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Water-fertilizer coupling technology has emerged as a pivotal strategy in modern 
agriculture, recognized for its potential to enhance soil environmental quality, 
promote crop growth, and ensure sustainable resource utilization. With increasing 
global food demands and environmental concerns, optimizing agricultural practices 
is essential for achieving food security and ecological balance. This review aims 
to systematically review the direct impacts of water-fertilizer coupling on the 
physical, chemical, and biological properties of soil, while elucidating the underlying 
mechanisms that drive crop responses. Additionally, it evaluates the optimization of 
water-fertilizer coupling technology and its associated environmental benefits. The 
findings indicate that water-fertilizer coupling significantly improves soil structural 
stability, enhances microbial diversity, and increases soil enzyme activities. An 
appropriate water-fertilizer ratio markedly boosts soil microbial biomass carbon 
and nitrogen content, facilitating nutrient mineralization and accelerating the 
decomposition of organic matter. The implementation of intelligent water-fertilizer 
management systems has shown to enhance water use efficiency and reduce 
fertilizer loss rates, thereby minimizing the environmental footprint of agricultural 
production. The optimization of water-fertilizer coupling is crucial for improving 
soil health, crop yields, and resource efficiency. This technology not only supports 
sustainable agricultural practices but also contributes to national food security 
and rural revitalization efforts. Future research should focus on the interaction 
mechanisms among crops, soil, water, and fertilizer. It is essential to strengthen the 
development of water-fertilizer coupling regulation models and decision support 
systems to guide agricultural production practices effectively. Policymakers are 
encouraged to promote the adoption of integrated water-fertilizer management 
strategies to foster sustainable agricultural development and enhance environmental 
resilience. This review underscores the importance of advancing water-fertilizer 
coupling technology as a means to achieve sustainable agricultural productivity 
while safeguarding ecological integrity, aligning with the principles of socialism 
with Chinese characteristics.
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1 Introduction

As the global population continues to rise, ensuring food security has become increasingly 
critical. Current agricultural practices often involve excessive irrigation and fertilization, 
leading to water wastage, soil degradation, and ecological deterioration (Wang, 2022). To 
harmonize food production with ecological sustainability, it is essential to explore new 
technologies and models that promote water conservation and enhance efficiency. 
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Water-fertilizer coupling technology optimizes water and fertilizer 
usage through precise control of irrigation and fertilization, 
significantly enhancing the efficiency of water and nutrient utilization 
in farmland (Wang et al., 2018). This approach reduces water and 
nutrient losses (Dou et  al., 2022), improves soil physicochemical 
properties (Cheng et al., 2023), and increases crop yield and quality 
(Peng et al., 2023), and provides a conducive habitat for soil microbes 
(Gu et  al., 2022). Adequate water-fertilizer matching elevates soil 
enzyme activities, promotes nutrient transformation and release, and 
strengthens soil fertility (Muhammad et al., 2022b).

The technology plays a crucial role in improving sustainable soil 
environments (Zhang et  al., 2020). Integrated management 
significantly increases soil microbial biomass carbon and nitrogen 
content (Tuo et al., 2023) and enhances the soil’s physical, chemical, 
and biological properties (Ding et al., 2020). Appropriate water and 
fertilizer rates boost activities of soil enzymes such as catalase, 
invertase, and urease (Li et al., 2010), which are vital for maintaining 
soil health and fertility (Zhang et  al., 2024). Additionally, water-
fertilizer coupling optimizes nutrient management, reduces fertilizer 
loss (Liang et al., 2023), and improves fertilizer utilization efficiency 
(Peng et al., 2023), achieving efficient use of agricultural resources (Liu 
et al., 2019).

Water-fertilizer coupling is valuable in enhancing crop yield and 
quality. Studies have shown that in potato production, reasonable 
integrated water and fertilizer management can significantly increase 
yield and improve quality indicators such as starch content (Zhang 
et  al., 2023a). This improvement results from enhanced root 
development and increased nutrient absorption under the synergistic 
effects of water and fertilizer (Liu et  al., 2015). Therefore, water-
fertilizer coupling is essential not only for ensuring food security but 
also for increasing agricultural productivity and protecting the 
ecological environment.

This technology also plays an increasingly important role in 
reducing the use of chemical fertilizers and pesticides and controlling 
agricultural non-point source pollution. Precise irrigation and 
fertilization reduce excessive fertilizer application (Li H. et al., 2021), 
decreasing the risk of eutrophication in water bodies caused by 
nitrogen and phosphorus loss from farmland (Liu et al., 2021b). The 
application of fertigation improves the utilization efficiency of water 
and fertilizers, reduces irrigation water usage and chemical application 
intensity, and controls agricultural non-point source pollution at its 
source (Wang et al., 2021). This is significant for promoting clean 
agricultural production and fostering coordinated development 
between agriculture and the environment (Ma B. et al., 2024).

The impact mechanisms of water-fertilizer coupling on the soil 
environment are highly complex, involving aspects of soil physics, 
chemistry, and biology (Zhu et al., 2018). Effects vary significantly 
under different soil types, crop varieties, and climatic conditions 
(Jiang et  al., 2024). An in-depth study of these impacts and the 
optimization of water-fertilizer management measures are of great 
significance for ensuring food security and improving the ecological 
environment of farmland.

In light of these insights, this study systematically reviews the 
impact of water-fertilizer coupling on the soil environment, with a 
focus on the physical, chemical, and biological properties of soil. It 
also explores optimization strategies for enhancing water 
conservation and efficiency, alongside future research directions. 
Water-fertilizer coupling is a multifaceted technology that 

necessitates cross-disciplinary collaboration among agriculture, 
water management, environmental science, and biology. Future 
research should prioritize interdisciplinary integration, the 
development of multi-scale and multi-factor simulation and 
prediction models, and the establishment of theoretical frameworks 
and decision-making tools for precise water-fertilizer management. 
Furthermore, it is essential to accelerate the development and 
deployment of advanced water-saving irrigation and precision 
fertilization equipment to enhance the automation and intelligence 
of water-fertilizer coupling technologies. Strengthening policies and 
regulations related to water-fertilizer management, improving 
agricultural subsidies and incentives, and encouraging farmers to 
adopt advanced technologies are also critical. Overall, water-fertilizer 
coupling technology plays an indispensable role in promoting 
sustainable soil environments, optimizing agricultural resource 
allocation, increasing crop yield and quality, and mitigating 
agricultural non-point source pollution. As precision agriculture and 
information technology continue to advance, intelligent integrated 
water-fertilizer management models will address current challenges, 
providing robust scientific and technological support for ensuring 
national food security and fostering resource-efficient, 
environmentally friendly agriculture.

