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The ovule is a plant structure that upon fertilization, transforms into a seed. Successful 
fertilization is required for optimum crop productivity and is strongly affected by 
environmental conditions including temperature and precipitation. Climate change 
refers to sustained changes in global or regional climate patterns over an extended 
period, typically decades to millions of years. These shifts can result from natural 
processes like volcanic eruptions and solar radiation fluctuations, but in recent 
times, human activities—especially the burning of fossil fuels, deforestation, and 
industrial emissions—have accelerated the pace and scale of climate change. 
Human-induced climate change impacts the agricultural sector mainly through 
global warming and altering weather patterns, both of which create conditions that 
challenge agricultural production and food security. With food demand projected 
to sharply increase by 2050, urgent action is needed to prevent the worst impacts 
of climate change on food security and allow time for agricultural production 
systems to adapt and become more resilient. Gaining insights into the female 
reproductive part of the flower and seed development under extreme environmental 
conditions is important to oversee plant evolution, agricultural productivity, and 
food security in the face of climate change. This review summarizes the current 
knowledge on plant reproductive development and the effects of temperature 
and water stress, soil salinity, elevated carbon dioxide, and ozone pollution on 
the female reproductive structure and development across grain legumes, cereal, 
oilseed, and horticultural crops. It identifies gaps in existing studies for potential 
future research and suggests suitable mitigation strategies for sustaining crop 
productivity in a changing climate.
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1 Introduction

Climate change has exacerbated the adverse effects of environmental stress on crop 
production worldwide. Extreme weather events like heat waves, extreme droughts, and floods 
are becoming more frequent and more intense across the globe. For example, July 2023 was 
the hottest month on record since 1880 (National Aeronautics and Space Administration, 
2023). Extreme weather can result in poor yields, or worse, crop failures. The average yield loss 
of cereal crops due to drought and heat stress was estimated at 9%–10% in recent decades, and 
the impact was greatest in developing nations compared to developed countries (Lesk et al., 
2016). Together, these impacts pressure domestic and global food systems and increase the 
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likelihood of supply chain disruptions and competition for 
increasingly limited resources (https://www.ccacoalition.org).

Grain (or seed) number and grain weight are two key yield 
components in grain crops. A grain is developed through the union of 
two sperm cells delivered by a pollen grain and two female gametes (the 
egg and central cells) in the ovule in a process known as double 
fertilization (Davies et al., 2018). The world’s leading crops  - cereals, 
oilseeds, and pulses, are produced through sexual reproduction, which 
involves the fusion of male and female gametes to form seeds. These seeds 
are the grains or edible parts of the crops that ultimately contribute to the 
world’s food supply. Successful pollination and fertilization (seed set) play 
a key role in crop productivity and depend greatly on the environmental 
conditions in which these processes take place.

Reproduction is the most sensitive developmental stage to hot and 
cold temperatures, drought, combined heat and drought, and salinity 
stresses (Zinn et al., 2010; Suzuki et al., 2014). Adverse impacts of 
high-temperature stress on the morphological and quantitative 
parameters of pollen grains have been reported in many crops, such 
as maize (Zea mays) (Wang et  al., 2019, 2021b), wheat (Triticum 
aestivum) (Khan et al., 2022), barley (Hordeum vulgare) (Sakata et al., 
2010), rice (Oryza sativa) (Endo et al., 2009), field pea (Pisum sativum) 
(Lahlali et  al., 2014; Jiang et  al., 2015, 2019a,b), common bean 
(Phaseolus vulgaris) (Porch and Jahn, 2001; Prasad et al., 2002), peanut 
(Arachis hypogaea) (Prasad et al., 1999), cotton (Gossypium hirsutum) 
(Song et al., 2015), flax (Linum usitatissimum) (Cross et al., 2003), 
tomato (Solanum lycopersicum) (Giorno et  al., 2013), and pepper 
(Capsicum annum) (Erickson and Markhart, 2002). Drought, like heat 
stress, can adversely impact male and female organs and contribute to 
yield reduction in crops (Ishimaru et al., 2022). The effects of drought 
stress during the reproductive stage are manifested in the form of 
degenerated meiocytes, disorientated microspores, expanded anther 
wall layers with a vacuolized tapetum, early anther dehiscence, and 
non-viable pollen (Giorno et al., 2013; De Storme and Geelen, 2014).

Depending on its concentration, the duration of exposure, the plant’s 
sensitivity, and the plant’s developmental stage, tropospheric ozone (O3) 
can be a source of stress and can have damaging effects on reproductive 
development in flowering plants (Pasqualini et al., 2011; Duque et al., 
2021b). Some of the proposed mechanisms by which ozone might affect 
reproductive performance include (i) reduction in photosynthetic 
efficiency through damaging chloroplasts and reducing the plant’s overall 
energy production (ii) inhibition of assimilate translocation, and (iii) 
reduction in pollen viability (Pasqualini et al., 2011), pollen germination, 
and pollen tube growth and increase in abscission of reproductive sites 
(Fiscus et al., 2005; Leisner and Ainsworth, 2012). Ozone has been shown 
to alter the timing of the flowering onset (Rämö et al., 2007; Hayes et al., 
2012; Duque et al., 2021a) and to decrease the number of flowers (Hayes 
et al., 2012; Duque et al., 2021a), which may alter reproductive success. 
According to Stabler (2016), exposure of broad bean (Vicia faba) plants 
to ozone reduced the amount of pollen produced and decreased its 
protein content.

