al., 2020; Cembrowska-Lech et al., 2023). Integratingmicrobiome
analysis, metagenomics, and imaging links microbial dynamics
to broader ecological processes and plant root health (Beatty
et al., 2021; Singer et al., 2021). Soil-plant-microbiota interactions,
crucial for ecosystem health, are emphasized for improved
sustainability (Giovannetti et al., 2022; Dlamini et al., 2023). UAVs,
metagenomics, and environmental sensors optimize real-time soil
health management (Meena et al., 2024; Zeng et al., 2024), while
AI-driven studies advance forest management, nutrient cycling,
and drought tolerance in crops (Chaudhury et al., 2024; Jamil
et al., 2024). Additionally, omics and AI applications enhance
phytoremediation and environmental outcomes (Mohan et al.,
2024). As demonstrated by these studies and illustrated in Figure 1,
it is clear that these integrated techniques can significantly
promote sustainable farming practices. While integrating diverse
datasets within an interdisciplinary framework offers a promising
pathway forward, it poses significant challenges due to the

complexity and variability of harmonizing data with differing
scales, structures, and complexities, requiring solutions such
as multivariate statistical and network-based methods (Streich
et al., 2020; Cembrowska-Lech et al., 2023). Ensuring model
interpretability is another hurdle, as many AI/ML models function
as “black boxes,” complicating biological interpretation and
limiting trust in predictions. Overfitting, a common issue in
ML, further undermines model generalizability and predictive
accuracy. Additionally, automating analysis, uncovering non-
linear interactions, and fostering interdisciplinary collaboration are
essential but demanding tasks that require significant expertise and
innovation. Addressing these challenges is crucial for leveraging
the full potential of UAV and metagenomics data integration in
sustainable agriculture.

Future direction

The future of sustainable agriculture hinges on an
interdisciplinary approach that integrates remote sensing
data with Omics data, all grounded in the One Health concept,
which emphasizes the interconnectedness of human, plant,
and environmental health. Collaboration among experts in
molecular biology, microbiology, ecology, bioinformatics, and
computer science is key to managing complex datasets, enhancing
resource efficiency, and improving precision farming. In-field
technologies like drones, sensors, and real-time sequencing (e.g.,
using Oxford Nanopore’s MinION) enable immediate analysis
of microbial communities, soil health, and crop conditions,
delivering actionable insights directly to farmers through
mobile-friendly, easy-to-understand reports. These advances
promise a low-intervention, automated agricultural system
where sophisticated algorithms process data instantly, enabling
farmers to optimize resource use, respond to challenges in
real time, and improve yields. Despite challenges around data
complexity, technical expertise, integration, privacy, security,
and cost limitations, this integrated technology-driven approach
holds the potential to boost soil health, crop productivity, and
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FIGURE 1

Integrated approach to smart farming. Field sensors, data from unmanned aerial vehicles (UAVs), and artificial intelligence (AI) work together to

provide real-time insights into key agricultural parameters, such as irrigation needs, soil pH, temperature, weather patterns, pest activity, and nutrient

levels. These technologies allow continuous monitoring and real-time adjustments to optimize soil fertility, crop health and productivity.

Simultaneously, soil sampling and metagenomic sequencing o�er detailed taxonomic and functional profiling of soil microorganisms, revealing the

microbial communities involved in nutrient cycling, disease resistance, and soil health. By integrating these datasets, precision agriculture can be

enhanced, enabling smarter decision-making and more e�cient resource management. This combined approach allows farmers to make timely

adjustments in water, fertilizer, and pesticide application while promoting sustainability through reduced resource waste and minimized

environmental impact.

sustainability, transforming modern farming into a more resilient
and efficient system.
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