2 Coupling of water and fertilizer with 
soil environment

2.1 Direct effects of water and fertilizer on 
soil environment

Water-fertilizer coupling, involving both irrigation and 
fertilization, has complex effects on soil physical properties. Irrigation 
alters soil moisture status, impacting hydraulic properties (Nolz et al., 
2016), and water movement affects solute migration and distribution 
within the soil profile (Wang et al., 2017). Nutrient adsorption and 
release can modify soil aggregate structure and pore distribution 
(Ding et al., 2020). Changes in water and fertilizer availability also 
influence soil microbial activity and abundance, affecting the 
decomposition of organic matter and humus formation, which in turn 
alter soil structure (Tian et al., 2016).

Under water-fertilizer coupling, soil moisture undergoes dynamic 
changes (Liu et al., 2021a). Irrigation increases soil water content, 
reduces pore water pressure, and alters the soil water potential 
gradient, leading to moisture redistribution within the soil profile (Lu 
et al., 2020). Plant root uptake and transpiration further influence soil 
moisture consumption and movement (Thomas et al., 2024). These 
dynamic changes directly affect the soil’s water-holding capacity, 
storage, and available water content (Zhang Y.-W. et  al., 2021). 
Moreover, variations in soil moisture affect temperature fluctuations 
and heat conduction, influencing crop growth (Calleja-Cabrera 
et al., 2020).

The water-fertilizer ratio is a critical factor affecting soil physical 
properties. An appropriate ratio can improve soil structure, enhance 
aggregate stability, and increase macroporosity, thereby promoting 
root growth (An et al., 2022). However, excessive water and fertilizer 
can lead to soil compaction, runoff, and nutrient leaching (Liu et al., 
2021b). Optimizing the water-fertilizer ratio is essential for 
maintaining favorable soil physical conditions. Generally, a moderately 
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low ratio is more conducive to maintaining soil structural stability and 
promoting root development (Romero et al., 2022).

Overall, water-fertilizer coupling has multifaceted impacts on soil 
physical properties. Proper management can optimize soil moisture 
conditions, improve soil structure, and create a favorable physical 
environment for crop growth. Monitoring the dynamic characteristics 
of water-fertilizer coupling effects and implementing targeted 
irrigation and fertilization strategies are crucial for sustainable soil 
utilization. Future research should focus on understanding the 
mechanisms of soil physical processes to provide a theoretical and 
technical basis for scientific water-fertilizer management plans.

Water-fertilizer coupling significantly affects soil chemical 
properties. An appropriate water-fertilizer ratio can enhance soil 
enzyme activity, promoting water and fertilizer conservation while 
protecting the soil environment and ecology (Ren et  al., 2020). 
Optimal ratios have been shown to significantly improve soil invertase 
and urease activities, whereas excessively high ratios may reduce 
enzyme activity (Xiao et  al., 2021). Phosphatase activity tends to 
increase with the water-fertilizer ratio (Antonious et  al., 2020). 
Increased irrigation can significantly enhance soil alkaline 
phosphatase and dehydrogenase activities, while acid phosphatase 
activity in the topsoil increases markedly (Jat et al., 2024). Reducing 
fertilizer application while increasing irrigation can maximize enzyme 
activity (Muhammad et al., 2022a).

Water-fertilizer coupling also affects soil pH and electrical 
conductivity (EC). Fertilization can alter soil pH following certain 
patterns (Li et  al., 2022). EC is closely related to nutrient ion 
concentration and reflects soil nutrient status (Ren H. et al., 2021). Soil 
pH influences microbial activity, which in turn affects nutrient 
transformation and availability (Philippot et al., 2024).

Furthermore, water-fertilizer coupling impacts the content and 
distribution of essential soil nutrients, which exhibit gradient 
distribution in the soil profile, reflecting spatial heterogeneity (Lu 
et al., 2023). The efficiency of crop nutrient uptake is closely related to 
soil fertility (Zhang et al., 2010). Additionally, water-fertilizer coupling 
influences soil organic matter content and microbial community 
activity (Shao et  al., 2019). Combining organic and inorganic 
fertilizers can significantly enhance soil organic matter, improving soil 
quality (Wei et al., 2016). Microbial activity indicators, such as soil 
enzyme activity, are crucial for assessing soil quality and are closely 
related to fertility (Meena et al., 2024).

The soil environment is a dynamic and complex system where 
physical, chemical, and biological processes interact intricately. 
Increasing water-fertilizer rates significantly enhances soil enzyme 
activities. For instance, the T2 (nitrogen was reduced by 20%) 
treatment resulted in increases of 45.59% in catalase activity, 72.57% 
in urease activity, and 78.23% in sucrase activity within the 0–20 cm 
soil layer (Yao et  al., 2024). Similarly, the T5 treatment (80% 
evapotranspiration (ETc), 180–90–225 kg ha−1, Qingshu 9) optimally 
enhanced potato yield to 49,222.3 kg ha−1 and significantly improved 
soil urease and catalase activities by 7.04 and 9.62%, respectively 
(Zhang et al., 2023b).

Nitrogen fertilization increases soil microbial biomass carbon 
by 17% and enhances dissolved organic carbon by 25%, while 
simultaneously reducing microbial diversity by up to 17% (Yang 
et  al., 2022a). This illustrates the complex interactions and 
potential ecological trade-offs associated with water-fertilizer 
coupling strategies. The impact of water-fertilizer rates on soil 

enzyme activities is intricately dependent on the stages of crop 
rotation. Variations in soil pH and fertilization practices, 
particularly during the wheat stage, significantly influence 
microbial nitrogen and phosphorus limitations as well as 
enzymatic stoichiometry (Xie et al., 2022). Organic fertilization 
treatments significantly enhance soil organic carbon by 79–104%, 
increase available phosphorus by 26–36 times, and boost 
β-glucosidase activities by 161–171%, as well as alkaline 
phosphomonoesterase activities by 75–91% (Wang et al., 2024b). 
Investigating the dynamic patterns of these indicators helps 
elucidate the mechanisms by which water-fertilizer coupling affects 
the soil environment. Future research should intensify quantitative 
analysis of the relationships between water-fertilizer rates, 
irrigation patterns, and soil biological processes to optimize 
management strategies and promote agricultural soil health.

The application of water and fertilizers significantly influences ion 
concentrations in soil solutions, thereby affecting chemical properties 
such as pH and salinity. Notably, salinity and sodicity impact more 
than 25% of total land and 33% of irrigated land worldwide, posing 
considerable risks to soil fertility, groundwater quality, and food 
security (Mohanavelu et al., 2021). Optimizing the coupling of water 
and nitrogen—specifically through irrigation at 2,000 m3 ha−1 and the 
application of 210 kg ha−1 of nitrogen—stabilizes soil microbial 
diversity and enhances the abundance of nitrogen-fixing bacteria. 
Irrigation predominantly influences bacterial communities, while 
nitrogen application affects fungal populations (Yang H. et al., 2022). 
Efficient management of water-fertilizer coupling, particularly 
through the application of nanofertilizers, significantly enhances 
nutrient cycling. This process promotes the mineralization and 
nitrification of nitrogen, phosphorus, and potassium, increasing the 
availability of soil nutrients and improving crop nutrient uptake while 
minimizing environmental pollution (Yahaya et al., 2023). A 10-year 
study demonstrates that conservation tillage rotation enhances soil 
structure and nutrient content, leading to increases in soil porosity by 
3.2–6.7% and macroaggregate content by 35.2–46.4% (Zhang Y. et al., 
2021). The plant root system serves as the nexus of material and 
energy exchange in the soil–plant system and is a primary mediator 
of the soil environment’s response to water-fertilizer coupling. Water 
and fertilizer conditions significantly influence root growth and 
phosphorus uptake. Pre-sowing irrigation combined with surface 
fertilization (W80F10) increases root length by up to 11.1% in the 
0–20 cm soil layer and enhances root acid phosphatase activity by up 
to 14.4% in the 0–40 cm and 60–80 cm soil layers (Chen et al., 2020).