Since the start of the industrial revolution, burning fossil fuels like 
coal and oil has increased the concentration of atmospheric carbon 
dioxide (CO2). In flowering plants, elevated levels of CO₂ can have 
both positive and negative effects on reproductive development, 
depending on the plant species (C3 or C4), environment, and 
interaction with other factors such as temperature and nutrient 
availability. In theory, elevated levels of CO2 increase photosynthesis 
if the other essential factors such as sunlight, water, temperature, or 

nutrients are available in abundance (Boretti and Florentine, 2019). 
This can lead to a slower increase in the atmospheric concentration of 
CO2, compared to what would be expected solely based on global CO2 
emissions (Le Quéré et al., 2009). Additionally, higher atmospheric 
CO2 levels have been shown to reduce the water plants lose through 
transpiration, allowing plants to survive in drier conditions (Swann 
et al., 2016). These two processes can improve the uptake of CO2 by 
the biosphere, thus increasing the land carbon stock—a phenomenon 
known as the CO2 fertilization effect (Chen et al., 2022). Across 79 
crop and undomesticated (wild) species, CO2 enrichment 
(500–800 μL l-1) resulted in substantial increases in number of flowers 
(+19%), fruits (+18%), and seeds (+16%) as well as greater individual 
seed mass (+4%) and total seed mass (+25%) than control treatments 
(Jablonski et al., 2002). Similarly, elevated CO2 significantly increased 
the number of flowers for the tropical legume forage species 
Stylosanthes capitata Vogel (Alzate-Marin et al., 2021). Even though 
the weight of evidence favors the idea that the male reproductive 
organ is more sensitive to abiotic stress than its female counterpart in 
several crops such as maize (Wang et al., 2019), sorghum (Sorghum 
bicolor) (Djanaguiraman et al., 2018b), barley (Callens et al., 2023), 
and field pea (Jiang et al., 2019a), evidence for species-specificity of 
reproductive organs’ sensitivity to abiotic stress is accumulating 
(Hedhly, 2011; Wang et al., 2021a,b). This review focuses on the status 
of the pistil’s morphological, physiological, and molecular changes 
subjected to abiotic stress, and bridging the gap between basic research 
and the applied field of agronomy.

2 Plant reproductive development

2.1 Male gametophyte development

Male gametophyte (also referred to as microgametophyte or 
pollen grain) development in anthers occurs over two distinct 
sequential phases, microsporogenesis and microgametogenesis 
(Huang et al., 2021). During microsporogenesis, diploid microspore 
mother cells (also called pollen mother cells or microsporocytes) 
undergo meiotic division to produce tetrads of haploid microspores. 
Unicellular microspores are released from tetrads and undergo 
microgametogenesis (Pandey et  al., 2022). This process involves 
asymmetric mitosis (mitosis I) that generates two unequal cells, the 
larger vegetative and the smaller generative cells. The generative cell 
goes through symmetric mitosis (mitosis II) to produce two sperm 
cells (Figure  1A). Approximately 70% of male gametophytes of 
flowering plants have a sexually immature bicellular state when they 
are dispersed as pollen. The remainder have tricellular pollen 
containing fully formed sperm at anthesis (Williams et al., 2014). In 
species with bicellular pollen grains, pollen mitosis II occurs in the 
growing pollen tube within the pistil (Berger and Twell, 2011; 
Dresselhaus and Franklin-Tong, 2013), such as in field pea (Jiang 
et al., 2019b).

2.2 Female gametophyte development

The gynoecium is the female reproductive portion and the 
innermost whorl of the flower in angiosperms (or flowering plants) 
and predominantly consists of one pistil (Cucinotta et al., 2020). The 
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pistil has three main parts: the ovary at the base where ovules are 
housed, the style through which the pollen tubes grow, and the stigma 
on which the pollen grains germinate. The female gametophyte (also 
called embryo sac or megagametophyte) develops within the ovule 
over two phases, megasporogenesis and megagametogenesis. More 
than 15 different patterns of female gametophyte development have 
been characterized based on the variations in cytokinesis during 
meiosis, the number and pattern of mitotic divisions, and the pattern 
of cellularization (Yadegari and Drews, 2004). The Polygonum-type 
female gametophyte is the most typical type of embryo sac in many 
economically important families including Gramineae, Leguminosae, 
Solanaceae, Brassicaceae, and Malvaceae (Willemse and Van Went, 
1984; Haig, 1990; Huang et al., 1998; Drews and Koltunow, 2011). It 
possesses seven cells with four cell types: one egg cell and two synergid 
cells at the micropylar pole, one big central cell with two polar nuclei 
in the middle, and three antipodal cells at the chalazal pole. Chalaza 
is the basal part of the body of the ovule from which the inner and 
outer integuments develop, and these finally envelop and protect the 
embryonic sac (Figure 1B). It is present opposite the micropylar end 
of an ovule (Davies et al., 2018).

During megasporogenesis, the diploid megaspore mother cell 
(megasporocyte) undergoes meiosis resulting in the formation of four 
megaspore nuclei (Drews and Koltunow, 2011). There are three main 
types of megasporogenesis in angiosperm, namely monosporic, 
bisporic, and tetrasporic (Haig, 2020). These three types differ mainly 
in whether cell plate formation occurs after these divisions, thus 
determining the number of meiotic products that affect the 
development of the mature female gametophyte (Yadegari and Drews, 

2004). In the monosporic type of megasporogenesis, meiosis is 
followed by cytokinesis, leading to four megaspore cells. Subsequently, 
three megaspores, generally the micropylar-most megaspores, 
undergo cell death (Drews and Koltunow, 2011). In the bisporic type 
of megasporogenesis, meiosis I  is followed by cytokinesis, but not 
meiosis II, which leads to two-nucleate megaspores, one of which 
degenerates. In the tetrasporic pattern, cytokinesis does not occur at 
all after meiosis, resulting in a single cell with four haploid nuclei. 
Thus, these three patterns give rise to a single functional megaspore 
that contains one (monosporic), two (bisporic), or four (tetrasporic) 
haploid megaspore nuclei (Haig, 2020). The monosporic pattern is the 
most common form and is represented within the Polygonum pattern 
(Willemse and Van Went, 1984; Haig, 1990; Yadegari and Drews, 
2004). The monosporic, Polygonum type of female gametophyte is 
typically a seven-celled structure at maturity (Yadegari and Drews, 
2004). However, this structure may be modified by cell death or cell 
proliferation events in various species (Grossniklaus and Schneitz, 
1998; Yadegari and Drews, 2004; Friedman, 2006; Drews and 
Koltunow, 2011; Endress, 2011a,b).