2.2 Progress of water-fertilizer coupling 
technology

Advancements in modern water-saving irrigation technologies 
have introduced innovative methods to agricultural production. Drip 
irrigation, a highly efficient micro-irrigation technique, enables 
precise water and fertilizer management, resulting in significant 
benefits such as water conservation, reduced fertilizer usage, and 
enhanced crop yield and quality. When integrated with fertilization 
devices, drip irrigation systems facilitate fertigation by delivering 
water and nutrients directly to the crop root zone, thereby increasing 
fertilizer use efficiency and mitigating the risks of non-point 
source pollution.
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Optimizing drip irrigation system parameters—including emitter 
layout, pipe diameter, and irrigation scheduling—can further enhance 
performance. Implementing a novel multi-level optimization 
framework for subsurface drip irrigation systems, for instance, can 
increase water productivity by up to 30% and profitability by 27% 
(Seidel et  al., 2015). Minimizing deep percolation and surface 
evaporation while enhancing water use efficiency significantly 
improves irrigation practices. Studies have shown that 53.2% of 
irrigation water in cotton fields is lost to deep percolation, 
underscoring the urgent need for optimized strategies to ensure 
sustainable water resource utilization in arid regions (Li et al., 2016). 
The growth of information technology has propelled the development 
of smart irrigation systems, emerging as a new trend in water-saving 
irrigation (Sidhu et al., 2021). Utilizing wireless sensor networks and 
the Internet of Things (IoT), these systems monitor soil moisture, 
temperature, and conductivity in real time, dynamically adjust 
irrigation strategies based on crop growth models and meteorological 
data, and automate irrigation control (Figure 1). The integration of big 
data analytics and machine learning algorithms into precision 
agriculture refines irrigation decisions, accurately forecasts crop water 
requirements, and provides early warnings for drought and pest risks 
(Sishodia et al., 2020).

Precision water control technologies have garnered considerable 
attention for their role in enhancing irrigation efficiency. Monitoring 
physiological indicators—such as plant canopy temperature, stem 
flow, and soil moisture dynamics—enables precise estimations of crop 
transpiration, aiding in determining optimal irrigation timing and 
quantities. In a vineyard setting, a sensor fusion approach combined 
with a boosted regression trees algorithm achieved a correlation 
coefficient of 0.9 and a 12% error rate in predicting stem water 
potential (Ohana-Levi et al., 2022). Variable rate irrigation technology, 

which adjusts water applications dynamically according to different 
stages of crop growth, significantly enhances water use efficiency. This 
method addresses the growing demand for freshwater and mitigates 
drought effects, demonstrated by the superior performance of closed-
loop control systems that integrate monitoring of soil, plant, and 
weather conditions (Bwambale et al., 2022). Additionally, precision 
water control not only improves water use efficiency but also 
significantly reduces methane emissions. Effective management of 
water-fertilizer coupling can lead to reductions of up to 67.27% in 
methane emissions, improve soil water-thermal conditions, promote 
root development, and increase both crop resilience and yield in rice 
paddies (Ma N. et al., 2024).

Advancements in fertilization technology play a critical role in 
enhancing agricultural productivity while protecting the ecological 
environment. A balanced combination of quick-acting and slow-
release fertilizers—specifically formulations containing 30–50% 
controlled-release nitrogen—can reduce nitrogen application by 25% 
without compromising grain yield (Hu et  al., 2023). Controlled-
release fertilizers, utilizing polymer coatings or slow-release agents, 
effectively delay nutrient release to align with crop uptake, reducing 
fertilizer loss, enhancing nutrient use efficiency, mitigating 
environmental impacts, and supporting sustainable agricultural 
practices (Kassem et al., 2024). The combined use of organic and 
inorganic fertilizers represents a vital direction in fertilizer 
development. Replacing more than 50% of chemical nitrogen fertilizer 
with organic fertilizer significantly improves soil aggregate formation, 
microbial biomass, and enzyme activities in gravel-mulched fields 
(Tang C. et  al., 2024). Notably, macroaggregates (>2 mm) exhibit 
higher microbial biomass carbon and nitrogen levels compared to 
microaggregates (<0.25 mm) (p < 0.05). The combined use of organic 
and inorganic fertilizers leverages their respective advantages, 

FIGURE 1

Flow chart for the optimization of water-fertilizer coupling technology and the evaluation of environmental benefits.
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ultimately promoting crop growth and development (Bargaz et al., 
2018). Deep-band placement of fertilizer at a depth of 25 cm 
significantly reduces gaseous nitrogen loss by up to 49.91%, increases 
nitrogen use efficiency by 38.37%, and enhances maize yield by 
13.83% (Wu P. et al., 2021). Integrating soluble or liquid fertilizers 
with practices such as diversified crop rotations, no-till farming 
combined with organic mulches, and enhanced carbon-nitrogen-
water cycling can significantly reduce fertilizer migration losses (Wang 
et  al., 2024a). These strategies also improve soil health, nutrient 
efficiency, and the overall resilience of agroecosystems.

Integrated water and fertilizer technology combines irrigation and 
fertilization, allowing for the simultaneous and precise delivery of 

water and nutrients by dissolving fertilizers in irrigation water. This 
technique employs real-time soil moisture and nutrient sensors to 
monitor conditions, aligning with crop demand models to dynamically 
optimize irrigation and fertilization decisions, thereby enhancing 
water and fertilizer use efficiency (Figure 2). Utilizing an integrated 
system that combines variable-rate fertilizing devices with precision 
irrigation equipment can significantly reduce fertilizer leaching and 
water waste. This approach not only diminishes non-point source 
pollution but also improves the effectiveness of water quality 
management by leveraging real-time data from wireless sensor 
networks (Zia et al., 2013). An intelligent agricultural management 
platform has been established by integrating IoT and big data 