2.3 Pollination and sexual reproduction in 
flowering plants

Efficient and successful pollination and fertilization are key 
processes for crop productivity (Suzuki, 2009; Bleckmann et al., 2014). 
Pollination is initiated after a pollen grain is transferred from the 
anther to a receptive stigma via various agents, such as pollinators, 

FIGURE 1

Schematic of (A) male gametophyte (pollen grain) development and (B) female gametophyte (embryo sac) in flowering plants.
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wind, or direct contact. Most pollen grains are metabolically quiescent 
and highly desiccated, ranging from 15 % to 35% water content when 
released from the anthers (Heslop-Harrison, 1979; Buitink et  al., 
2000). Stigma plays an important role in pollination and is composed 
of stigmatic papillae, which are divided into wet and dry types 
depending on the presence or absence of secretions at the stigma 
surface (Heslop-Harrison and Shivanna, 1977; Heslop-Harrison, 
1981). Wet stigmas are covered with surface cells that often lyse to 
release a viscous surface secretion containing proteins, lipids, 
polysaccharides, and pigments (Edlund et  al., 2004). Pistils in 
Leguminosae, Solanaceae, and Orchidaceae have wet stigmas (Zheng 
et al., 2018). Dry stigmas lack copious surface secretion (Edlund et al., 
2004) and are further divided into unicellular and multicellular types 
(Katano and Suzuki, 2021). Stigmas in Gramineae, Brassicaceae, and 
Asteraceae are of the dry type (Elleman et al., 1992; Zheng et al., 2018).

Upon pollen adhesion, water, nutrients, and other small molecules 
are transported rapidly into the pollen grain from the stigma exudate 
(in the wet stigma type), leading to pollen hydration (Richards, 1997; 
Edlund et  al., 2004). Following pollen hydration, the pollen tube 
germinates and penetrates the stigma cell wall and then passes 
through the nutrient-rich extracellular matrix of the transmitting tract 
toward the female gametophyte (Johnson and Preuss, 2002; Rejón 
et al., 2016). The pollen tube eventually enters the embryo sac in the 
ovule from the micropyle by growing between the two halves of the 
filiform apparatus of the synergid cells. Just after passing the filiform 
apparatus, wall deposition at the tip of the pollen tube appears 
disordered, resulting in pollen tube discharge. One of the two sperm 
cells fuses with the egg cell to develop into the embryo, and the other 
sperm cell fuses with the polar nuclei to develop into the endosperm 
during double fertilization (Faure, 2001; Higashiyama, 2010; Drews 
and Koltunow, 2011).

The ovule is the structure that gives rise to and contains the female 
reproductive cells. It consists of three parts: the integument, forming 
the outer layer; the nucellus (or remnant of the megasporangium), a 
diploid nutritive tissue; and the female gametophyte in the center of 
the ovule. Embryo development in a typical dicot includes the 
proembryo stage, globular stage, cotyledon stage, and mature seed. In 
contrast, embryo development in a typical monocot includes 
proembryo stage, globular stage, scutellar stage, coleoptilar stage, and 
mature seed stage (Davies et al., 2018). In most cases, antipodals at the 
chalazal end degrade soon before or soon after fertilization (Panoli 
et al., 2015). In other cases (such as many monocots, particularly 
grasses), the antipodals can continue to divide and develop 40–100 
antipodal cells, for example in maize (Zea mays) (Diboll, 1968). For 
the latter, antipodals may provide nutrition for endosperm and 
embryo development (Davies et al., 2018).

3 Effects of abiotic stress on female 
reproductive organ

The pistilar sporophytic tissues provide an optimal environment 
to support several key events during plant reproductive development, 
including gametophyte development, pollen germination, pollen tube 
growth, and fertilization. To fulfill these roles, the pistil acquires 
adequate levels of enzymes (e.g., invertase and antioxidant enzymes), 
phytohormones, soluble carbohydrates, free amino acids, adenosine 
triphosphate (ATP), and lipids (Herrero and Hormaza, 1996; Jain 

et al., 2007; Deb et al., 2018; Liu et al., 2022; Shi et al., 2022). However, 
the pistil is prone to irreversible morphological and physiochemical 
changes due to changes or disruptions in climate variables (heat and 
drought stress, flooding, ozone pollution, and elevated CO2), which 
results in up to 100% yield loss depending on crop species, genotype, 
and stress conditions (Table  1). These disruptions collectively 
contribute to reduced fertilization success and can limit seed 
production and fruit set through different mechanisms such as 
impaired pollen tube growth and ovule number. For example, heat 
stress modifies source-sink relations, reduces the kernel-filling stage, 
and produces unfilled or aborted seeds in several globally important 
crops (Kaushal et al., 2016). Exposure to high temperatures during 
seed filling can accelerate the senescence of seeds, decrease seed set 
and seed weight, and lead to yield loss because plants tend to divert 
energy and resources such as photosynthates to deal with heat stress 
(Bueckert and Clarke, 2013). Schematic of some major impacts of 
changes or disruptions in climate variables (heat and drought stress, 
flooding, ozone pollution, and elevated CO2) on female reproductive 
organs in major food sources selected in this review is shown in 
Figure 2.

3.1 Effect of abiotic stress on the female 
reproductive organ in grain legumes

Heat-induced morphological changes in the pistil were reported in 
several crops. Exposure of a heat-sensitive chickpea (Cicer arietinum) 
genotype, ‘ICC 4567’, to high temperatures (39.4/27.2°C day/night 
temperatures) against a control treatment (27/16°C) for 7 days during 
pre-anthesis shortened the style length and led to ovule and ovary 
abnormalities (Devasirvatham et al., 2013). Heat stress accelerated seed 
abortion in all ovule positions within pods in field pea (Jiang et al., 
2020). In half of the cultivars tested, ovules at the pod’s medial and 
stylar-end positions were more likely to develop into seeds compared 
to basal ovules. Pea cultivars with small seed size such as ‘40–10’ and 
‘Naparnyk’ were able to retain the most ovules and seeds per pod 
compared to large seed size cultivars, and large-seeded cultivars like 
‘MFR043’ aborted seeds when exposed to heat in growth chambers 
(Jiang et al., 2020). Under field conditions, the field pea cultivars ‘CDC 
Meadow’, ‘CDC Sage’, and ‘Carnival’ (identified as having a low and 
medium proportion of ovules developing into seeds per pod) which 
were subjected to heat stress during flowering phases displayed higher 
levels of ovule abortion and a significant decrease in ovaries, ovules, 
and embryo sac size than cultivars ‘40–10’, ‘Naparnyk’, and ‘MFR043’ 
(identified as having a high proportion of ovules developing into seeds 
per pod) (Osorio et al., 2023). Heat stress (>32/20°C) accelerated pod 
abortion as well as shortened the duration of seed set, leading to yield 
loss in lentil (Bhandari et al., 2016). In addition, heat stress was reported 
to decrease ovule number and ovule viability, and result in fertilization 
failure in common bean (Monterroso and Wien, 1990; Ormrod et al., 
1967). Cold stress may also cause morphological changes in female 
reproductive cells and organs. Exposure of sensitive chickpea genotypes 
to low temperatures (15/0°C) significantly reduced ovary and style size 
and delayed floral development (Srinivasan et al., 1999).