FIGURE 2

The scientific and technical problems to be solved in water and fertilizer integration technology. Mechanism: (1) WFMT (water and fertilizer migration 
and transformation), the model of water and fertilizer coupling relationship is not perfect, it is difficult to accurately describe the law of water and 
fertilizer migration and transformation, which affects the utilization of fertilizer and water resources. (2) UDWF (uneven distribution of water and 
fertilizer), uneven distribution of soil water leads to uneven distribution of fertility, which affects crop absorption and utilization. (3) EIA (environmental 
impact assessment), excessive use and improper management of fertilizers can lead to contamination of groundwater and surface water bodies. How 
to reduce the environmental impact, especially to prevent the loss and pollution of nitrogen, phosphorus and other elements, is a problem that needs 
to be solved. Control: (4) FSCD (difficult control fertilizer supply), traditional water and fertilizer integration technology is difficult to achieve accurate 
fertilizer supply, and it is easy to cause nutrient waste or insufficient. (5) CFR (crop fertilizer requirement), soil nutrient release rate does not match with 
crop fertilizer requirement, resulting in reduced fertilizer efficiency. (6) WFRO (water and fertilizer ratio optimization), the rule of water and fertilizer 
requirement of different crops was determined, and the optimal ratio of water and fertilizer was determined considering the ability of soil to absorb 
water and maintain fertilizer. Safety: (7) WQSH (water quality safety hazard), fertilizers used in the integrated water and fertilizer system may contain 
harmful substances such as residual pesticides and heavy metals, which pose a threat to water quality. (8) EFDG (excessive fertilization damage 
groundwater), excessive fertilization will lead to the accumulation of nutrients in the soil and damage the quality of groundwater. (9) PCM (precise 
control and monitoring), precise control of the amount of irrigation and fertilization is essential for integrated water and fertilizer technologies. 
Monitoring the dynamics of soil moisture, fertilizer concentrations, and plant water and nutrient requirements requires more precise and real-time 
technologies. Disease: (10) IDOR (increase disease occurrence risk), in an integrated water and fertilizer system, long-term irrigation and fertilization 
create an environment conducive to the growth of pathogenic bacteria and increase the risk of disease occurrence. (11) DDR (decreased disease 
resistance), excessive fertilization leads to crop growth and decreased disease resistance. (12) SIMPD (system intelligent monitoring of pests and 
diseases), integrate sensors and information technology to realize automatic and intelligent operation and monitoring of the integrated water and 
fertilizer system. Extension: (13) DTE (difficulty in technology extension), the technology of water and fertilizer integration involves many disciplines, has 
a high degree of technical integration, and is difficult to popularize. (14) NST (need specialized training), farmers need specialized training in order to 
become proficient in technology. (15) CBA (cost benefit analysis), the initial investment and operating costs of integrated water and fertilizer 
technology are high, and farmers and ranchers need to know whether the technology can bring sufficient economic benefits. Others: (16) SSEM 
(standardized systematic evaluation and monitoring), the lack of standardized systematic evaluation and monitoring methods makes it difficult to 
evaluate the effect of technology promotion. (17) PRS (policy and regulatory support), appropriate policy and regulatory frameworks can promote the 
application and development of integrated water and fertilizer technologies, the lack of which may be an obstacle to technology roll-out. (18) CCA 
(climate change adaptation), as the impact of climate change intensifies, how to adapt integrated water and fertilizer technologies to changing climatic 
conditions is a challenge that needs to be addressed.
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analytics. This platform enhances crop yield, optimizes resource 
utilization, and reduces operational costs through precise and 
automated monitoring and control of farming activities (Rehman 
et al., 2022). By deploying wireless sensor networks to collect real-time 
data on soil, crops, and environmental conditions, and integrating this 
information with an agronomic knowledge base and machine learning 
algorithms, the system provides diagnostic warnings and dynamic 
prescriptions for irrigation and fertilization (Paul et al., 2022). Farmers 
can monitor field conditions remotely via mobile devices, optimize 
management decisions, and achieve precision agriculture. Moreover, 
data mining and analysis refine irrigation and fertilization models, 
guiding farmers to improve management practices and promoting the 
standardization and scaling of agricultural production.

The application of integrated water and fertilizer technology 
significantly enhances agricultural production efficiency and product 
quality while yielding substantial benefits in energy savings and 
emission reductions. For instance, the chance-constrained possibilistic 
mean–variance multi-objective programming model optimizes water 
resource management under diverse hydrological conditions (Wu 
H. et al., 2021). The traditional separation of irrigation and fertilization 
has resulted in spatiotemporal mismatches, with 49.09–63.64% of 
cities in the North China Plain applying fertilizers at rates below the 
regional average (Yu et  al., 2022). Optimization of fertigation 
techniques led to a reduction in nitrate leaching to 7.1% and an 
increase in plant uptake to 73.5% (Azad et al., 2018), illustrating the 
potential to minimize groundwater contamination and conserve 
resources through precise management of water and fertilizer 
applications. The precise management facilitated by the Integrated 
Optimization Decision System has enhanced system benefits by up to 
96.10% and reduced nitrogen loading by up to 623.16%, effectively 
addressing agricultural non-point source pollution (Xu et al., 2023). 
The integration of artificial intelligence with fertigation equipment can 
reduce field operations by up to 50% (Chen et al., 2023).

2.3 Water-fertilizer coupling and soil 
environmental assessment

Assessing soil environmental quality is essential for accurately 
understanding the health of soil ecosystems. The Triad approach, 
which integrates chemistry, ecotoxicology, and ecology, revealed a 
range of integrated risk levels (0.24–0.85) across various sites (Hong 
et al., 2021). This underscores the necessity for comprehensive, site-
specific evaluations and highlights the potential of the Triad method 
to enhance traditional ecological risk assessments for the effective 
management of heavy metal-contaminated soils, providing a scientific 
basis for soil environmental management.

By integrating coefficient of variation analysis with a 
comprehensive soil quality assessment system, significant polycyclic 
aromatic hydrocarbon (PAH) pollution was identified in the surface 
soil of Shougang Steel, with concentrations reaching up to 53.8% from 
backfill sources (Sun et al., 2024). This finding emphasizes the need 
for multifaceted soil environmental assessments to accurately 
represent overall soil quality. Soil organic matter, stratum, and 
weathering coefficient significantly influenced total selenium (Se) 
levels (median: 0.308 mg kg−1) and bioavailable Se (mean: 12.2%) (Liu 
Y. et al., 2024). In the Qilian Mountains, a study revealed significant 
declines in soil organic matter (from 45.80 to 12.70 g kg−1) and plant 

cover (from 85.5 to 6.0%) associated with increasing desertification 
(Liu Z. et al., 2024). These findings underscore the urgent need for 
targeted prevention and remediation strategies to preserve soil 
functions in semi-arid alpine regions.

The future of soil environmental assessment lies in integrating 
various methods and multi-source data—such as soil physicochemical 
properties, contamination status, and biodiversity—to develop 
comprehensive assessment models. Enhancing Groundwater 
Vulnerability Assessment (GWVA) by incorporating land use and 
adjusting parameter rates increased the Pearson correlation with 
measured nitrate concentrations from 0.42 to 0.75 (Abduljaleel et al., 
2024). Agricultural soils in Wenzhou face moderate to significant 
ecological risks, primarily due to cadmium (Cd) and lead (Pb). 
Scenario simulations indicated a reduction in risks under optimistic 
scenarios, while default scenarios projected increased risks (Xia et al., 
2024). To evaluate the effects of water-fertilizer coupling, crop growth 
simulation models and fertilizer balance algorithms have been 
developed. These models consider the impact of water and fertilizer 
on the soil environment and crop growth, allowing for a quantitative 
assessment of the effectiveness and sustainability of water and fertilizer 
management practices.