Seed-filling processes are adversely affected by heat and drought 
stress in all crop species, including grain legumes, resulting in reduced 
seed yields and quality. For example, drought stress significantly 
reduced seed weight per plant, average seed weight, average seed size, 
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and number of pods in chickpeas (Nayyar et al., 2006). Drought stress 
during pod-filling resulted in significant reductions in seed minerals 
(i.e., Fe, Zn, P, and N) and seed protein content in common bean 
(Ghanbari et al., 2013a, 2013b). Similarly, drought stress at seed filling 
stage led to significant reductions in starch, protein, amino acids, and 
minerals (Ca, P, and Fe) in chickpea seeds (Nayyar et al., 2006).

Salinity stress is another major abiotic factor that has adverse 
effects on reproductive processes through ionic imbalance, osmotic 
stress, and oxidative stress, leading to a reduction in nutrient uptake, 
cell division and expansion, and photosynthesis and photoassimilates 
(Khataar et al., 2018; Kumari et al., 2022; Atta et al., 2023). In sensitive 
chickpea genotypes, reproductive development related traits, such as 
flower number, ovule fertilization, pod development and retention, 
seed number, and seed size are highly sensitive to salt stress (Flowers 
et al., 2010). According to Khan et al. (2017), saline stress reduced 
photosynthesis and decreased tissue sugars by 22%–47%; both 
vegetative and reproductive development were severely impaired. 
Turner et al. (2013) reported that salt stress increased pod abortion in 
sensitive chickpea genotypes, but pollen viability, in vitro pollen 
germination, and in vivo pollen growth was not affected.

3.2 Effect of abiotic stress on the female 
reproductive organ in cereals

In maize, ovule development, ear growth, and ovary/kernel size 
and number were highly sensitive to heat and drought stress 
(Danilevskaya et al., 2019; Wang et al., 2019). Exposure of maize plants 
to low water potentials (Ψw) for 6 days during flowering [from silk 

emergence (day -5 from pollination to day 1 after pollination)] led to 
leaf Ψw of -1.25 MPa in water-stressed plants in comparison to leaf Ψw 
of 0.45 MPa in control plants at pollination, resulting in embryo 
abortion and a substantial reduction in kernel number, with abortion 
being linked to restricted carbon flow to the young ovaries due to 
impaired photosynthesis (Zinselmeier et al., 1999). Heat stress has 
negatively impacted ovule development in wheat, leading to yield loss 
(Saini and Aspinall, 1982; Saini et al., 1983). One-third of heat-stressed 
ovaries before anthesis in wheat exhibited an abnormal nucellus or 
embryo sac (Saini et  al., 1983). Some of these abnormal ovules 
contained small embryo sacs without complete cellular organization 
or lacking any recognizable cells; the development of the nucellus 
degenerates in some of the ovules (Saini et al., 1983). In the wheat 
cultivar ‘Chinese spring’, short episodes (2 d or 5 days) of heat stress 
(35/25°C) during reproductive development (first at 8–6 days before 
anthesis and second at 2–0 days before anthesis) resulted in desiccated 
stigmas and styles with no pollen grains and flaccid and dried ovaries 
(Prasad and Djanaguiraman, 2014). Likewise, exposure of pearl millet 
(Pennisetum glaucum) to heat stress (39/29°C) against a non-stressed 
treatment (30/20°C) from gametogenesis through flowering in both 
controlled and field environments led to deformed and desiccated 
styles and ovaries (Djanaguiraman et al., 2018a). Six days of heat stress 
(38°C and 40°C) during megasporogenesis of a heat-tolerant rice 
genotype, ‘N22’, and a heat-sensitive genotype, ‘IR64’, resulted in 
degeneration of all four megaspores instead of just three nuclei, 
formation of mature embryo sacs without the female germ unit, 
improper positioning of nuclei, and shrunken embryo sacs in the 
sensitive IR64 as compared to the control (30°C) treatment (Shi 
et al., 2022).

TABLE 1 Effects of abiotic stress on ovule/seed development and seed yield reduction in different field crops.

Crops Growth stage Stress conditions Effects on ovule/
seed

Seed yield 
reduction ()

References

Flax (Linum usitatissimum) Post-anthesis
Heat, 40/18°C (day/night) 

for 7 d or 14 d

Reduced seed number, single 

seed weight, increased % 

malformed seed

ns Cross et al. (2003)

Field pea (Pisum sativum) Flowering
Heat, 35/24°C (day/night) 

for 7 d

Reduced seed number and seed 

to ovule ratio
15 Jiang et al. (2020b)

Maize (Zea Mays) Reproduction Heat, 40/30°C (day/night) Reduced kernel number 28 Wang et al. (2021b)

Chickpea (Cicer arietinum) - Heat, >35°C in the field Reduction in pod set 39 Devasirvatham et al. (2015)

Oilseed rape (Brassica 

napus)
Seed filling Heat, 33/19°C (day/night) Reduced seed number 40 Brunel-Muguet et al. (2015)

Sorghum (Sorghum bicolor) Anthesis Heat, 38/22°C (day/night)
Reduced grain number, 

damaged ovule cells
50 Chiluwal et al. (2020)

Wheat (Triticum aestivum) Seeding to maturity Salinity, 15 dS m-1 Reduced seed weight 58 Abbas et al. (2013)

Camelina (Camelina sativa) Post-anthesis
Heat, 34/24°C (day/night) 

for 7 d or 14 d
Reduced seed oil accumulation 85 Nadakuduti et al. (2023)

Pearl millet (Pennisetum 

glaucum)
Seeding to maturity Heat, 42/32°C (day/night) Reduced seed number 85

Djanaguiraman et al. 

(2018a)

Chickpea (Cicer arietinum) Seeding to maturity Salinity, 40 mM NaCl Reduced seed number

20d–98 

depending on 

genotype

Turner et al. (2013)

Kidney bean (Phaseolus 

vulgaris)
Reproduction

Heat, 40/30°C (day/night) 

and CO2 (700 μmol mol-1)
Reduced seed number 100 Prasad et al. (2002)

ns, seed yield between control and stressed treatments not significant.
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Cell wall invertases are important metabolic enzymes that 
hydrolyze sucrose into glucose and fructose and play an important 
role in apoplasmic unloading of sucrose and hexoses to the elongating 
pollen tubes and developing seeds and hence crop yield (Shen et al., 
2019). The invertase activity in female reproductive organs was 
significantly decreased under heat stress, thus limiting the supply of 
sucrose and hexoses to rice spikletes (Jiang et al., 2020) and tomato 
fruits (Liu et al., 2016). Severe drought stress significantly reduced the 
invertase activity in the placental region and the ovary dry mass, 
leading to poor grain set and grain yield in maize (Andersen et al., 
2002). Drought stress caused inhibition of invertase enzymes, 
downregulation of genes encoding sucrose processing enzymes, and 
expression of senescence-related genes in the ovary of maize, leading 
to ovary abortion (McLaughlin and Boyer, 2004).

Metabolite profiling of pistils during the gametogenesis stage of a 
heat-sensitive rice genotype, IR64, and a heat-tolerant rice genotype, 
N22, grown under control (30°C) and two high-temperature 
treatments (38°C and 40°C) for 6 days, revealed significant reductions 
in starch content, TCA cycle (citrate cycle) related metabolites (i.e., 
citric acid, fumaric acid, and succinic acid), and amino acid 
metabolites (i.e., 3-cyanoalanine, proline, aspartic acid, lysine, valine, 
and isoleucine) in the developing pistils of IR64 than N22 (Shi et al., 
2022). According to Zinselmeier et al. (1995), water deficit conditions, 
particularly during flowering and early embryo growth, contributed 

to arrested embryo growth, a decreased sucrose flux, and an altered 
carbohydrate metabolism in the ovaries of maize.

Long-term drought stress from growth stage V7 (the beginning of 
the rapid growth phase and stem elongation) through R1 (silking) 
under field conditions caused significant transcriptional changes in 
ears but only minor changes in the tassel of the maize ‘B73’ inbred line 
(Danilevskaya et  al., 2019). Many key genes involved in DNA 
replication, cell cycle, cell division, floral development (e.g., MADS-box 
and non-MADs genes), and embryo sac development (i.e., IG1; 
indeterminate gametophyte) were suppressed under drought stress, 
which ultimately led to the formation of defective ovaries and a failure 
to produce kernels (Danilevskaya et al., 2019). In rice, the pectinase 
gene family overexpressed in the male and female floral organs by 
high-temperature treatments and was suggested to be the direct cause 
of rice floral organ abortion during heat stress (Wu et  al., 2015). 
Previous research showed that ribosome inactivating protein (RIP2) and 
phospholipase D (PLD1) genes were transcriptionally activated under 
stress conditions due to a lack of carbon sources, leading to early 
senescence and ovule abortion in maize (Boyer and McLaughlin, 
2007). A summary of the adverse effects of heat on drought stress on 
the female reproductive phase, crop productivity, and grain quality in 
grain legumes and cereal crops is included in Figure 3.

Salinity stress significantly reduced the growth and productivity of 
cereal crops (Munns et al., 2006). In maize, salinity stress considerably 

FIGURE 2

Schematic of some major impacts of climate change on female reproductive organs in crop species.

https://doi.org/10.3389/fsufs.2024.1495610
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Erfatpour et al. 10.3389/fsufs.2024.1495610

Frontiers in Sustainable Food Systems 07 frontiersin.org

reduced grain yield of maize by decreasing the number of grains and 
grain weight during the reproductive growth stage (Schubert et al., 
2009). This was attributed to reduced photosynthesis and 
photoassimilates (Lohaus et al., 2000; Hiyane et al., 2010) and impaired 
translocation of assimilates from source to developing grains (sink) 
under salt stress. In wheat, salinity stress accelerates all phenological 
phases (Grieve et al., 1994), decreases the number of spikelets number 
per spike (Frank et al., 1987), and reduces grain yield (Abbas et al., 
2013; Sorour et al., 2019), and grain quality traits (El Sabagh et al., 2021).

3.3 Effect of abiotic stress on female 
reproductive organ in oilseed crops

Under high-temperature conditions (32/26°C) most stigmas 
protruded significantly out of the closed flower buds in rapeseed 
(Brassica napus) (Polowick and Sawhney, 1988). Heat stress (32/26°C) 
caused abnormal embryo sac development in rapeseed – the ovule 
growth was not uniform along the length of the ovaries of both 
pollinated and unpollinated flowers (Polowick and Sawhney, 1988). 
Heat stress in rapeseed was associated with asynchronous embryo 
development, a high rate of defective embryos, accelerated embryo 
development, altered seed quality, induced pre-harvest sprouting, and 
decreased abscisic acid (ABA) levels in mature seeds (Brunel-Muguet 
et al., 2015; Mácová et al., 2022). Heat stress decreased seed oil content 
by 52% in canola, but the protein content increased under heat, drought, 

and a combination of heat and drought (Elferjani and 
Soolanayakanahally, 2018). Heat stress reduced seed oil content but 
increased seed sugar content in rapeseed, suggesting that the conversion 
of carbohydrates into triacylglycerols was affected under heat stress 
(Huang et  al., 2019). The authors also found that reduced seed 
production was caused by the impairment of photosynthesis and 
downregulation of BnWRI1 and its downstream genes. Fewer fertile 
pods and seeds per pod were produced by canola florets under heat 
stress (Hu et al., 2024). Further, heat stress during seed development 
was reported to induce changes in the biosynthesis from polyunsaturated 
fatty acid synthesis to more monounsaturated fatty acid accumulation 
in camelina (Camelina sativa), leading to membrane stability to protect 
cell function and embryo development (Nadakuduti et al., 2023).