Using material flow analysis (MFA) and life cycle assessment 
(LCA) methods, the environmental benefits of water-fertilizer 
coupling technology were evaluated (Figure 3). Field experiments 
demonstrated that the application of 5–6 t ha−1 of compost or 6 t ha−1 
of maize stover, in conjunction with Bacillus subtilis, significantly 
improved soil properties and enhanced crop growth (Zhang W. et al., 
2022). This approach increased water-fertilizer productivity by up to 
30% under arid conditions, highlighting the potential of organic 
amendments for sustainable agriculture. These findings enable the 
simulation of changes in crop yield, quality, and soil nutrient dynamics 
under different water and fertilizer treatments, ultimately optimizing 
irrigation and fertilization strategies.

Substance flow analyses indicated that Huantai County 
experienced substantial annual nutrient inputs, averaging 
696 kg N ha−1, 104 kg P ha−1, and 300 kg K ha−1 from 2010 to 2014 
(Bellarby et  al., 2018). A comprehensive irrigation efficiency 
evaluation system and soil environmental monitoring indicators are 
needed. The irrigation district scale, characterized by water use 
efficiency and water productivity values ranging from 0.1 to 0.85 and 
0.08 to 0.8 kg m−3, respectively, is identified as the most suitable 
management scale for addressing water resource utilization challenges 
in arid river basins (Zhou et al., 2021). Soil environmental monitoring, 
which examines changes in physicochemical properties such as 
salinization, pH, and organic matter content due to varying water and 
fertilizer conditions, is crucial for assessing and mitigating ecological 
impacts on agroecosystems (Ondrasek and Rengel, 2021). Therefore, 
a comprehensive model that analyzes crop yield, soil fertility, and 
irrigation benefits is necessary for integrated water and fertilizer 
management in agriculture.

Enhancing theoretical and methodological research on the effects 
of water-fertilizer coupling is crucial for mitigating resource scarcity 
and environmental pollution in agriculture. The application of the 
FIC-GIQMP model in the Shiyang River Basin exemplifies this 
importance, achieving a 17.89% increase in net benefits along with 
significant reductions in carbon (47.99%) and water (32.11%) 
footprints, thereby promoting sustainable agricultural development 
(Xu et  al., 2022). Principal Component Analysis (PCA) enables 
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researchers to identify key factors influencing the soil environment, 
such as irrigation levels, fertilization intensity, and crop types. For 
example, the T4 treatment in a study (80% evapotranspiration (ETc), 
dripper discharge rate of 3 L h−1, and 180 kg N ha−1) optimized potato 
yield, quality, irrigation water use efficiency, and partial factor 
productivity in sandy loam soil. This treatment resulted in a 23.9% 
increase in yield and a 60% enhancement in vitamin C content 
compared to lower fertilizer rates (Wang et al., 2020). Analysis of 
Variance (ANOVA) is utilized to assess the significance of differences 
among treatment groups, providing a basis for optimizing water and 
fertilizer management strategies. In the Three-River Headwaters Basin 
(TRHB), provisioning and regulating services have increased over a 
20-year period, revealing significant spatiotemporal variations that 
inform targeted watershed management and protection efforts (Wang 
J. et al., 2022).

Data Envelopment Analysis (DEA), a linear programming-based 
method for evaluating efficiency, has been extensively applied in 
agriculture. Management practices have a more pronounced influence 
on water use efficiency than the types of irrigation systems employed. 
Additionally, younger farmers and larger farms generally exhibit lower 
levels of excess irrigation water usage (Lilienfeld and Asmild, 2007). 
The observed eco-inefficiency among Spanish rain-fed farmers is 
primarily attributed to technical inefficiencies in input management. 
Furthermore, education and participation in agri-environmental 
programs significantly enhance eco-efficiency (Picazo-Tadeo et al., 
2011). DEA can also be integrated with other quantitative methods, 
such as Life Cycle Assessment (LCA), to conduct comprehensive 
environmental-economic assessments of water and fertilizer 
management (Figure 4). Multivariate statistical analysis is a robust tool 

for elucidating intricate relationships among multiple variables. For 
instance, deficit drip irrigation at 75% of ETc, combined with an 
application of 170 kg N ha−1, optimized grain yield, water use efficiency, 
and nitrogen use efficiency in winter wheat. Over 65% of the increased 
yield was attributable to nitrogen application, while approximately 
20% was due to irrigation (Lu et al., 2021).

Gray relational analysis, suitable for analyzing systems with small 
samples and high uncertainty, determines the influence of various 
factors on system behavior by calculating their gray relational degree. 
In water-fertilizer coupling research, this model investigates the 
relationships between irrigation and fertilization practices and their 
effects on soil nutrient dynamics and crop growth. For example, the 
optimal combination of 653.7 m3 ha−1 of irrigation, 1,141.9 kg ha−1 of 
nitrogen, and 422.1 kg ha−1 of magnesium maximized cucumber yield 
(88,412.6 kg ha−1), quality, and nutrient use efficiency in Northwest 
China (Li J. et  al., 2023). By incorporating fuzzy mathematical 
methods, gray relational analysis can contribute to developing water-
fertilizer decision support systems, enhancing the intelligence of 
agricultural production. Moreover, integrating Knowledge-Based 
Engineering (KBE) and web crawler technology advances intelligent 
irrigation, optimizing decision-making processes and improving the 
efficiency of water and fertilizer use in agriculture (Zhai et al., 2021). 
Response Surface Methodology (RSM), an optimization technique 
employing experimental design and mathematical modeling, is 
extensively applied in water-fertilizer coupling research. An optimal 
combination of 76% field capacity, 52.0 mg kg−1 nitrogen, and 
49.0 mg kg−1 phosphorus maximized the growth and physiological 
performance of Amorpha fruticosa in coal-spoiled soils (Roy 
et al., 2020).

FIGURE 3

Environmental benefits of water and fertilizer coupling technology in material flow analysis (MFA).
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3 Coupling of water and fertilizer to 
soil physical properties

3.1 Soil water dynamics

Soil moisture is a critical factor affecting crop growth and yield, 
and integrated water-fertilizer technologies significantly improve soil 
moisture conditions by enhancing the soil’s water retention capacity. 
For instance, applying soil amendments like biochar and 
polyacrylamide at a rate of 8.3 g kg−1 can improve soil aggregate 
stability by 188% and increase soil water retention by 128.9%. These 
improvements boost the dry weight of beans and maize by 92.9 and 
146.4%, respectively (Kang et al., 2022). The combined application of 
chemical and organic fertilizers enhances soil water storage and 
improves soil moisture utilization efficiency. A meta-analysis 
demonstrates that these practices can increase soil organic matter by 
up to 55.38%, total nitrogen by 56.39%, and maize yield by as much as 
220.42% (Jiang et al., 2024). This effectiveness is primarily due to the 
optimization of irrigation and fertilization methods, which reduces 
ineffective evaporation and deep percolation (Li et al., 2016), thereby 
retaining more moisture in the root zone for crop absorption (Wu 
et al., 2022).