3.4 Effect of abiotic stress on the female 
reproductive organ in other horticulture 
crops

In apricots (Prunus armeniaca), mild heat stress (an average of 
3°C higher than the control) during the last week of flower 
development shortened the style length and led to abnormal ovary 
development (Rodrigo and Herrero, 2002). Heat stress reduced ovule 
longevity in plum (Prunus mume) (Cerovic et al., 2000). Fertilized 
ovules may stop swelling rapidly in tomatoes due to high temperatures 
(Kinet and Peet, 1997). Heat stress also decreased ovule number and 

Female Reproductive Stage and Crop Production

Pistil and Fertilization Seed (or grain) Filling

Reduced pollen germination[1, 2] Impaired embryo development[19-21]

Reduced pollen tube growth[1-3] Impaired source-sink relations[22]

Reduced ATP content[4] Impaired hormone homeostasis[23]

Reduced invertase activity[5-8] Reduced grain filling duration[24]

Reduced soluble carbohydrates[5-7] Reduced seed size and seed weight[25]

Reduced starch accumulation[9] Reduced seed quality[26]

Extended callose formation[10] Reduce seed set and pod set[27, 28]

Increased pistil abnormality[11, 12] Reduced milling quality[29, 30]

Increased oxidative stress[13, 14] Reduced seed protein content and minerals[31, 32]

Increased pectinase activity[15] Reduced grain starch content[33]

Increased ovule abortion[16] Increased grain chalkiness in rice[34]

Impaired hormone homeostasis[17] Accelerated grain filling[30]

Impaired fertilization[18] Increased pod abortion[35]

FIGURE 3

Adverse effects of heat and drought stress on female reproductive organs and seed (or grain) filling in crop plants. Chickpea-[1] (Kumar et al., 2013); 
pearl millet-[2] (Gupta et al., 2015); rice-[3] (Zhang et al., 2018a); cotton-[4] (Snider et al., 2009); tomato-[5] (Liu et al., 2016); cotton-[6] (Loka and 
Oosterhuis, 2016); rice-[7] (Jiang et al., 2020a); maize-[8] (Andersen et al., 2002); rice-[9] (Shi et al., 2022); pea-[10] (Jiang et al., 2019b); rice-[11] 
(Takeoka et al., 1991); chickpea [12] (Devasirvatham et al., 2013); pearl millet-[13] (Djanaguiraman et al., 2018a); rice-[14] (Jiang et al., 2020a); rice-[15] 
(Wu et al., 2015); Arabidopsis-[16] (Whittle et al., 2009); pea-[17] (Savada et al., 2017); rice-[18] (Li et al., 2015); rice-[19] (Begcy et al., 2018); spring wheat 
[20] (Prasad et al., 2008); common bean [21] (Vargas et al., 2021); common bean [22] (Soltani et al., 2019); pea-[23] (Ozga et al., 2009); wheat-[24] 
(Wardlaw, 2002); lentil-[25] (Kumar et al., 2016); soybean-[26] (Teixeira et al., 2016); common bean-[27] (Gross and Kigel, 1994); soybean-[28] (Liu et al., 
2003, 2004); wheat-[29] (Hernández-Espinosa et al., 2018); [30] (Mahdavi et al., 2022); common bean- [31] (Ghanbari et al., 2013a); [32] (Ghanbari 
et al., 2013b); rice-[33] (Yamakawa et al., 2007); rice-[34] (Nakata et al., 2017); cool-season pulses-[35] (Bhandari et al., 2016) Created in BioRender.
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viability of tomato plants (Din et al., 2015). Similarly, a reduction of 
seed set under heat stress was associated with a decreased amount of 
carbohydrates and growth regulators in plant sink tissues in tomato 
(Kinet and Peet, 1997).

3.5 Callose deposition as a biomarker in 
response to abiotic stress in female 
reproductive organs

Callose is a polysaccharide β-1,3-glucan synthesized by a family of 
callose synthases and deposited in specialized cell walls or cell wall-
associated structures such as cell plates, outer walls of pollen grains, pollen 
tubes, and plasmodesmata in a wide variety of higher plants (Nishikawa 
et al., 2005). Plant cell walls contain only small amounts of callose, ranging 
from 0.2%–0.5% in Arabidopsis and food crops to about 5% in energy 
crops under normal growth conditions (Wang et al., 2022). However, 
heavy callose deposition in cell walls may occur due to abiotic stress, 
wounding, and pathogen infection (Chen and Kim, 2009; Luna et al., 
2011). Callose in the cell wall, plasmodesmata, and sieve pores contribute 
to the internal stabilities of cells during water stress and heat (Wang et al., 
2022). In angiosperms with monosporic or bisporic embryo sac 
development, callose is formed in the megaspore mother cell walls 
(Rodkiewicz, 1970). Callose also accumulates in the walls of megaspore 
tetrads, the four haploid cells produced by the meiotic division of 
megaspore mother cells. Under optimal growth conditions, the callose 
begins to degrade when the functional megaspore undergoes its first 
mitosis and throughout the process of embryo sac development (Shi et al., 
2016; Zhou et al., 2016; Brzezicka and Kozieradzka-Kiszkurno, 2024). 
However, callose accumulation can be extended around the synergid and 
at the micropylar in response to stress which can lead to ovule abortion 
and embryo senescence likely by hindering signals required for the pollen 
tube to enter the embryo sac and reducing sugar transport into ovules 
(Rodrigo and Herrero, 1998; Sun et al., 2004). A higher amount of callose 
deposition were observed in ovules of field pea under heat stress (Jiang 
et al., 2019b) and in sweet cherry (Prunus avium) (Zhang et al., 2018). A 
similar observation was reported in salt-stressed Arabidopsis plants (Sun 
et al., 2004). Callose has been used as a biomarker for embryo senescence 
such as in Arabidopsis (Sun et al., 2004) and field pea (Jiang et al., 2019b).

3.6 Effect of heat stress on reactive oxygen 
species (ROS) in female flower organs

Plants convert 1%–2% of consumed oxygen into reactive ROS, 
such as hydrogen peroxide (H2O2), singlet oxygen (1O2), superoxide 
radicals (O2•-), and hydroxyl radicals (•OH) as a byproduct of aerobic 
metabolism in several cellular compartments such as the chloroplast, 
mitochondria, and peroxisomes (Sachdev et  al., 2021). ROS are 
important signaling molecules that are involved in reproductive 
processes such as megagametogenesis, pollen-pistil interaction, and 
degeneration of synergids (Zinta et  al., 2016). ROS levels surge 
beyond physiological thresholds in response to environmental 
stressors which can cause irreversible damage to DNA, lipids, and 
proteins, leading to cell death (Dat et al., 2000; Zafar et al., 2022; Hong 
et  al., 2024). To counteract these deleterious effects, plants have 
evolved a regulatory network comprising enzymatic [e.g., superoxide 
dismutase (SOD), peroxidase (POD), and catalase (CAT)] and 

non-enzymatic (e.g., ascorbic acid, glutathione, flavonoids, 
carotenoids, proline, and ubiquinone) antioxidant systems tends to 
keep the magnitude of ROS within plant cells to a non-damaging level 
(Zafar et al., 2023). However, antioxidants may fail to scavenge excess 
ROS. For example, under high-temperature stress, prolonged 
accumulation of ROS and low antioxidant activity in the pistils was 
suggested to be responsible for low fertilization rate and/or high rate 
of early embryo abortion in heat-sensitive genotypes of sorghum 
(Djanaguiraman et al., 2018b) and pearl millet (Djanaguiraman et al., 
2018a). In contrast, the heat-tolerant rice genotype N22 maintained 
ROS homeostasis and antioxidant enzyme activities in its female 
gametophytes better than IR64, especially during post-stress recovery 
(Shi et al., 2022).

3.7 Effect of heat stress on phytohormones 
in female reproductive organs

Plant phytohormones such as abscisic acid (ABA), auxins, 
cytokinins, and ethylene play important roles in pollen-pistil 
interactions, pollen tube growth, and ovary development (Wu et al., 
2008; Deb et al., 2018) and are altered to regulate the physiological and 
biochemical processes in response to environmental stresses (Zhang 
et al., 2023). Under high-temperature (34/18°C) conditions, pistils in a 
heat-sensitive rapeseed cultivar., ‘Westar’, had significantly lower levels 
of ABA than those developed under optimal (21/14°) conditions, 
suggesting that they are less protected against temperature stress 
(Mácová et  al., 2022). Auxin plays an essential role in embryonic 
patterning at the early stage of seed development (Verma et al., 2021). 
Auxin levels were significantly decreased in heat-susceptible rice pistils 
due to high-temperature treatment (40°C for 2 h), and exogenous 
application of NAA (1-naphthaleneacetic acid) alleviated the restriction 
on pollen tube growth (Zhang C. et al., 2018). Ethylene may play a role 
in reproductive processes and seed development. It may also promote, 
inhibit or induce senescence depending upon the optimal or 
sub-optimal ethylene levels (Iqbal et  al., 2017). The ethylene 
biosynthesis gene, 1-aminocyclopropane-1-carboxylic acid (ACC) 
oxidase (ACO) was expressed in early developing stigma, style, and 
ovary in tobacco (Nicotiana tabacum) (De Martinis and Mariani, 1999). 
In tomato, LeACO1,2,3, and 4 and LeACS1A transcripts were detected 
in pistils (Llop-Tous et al., 2000). In China rose (Hibiscus rosa-sinensis), 
ACC synthase (ACS) and ACO were found to be specifically expressed 
in developing style-stigma and ovary tissues (Trivellini et al., 2011). 
Ethylene seems to be involved in the senescence of unpollinated pistils 
in peas (Savada et  al., 2017), tomato (Shinozaki et  al., 2018), and 
Arabidopsis (Carbonell-Bejerano et  al., 2011). In pea, PsACS and 
PsACO were differentially expressed in pre-pollinated ovaries under 
heat stress (33°C–35°C 6 h/day for 4 days) that promoted ovary 
senescence (Savada et al., 2017). The authors also suggested that the 
ethylene-dependent pollen germination and pollen tube growth on 
stigma and style were inhibited under heat (Savada et al., 2017).

4 Stress adaptation mechanisms 
during sexual reproduction

Plants can escape from environmental stress or resist it by 
avoidance or tolerance (Bueckert and Clarke, 2013). Management and 
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breeding approaches, such as shifting planting date and genetic 
manipulation of crop phenology, have been used to facilitate plants to 
escape from heat stress (Sadras et al., 2015). Stress avoidance is the 
ability of plants to avoid stress conditions through some physiological 
mechanisms (Bueckert and Clarke, 2013). Stress tolerance is the ability 
of plants to survive under stress conditions and usually produce lower 
economic yield compared to optimal conditions (Hasanuzzaman 
et al., 2013). The terms, stress tolerance and stress resistance, are also 
used in the literature interchangeably to mean a trait with stress 
robustness compared to heat susceptibility. For example, dryland 
cereals (e.g., wheat, sorghum, and pearl millet) usually flower early 
morning or late evening during the cool hours of the day to avoid 
higher temperatures (Jagadish, 2020). In sorghum, 100% flowering 
was completed within 1 h before dawn, which helped sorghum plants 
escape dryer and hotter conditions during the day (Chiluwal 
et al., 2020).

Under stress conditions, several mechanisms are employed to 
maintain homeostasis and normal cellular functions. The strategy 
termed “differential transpiration” was recently reported by Sinha et al. 
(2023) – under combined heat and drought conditions, soybean plants 
prioritized their transpiration in flowers by opening flower stomata on 
sepals to have a cooling effect and kept their leaf stomata closed. The 
authors proposed that manipulating flower stomatal parameters (such 
as size and density) could be  used as a strategy to enhance crop 
resilience to climate change (Sinha et al., 2023).