The impact of integrated water-fertilizer technologies on soil 
moisture dynamics exhibits notable temporal variability throughout 
the crop growth stages (Table 1). Soil moisture conditions demonstrate 
distinct trends at different phases. For example, applying 
orthophosphate fertilizers at an adequate water level of 75% field 

capacity significantly enhances chickpea growth, nutrient uptake, and 
use efficiency, resulting in improvements in biomass accumulation 
and the photosynthetic performance index by up to 25% (Chtouki 
et  al., 2022). Combining biochar addition with daily fertigation 
significantly improves the soil quality index, leading to the highest 
cucumber yields and enhanced water-fertilizer productivity. 
Specifically, irrigation water productivity reached 557.9 kg mm−1, and 
partial factor productivity showed notable improvement over a 
two-year period (Zhang et al., 2020). Micro-moistening irrigation, 
coupled with a moderate fertilization rate of 18.6 g per plant, 
significantly enhances the growth of young mango trees, achieving the 
highest water-fertilizer use efficiency and total dry mass, which are 
2.58 and 2.32 times greater than those obtained through traditional 
methods (Li Y. et al., 2021). By the maturation stage, soil moisture 
gradually recovers. Integrated water-fertilizer technology maintains 
soil moisture within an optimal range throughout various growth 
stages by real-time monitoring and dynamically adjusting irrigation 
and fertilization (Kang et al., 2021).

The water-fertilizer rate is a significant determinant of the 
dynamic changes in soil moisture. Regulated deficit irrigation at 
maturity stage, when combined with moderate fertilization at a rate of 
103.2 kg ha−1, led to a 15% increase in mango yield compared to full 
irrigation. Additionally, water use efficiency improved by 20%, 
suggesting that this approach offers a sustainable water-fertilizer 
management strategy for dry-hot regions (Peng et  al., 2023). The 
combination of biochar and biocompost significantly enhances the 
soil’s water retention capacity, with the highest values observed in 

FIGURE 4

The life cycle assessment (LCA) method was used to evaluate the environmental benefits of water and fertilizer coupling technology.
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treatments containing 6% biochar and either 3% or 6% biocompost, 
exceeding 0.7 g H₂O g−1 dry weight (El Moussaoui et al., 2024). This 
combination provides a resilient and sustainable alternative to 
traditional manure and chemical fertilizers for improving alfalfa 
productivity under water stress conditions. However, exceeding 
optimal water-fertilizer rates can lead to excessive moisture, poor soil 
aeration, and increased nutrient leaching, which are detrimental to 
crop absorption and utilization of water and fertilizers (Yang et al., 
2023). An innovative approach optimized irrigation for eggplants by 
employing an interval of 4.56 days and a water salinity of 1.47 dS m−1 
in an outdoor environment. This method resulted in a high yield of 
2,490.7 g per plant and a water use efficiency of 3.32 g (plant·mm)−1, 
demonstrating the effectiveness of multi-factor modeling in enhancing 
crop productivity and resource efficiency in irrigated agriculture 
(Mahmoodi-Eshkaftaki and Rafiee, 2020).

3.2 Soil density and porosity

Water-fertilizer coupling significantly affects soil physical 
properties, particularly soil density and porosity (Guo et al., 2022). 
Total soil porosity is a crucial indicator of soil quality, directly 
influencing aeration, water retention, and fertilizer supply capacity 
(Alkharabsheh et al., 2021). The combined application of nitrogen 
fertilizer with medium biochar (30.7 t ha−1) under drip irrigation 
enhanced maize yield by up to 9.85%. It also improved irrigation water 
use efficiency (up to 5.94 kg kg−1), fertilizer nitrogen use efficiency (up 
to 50.28 kg kg−1), and increased soil organic matter by up to 19.42% 
(Wang et  al., 2023). These findings underscore the potential of 
integrated water-fertilizer-biochar management. Optimal nitrogen 
fertilization at 168 kg N ha−1 maximized maize root mass, while 
reductions of 33 and 17% were observed under zero and excessive 
nitrogen conditions, respectively. This highlights the critical role of 
adequate nitrogen supply in root development. Additionally, newly 

developed predictive equations for the root-to-shoot ratio based on 
yield, such as the upper bound –1.5–0.04 yield:R S e ×= , have the 
potential to improve biophysical models (Ordóñez et al., 2021).

Macropore size is closely associated with water and fertilizer 
conditions. Macropores primarily affect soil aeration and drainage; 
excessive irrigation and fertilization can reduce soil macropores, 
leading to compaction and nutrient leaching (Hartmann and Six, 
2023). Effective management of water and nutrients in arid soils 
enhances the distribution of soil macropores, facilitating nutrient 
movement and moisture transformation, which helps mitigate the 
impacts of climate change on crop productivity (Naorem et al., 2023). 
The critical pore radius has emerged as an accurate predictor of soil 
permeability (R2 = 0.838, p < 0.001) across diverse tillage and cropping 
systems. Root growth significantly influences soil porosity, particularly 
in pore classes exceeding 200 μm, underscoring the importance of 
biological pores in enhancing soil permeability (Qian et al., 2024). A 
heterogeneous soil structure, characterized by a 50% increase in 
macropores at high compaction (1.55 g cm−3), significantly enhanced 
pea shoot biomass by 65% (Giuliani et al., 2024). This demonstrates 
the species-dependent advantages of complex pore structures on plant 
growth, likely due to preferential root growth within macropores.

Optimized soil and fertilizer management practices, such as 
no-till cultivation combined with straw mulching and the application 
of leguminous green manure, increased wheat root length by 20.9% 
and root surface area by 11.0%. These enhancements improved soil 
water content by 4.3% and nitrate nitrogen content by 13.4%, 
highlighting the role of robust root growth in enhancing soil porosity 
and nutrient utilization. Additionally, a 10% reduction in nitrogen 
fertilizer sustained yields while increasing overall efficiencies (Wu 
et al., 2023).

The stability of soil aggregates is closely related to their pore size 
distribution. Smaller aggregates (1–2 mm) exhibit higher total porosity 
and more stable pore structures in grassland and forest soils, 
enhancing resistance to structural collapse when submerged (Menon 

TABLE 1 Temporal variability of soil moisture dynamics under integrated water-fertilizer technologies across crop growth stages.

Crop growth 
stage

Impact on soil moisture dynamics Notes References

Germination

Optimized soil moisture levels: Integrated technologies 

provide precise water application, ensuring optimal 

moisture for seed germination.