Heat shock proteins (HSPs) are a unique family of proteins 
produced in plant cells in response to environmental stresses (Singh 
et al., 2024). HSPs play a crucial role in conferring plant tolerance to 
heat and drought stress by maintaining the function of proteins and 
integrity of various biomembranes (Zhang et al., 2015; Liu et al., 2019). 
The application of genetic manipulation approach to enhance heat and 
drought tolerance in crops species has mainly focused on HSP 
encoding genes. For example, constitutive expression of Arabidopsis 
AtHsp101 (Katiyar-Agarwal et al., 2003) and OsHSP18.6 (Wang et al., 
2015) increased thermotolerance in transgenic rice plants. 
Overexpression of small HSP17.7 enhanced rice tolerance to heat and 
UV-B exposure (Murakami et  al., 2004). Pre-foliage exogenous 
application of ABA before high-temperature treatment of rice 
genotypes resulted in enhanced expression levels of HSP genes, 
increased levels of starch and soluble sugars, and proteins involved in 
sugar transport and conversion, and improved activity of antioxidant 
enzymes and ATP content in spikelets (Rezaul et al., 2019). Similarly, 
an auxin application of 1 μM resulted in a greater grain number and 
grain yield in wheat when plants were exposed to heat stress (34°C–
35°C for 6 h for 6 days) (Abeysingha et al., 2021).

Cell wall invertases are involved in carbohydrate partitioning, 
hormone signaling, and stress responses and play fundamental roles 
in plant reproductive developments, including ovule development and 
seed/fruit set (Roitsch and González, 2004; Liu et  al., 2022). In 
Arabidopsis, cell wall invertase functions as a positive regulator of 
ovule initiation through sugar signaling (Liao et al., 2020). In tomato 
crop, cell wall invertase promotes fruit set under heat stress by 
suppressing ROS-independent cell death (Liu et al., 2016). According 
to Li et al. (2012), tomato cultivars with elevated cell wall invertase 
activity in reproductive organs were found to be more tolerant to heat 
stress than the cultivars with lower cell wall invertase activity. 
Similarly, the improved heat tolerance was observed in genetically 
manipulated transgenic tomato in which the cell wall invertase activity 

was elevated both in ovaries and fruits by silencing the cell wall 
invertase inhibitor (Liu et  al., 2016). In addition, the cell wall 
invertases-elevated transgenic tomato plants exhibited higher 
transcript levels of HSP90 and HSP100 in ovaries HspII17.6 in fruits 
and suppressed programmed cell death in fruits and alleviated 
fruit-set failure by promoting higher transcript levels of auxin 
biosynthesis gene ToFZY6 (Liu et al., 2016).

Recent studies have identified peptide/receptor signaling pathways 
that contribute to stress adaptation in female organs during sexual 
reproduction. In Arabidopsis, CLE45 (CLAVATA3/EMBRYO 
SURROUNDING REGION-RELATED45), a post-translationally 
modified peptide, was preferentially expressed in the stigma at normal 
temperature. Upon heat stress, the expression of CLE45 was expanded 
to the transmitting tract cells where it paired with RLK receptors SKM1 
(STERILITY-REGULATING KINASE MEMBER1) and SKM2 of the 
male gametophyte to sustain pollen tube growth, leading to adequate 
fertilization and seed production (Endo et  al., 2013). Endoplasmic 
reticulum-localized DnaJ (ERECTA) family receptor kinases play an 
important role in heat tolerance; when they are absent, high temperatures 
aggravate the negative effects on ovule development in Arabidopsis 
(Leng et al., 2022). A recent study showed that Class II TEOSINTE 
BRANCHED 1/CYCLOIDEA/ PCF (TCP) transcription factors protect 
ovule identity in Arabidopsis under high-temperature stress (Lan et al., 
2023). Small RNAs play significant roles in ovule development (Petrella 
et al., 2021). Overexpression of OsRab7 gene increased the number of 
filled grains per hill by 35%, the seed filling rate by 21%, and the total 
grain weight by 27% in rice (El-Esawi and Alayafi, 2019).

5 Discussion

Ovule development is a critical step in plant reproduction, and 
maintaining optimal conditions during this process is essential for 
successful seed formation and overall plant productivity. Although a 
lot of previous work focused on the impact of abiotic stressors on the 
male gametophyte, several studies from recent years delved into the 
impact of these stress factors on the development of the female 
gametophyte (Djanaguiraman et al., 2018a; Jiang et al., 2019b; Wang 
et al., 2021a). Understanding how ovule and seed development respond 
to environmental stress is essential for developing effective strategies 
to enhance crop resilience to climate change. Further research in this 
field is not only crucial for advancing our knowledge but also for 
translating this understanding into practical solutions, such as abiotic 
stress resistance breeding and developing beneficial agronomy 
practices to mitigate the risk of climate change on crop production. In 
recent years, several research groups contributed to abiotic stress-
resistant breeding (Rao et al., 2016; Gilliham et al., 2017; Derbyshire 
et al., 2022), such as the efforts in breeding for stress-resilient cultivars 
of pea (Jiang et al., 2017; Huang et al., 2023), wheat (Mondal et al., 
2021; Tanin et al., 2022), and maize (Farooqi et al., 2022). Diversified 
cropping systems showed their effectiveness in improving crop 
resilience to climate change (Li et al., 2019). The concept of “green 
strategies” was proposed by González Guzmán et al. (2022), and they 
refer to environmentally friendly practices such as the use of beneficial 
soil microorganisms, chemical priming, and improved water 
management that aim to enhance plant tolerance to stress factors.

Soil microbes such as rhizobia, arbuscular mycorrhizal fungi, and 
plant growth-promoting rhizobacteria have shown the ability to 
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improve plant growth and optimize reproductive development and 
seed set under adverse environmental conditions by employing several 
mechanisms, such as enhancing water use efficiency and nutrient 
acquisition through the production of phytohormones hormones, 
improving photosynthetic rate, balancing ionic equilibrium, 
producing antioxidants, and improving soil health and fertility (Sagar 
et al., 2021; Fahde et al., 2023). Salicylic acid is a phytohormone that 
is involved in plant flowering, pollen germination, pollen tube 
elongation, and post-fertilization ovary development (Luo et  al., 
2022). It is evidenced that foliar sprays or soil applications of priming 
agents like salicylic acid can alleviate yield losses due to heat stress 
(Zhang et al., 2017; Berková et al., 2023). Mulching is another green 
strategy that can contribute to the stability of reproductive processes 
during periods of low rainfall by reducing soil evaporation, conserving 
moisture, controlling soil temperature, reducing weed growth, and 
improving microbial activities (Iqbal et al., 2020).

Overall, these strategies optimize nutrient availability, reduce 
stress, and promote overall plant health, ensuring that ovule 
development in flowering plants is sustained and successful under 
changing environmental conditions, leading to improved plant 
development and reproduction.
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