Prevents soil crusting and promotes uniform 

seed emergence; Enhances early root 

development.

Jarrar et al. (2023)

Seedling stage

Improved moisture retention: Balanced fertilization 

enhances soil structure, aiding moisture retention 

during this critical growth phase.

Supports delicate seedlings by maintaining 

consistent moisture; Reduces evaporation 

losses.

Li X. et al. (2024)

Vegetative growth

Enhanced water availability: Adjusted irrigation 

schedules meet increased water demand, preventing 

water stress during rapid biomass accumulation.

Promotes vigorous vegetative growth; 

Nutrient availability is synchronized with 

water uptake.

Cui et al. (2009)

Reproductive stage

Stable moisture conditions: Minimizes temporal 

variability, ensuring consistent soil moisture during 

flowering and fruit set.

Crucial for pollination success and fruit 

development; Prevents drought stress that 

can reduce yield quality and quantity.

Bacelar et al. (2024)

Maturation

Controlled moisture reduction: Gradual decrease in 

soil moisture to facilitate crop maturation without 

inducing stress.

Helps in the accumulation of desirable traits 

(e.g., sugar content in sugarcane); Avoids 

issues like lodging due to excessive moisture.

Mehdi et al. (2024)

Post-harvest

Residual moisture management: Maintains adequate 

soil moisture for soil microbial activity and 

preparation for the next cropping cycle.

Aids in residue decomposition; Contributes 

to soil health restoration; Prepares the soil 

for subsequent planting or fallow periods.

Liu et al. (2024a)
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et al., 2020). Appropriate moisture conditions facilitate the formation 
and maintenance of aggregates (Ren P. et al., 2021), while adequate 
fertilizer supply can enhance soil microbial activity (Dincă et  al., 
2022). This accelerates the decomposition and transformation of 
organic materials, providing binding substances for aggregate 
formation (Cotrufo and Lavallee, 2022). High manure application 
rates significantly increased soil aggregate-associated organic carbon 
and total nitrogen by 40–50%, and increased particulate organic 
matter by 20% compared to the control (Gautam et al., 2022).

3.3 Soil temperature and moisture

Integrating water, fertilizer, and air in drip irrigation systems 
significantly improves soil health. This approach increased dissolved 
oxygen by 14.05%, oxygen diffusion rate by 30.14%, and soil 
respiration rate by 53.74%. Microbial biomass showed the most 
pronounced response, rising by up to 50.18%, followed by 
enhancements in enzyme activity and soil aeration (Lei et al., 2022). 
Controlled irrigation combined with high rates of organic fertilizer 
optimized soil conditions, leading to a 2.7% increase in rice yield 
compared to the use of chemical fertilizers alone, and a 22% increase 
compared to no fertilization. Additionally, soil pH, total nitrogen, and 
nitrate nitrogen positively influenced yield, collectively accounting for 
75% of the variance observed (Li Y. et al., 2024). Employing small-flow 
drip irrigation (less than 1 L h−1) with frequent fertigation (every 
7 days) enhanced summer maize yield and water-use efficiency by up 
to 13.3 and 8.0%, respectively (Ma et al., 2022).

Soil thermal conductivity is a crucial indicator of its thermal 
properties and significantly affects soil temperature dynamics (Li 
et al., 2019). Conservation tillage practices, such as no-till and strip-
till, have been shown to markedly improve soil structure. These 
methods can increase moisture content by up to 20.42%, enhance 
macroaggregates by 34.07%, and raise soil organic matter by 
6.48 g kg−1. Consequently, maize yields have increased by 12.9 and 
14.9% compared to conventional tillage, demonstrating enhanced soil 
quality and productivity in newly reclaimed cultivated land (Liu 
Z. et al., 2021). Appropriate water and fertilizer management fosters 
favorable soil structure, enhances thermal conductivity, accelerates 
soil heat transfer, and facilitates the regulation and maintenance of soil 
temperature (Hatfield et al., 2017). Soil moisture plays a critical role 
in the performance of Earth-Air Heat Exchangers; fluctuations in 
saturation conditions can impact exchanged energy by more than 40% 
(Lin et  al., 2020). This underscores the necessity of maintaining 
optimal soil humidity to boost thermal conductivity and improve heat 
transfer efficiency.

Soil temperature and moisture exhibit pronounced diurnal 
fluctuations (Yu et al., 2020). During the day, strong solar radiation 
increases soil temperature due to higher heat absorption. In the 
grapevine cultivar Tempranillo, night-time transpiration (Enight) 
contributes significantly to total daily transpiration—accounting for 
3% on days with ample soil water content and up to 35% during 
periods of low daytime transpiration and reduced soil moisture. The 
average Enight contribution is 12%, highlighting the importance of 
nocturnal water loss, particularly after sunset and from veraison to 
harvest (Montoro et al., 2020). Sub-surface drip irrigation (SSDI) at 
80% ETc, combined with 80% of the recommended nitrogen dose 
and foliar applications of KNO₃ and MgSO4, significantly enhanced 

both crop and water productivity in cotton–wheat cropping systems. 
This approach resulted in approximately 43.2% savings in irrigation 
water and a 20% reduction in fertilizer requirements compared to 
traditional flood irrigation, while maintaining yield and improving 
irrigation water productivity by about 46.1% (Kaur et al., 2024). In 
arid oasis regions, non-productive water losses in maize fields 
averaged 39%, peaking at 58%. Evapotranspiration losses were most 
pronounced during June and July, whereas infiltration losses were 
significant in April–May and August–September (Jiao et al., 2023). 
These findings highlight the potential for considerable water savings 
through optimized irrigation management. Effective water and 
fertilizer strategies contribute to a diurnal equilibrium of soil 
temperature and humidity, providing stable and optimal conditions 
for crop growth.

4 Coupling of water and fertilizer to 
soil chemistry

4.1 Soil pH and EC values

Soil pH and EC are critical indicators of soil chemical properties, 
directly influencing nutrient availability and microbial activity (Zhao 
et al., 2018). Long-term fertilization in apple orchards (1988–2016) 
significantly enhanced soil organic carbon (SOC), total nitrogen (TN), 
and available nutrients, with the NPKM (nitrogen-phosphorus-
potassium plus manure) treatment showing the most substantial 
improvement. However, this practice also led to soil acidification; the 
NPK and NPKM treatments reduced soil pH by 1.04 and 0.74 units, 
respectively. This decline was primarily attributed to excessive 
nitrogen fertilizer application, resulting in net hydrogen ion (H+) 
production rates as high as 136.8 kmol ha−1 yr.−1 in the N900 treatment 
(Ge et  al., 2018). Similarly, excessive nitrogen fertilization in 
greenhouse lettuce production increased soil acidity and salinity, 
leading to pH decreases of up to 1.06 units and EC increases of up to 
0.68 mS cm−1. This was mainly due to nitrification-induced proton 
loading, ranging from 14.3 to 58.2 kmol H+ ha−1, which substantially 
exceeded the 0.3–4.5% contribution from lettuce uptake (Han et al., 
2015). These findings indicate that excessive nitrogen application can 
lead to significant soil acidification and salinization, negatively 
affecting soil health.

In citrus cultivation, traditional soil fertilization alone is 
inadequate for optimizing yield, especially under soil conditions 
characterized by a slightly alkaline pH range of 7.1–8.4 and low 
organic matter content (<0.86%). Foliar nutrient applications are 
essential to enhance nutrient management and address significant 
deficiencies of nitrogen (94%), iron (76%), and zinc (67%) in citrus 
leaves (Ahmad et  al., 2022). Addressing soil salinization requires 
comprehensive strategies that integrate both traditional and modern 
methods to improve soil and plant properties (Sahab et al., 2021). The 
combined application of lime and magnesium fertilizer effectively 
mitigates soil acidification, increasing pomelo yield by up to 34.2%. 
This approach also enhances fruit quality, evidenced by a 7.2% higher 
edible rate and a 4.2% increase in total soluble solids, and boosts 
annual net income by 37.4%, demonstrating its potential for 
improving productivity and economic viability in acidic citrus 
orchards (Zhang S. et al., 2021). Adding lime, particularly in soils 
with low pH, organic matter, cation exchange capacity, and clay 
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content, significantly raises soil pH and reduces cadmium 
accumulation in crops. Among lime amendments, calcium carbonate 
is the most effective in lowering shoot cadmium concentration (He 
et al., 2021).

The application of biogas slurry, especially at a substitution rate of 
50%, significantly improves soil structure and fertility. This is 
evidenced by enhanced aggregate stability, increased water and 
nutrient retention, and optimal crop yields in the lime concretion soils 
of the North China Plain (Tang et al., 2022). Long-term integrated 
application of NPK fertilizers, crop residues, and lime in the acidic 
soils of South China has led to significant improvements in wheat and 
maize grain yields, nitrogen-use efficiency, and mitigation of soil 
acidification (Daba et  al., 2021). Soil pH significantly influences 
microbial activity by affecting the abundance of organic phosphorus–
mineralizing genes, impacting microbial diversity and potentially 
reducing crop yields (Wan et al., 2021). Deviations from the optimal 
pH range can inhibit microbial growth and metabolism, reducing 
biological activity (Zhao et al., 2020). For example, in acidic soils, 
bacterial populations are lower than fungal populations, and 
actinomycetes are nearly absent (Khangura et al., 2023). Therefore, 
agricultural practices should focus on long-term soil pH monitoring, 
adopt scientific water and fertilizer management, and foster a 
microbial-friendly environment to enhance soil biological activity 
and fertility.

4.2 Content and distribution of soil nutrient 
elements

Under conditions of water-fertilizer coupling, significant changes 
occur in the content and distribution of major soil nutrients. Studies 
have shown that integrating water and fertilizer increases the carbon 
and nitrogen content of soil microbial biomass, which initially rises 
during the growth period but declines to its lowest levels at maturity 
(Wei et  al., 2022). In potato production, specific water-fertilizer 
treatments achieved an optimal balance of yield, quality, and resource 
efficiency. The W2F3V1 treatment (80% ETC, 120–60–150 kg ha−1, 
Feiurita) resulted in the highest partial factor productivity and starch 
content, while the W3F2V1 treatment (60% ETC, 180–90–225 kg ha−1, 
Feiurita) demonstrated the highest irrigation water use efficiency and 
vitamin C content. Both treatments enhanced key soil microbial 
activities, highlighting the potential of tailored water-fertilizer 
management strategies for sustainable potato production in arid 
regions (Xing et al., 2022). Soil nutrient content exhibits considerable 
variability across different layers, reflecting spatial heterogeneity. The 
combined application of organic and inorganic fertilizers increased 
soil organic matter by up to 22.81% during the wheat season and 
16.81% during the maize season. This approach also enhanced total 
nitrogen levels by 105.72 and 50.27%, respectively, improved microbial 
diversity, and increased crop yields compared to the exclusive 
application of urea or manure alone (Yang et al., 2020).

Soil enzyme activity is a crucial indicator of soil fertility and 
quality. A combination of low irrigation (60% field capacity) and high 
nitrogen application (300 kg N ha−1) significantly enhanced activities 
of enzymes such as acid phosphatase, acid invertase, β-glucosidase, 
catalase, cellulase, and urease (Muhammad et  al., 2022b). This 
treatment also increased bacterial alpha and beta diversity, indicating 
improved nutrient utilization and a more balanced microbial 

community compared to high irrigation regimes. Tree species 
diversity influences soil enzyme activities as well. The combination of 
birch and pine positively affected carbon- and nitrogen-related 
enzyme activities at intermediate soil depths (15–30 cm), while 
increased water availability enhanced phosphorus-related enzyme 
activities in the upper layers (0–30 cm). However, lower water 
availability diminished the benefits of tree diversity, underscoring the 
critical role of water in sustaining soil microbial activity and nutrient 
cycling across different soil depths (Maxwell et  al., 2020). These 
findings suggest that optimizing water-fertilizer rates is essential for 
maintaining soil health. Additionally, soil enzyme activity varies 
during different growth stages, necessitating targeted water-
fertilizer management.

Crop nutrient uptake and utilization are closely related to soil 
nutrient status. A rational supply of water and fertilizer significantly 
improves crop absorption efficiency for nutrients like nitrogen, 
phosphorus, and potassium, thereby promoting growth and 
development (Wei et al., 2024). Compared to conventional cultivation, 
water-fertilizer integration technology has increased nitrogen, 
phosphorus, and potassium uptake in sugarcane by 9.99, 12.58, and 
10.32%, respectively (Ren T. et al., 2021). This enhancement is largely 
due to the activation and increased availability of soil nutrients 
facilitated by water-fertilizer coupling, providing ample nutrition for 
crop growth (Yan et al., 2023). In summary, finding the optimal water-
fertilizer rate is crucial for maintaining soil health, enhancing 
microbial and enzyme activities, and improving nutrient uptake and 
crop yields. Targeted optimization of water and fertilizer management 
is necessary to sustain soil fertility and promote efficient 
crop production.

4.3 Soil organic matter and microbial 
activity

Integrated water-fertilizer technology significantly impacts soil 
organic matter content and microbial activity. Innovative no-till 
seeding (INtS) technology has been shown to enhance wheat yield, 
nitrogen uptake, and nitrogen use efficiency by 27.2, 28.9, and 31.9%, 
respectively, compared to conventional rotary-till seeding. 
Furthermore, INtS has reduced fertilizer and straw nitrogen losses by 
up to 20.6% over five growing seasons, while decreasing carbon and 
nitrogen footprints by 26.8 and 19.1%, respectively (Liu M. et al., 
2024). The integration of water, fertilizer, and air in drip irrigation 
significantly enhances soil health by increasing dissolved oxygen 
levels, oxygen diffusion, and respiration rates by 14.05, 30.14, and 
53.74%, respectively. This method also elevates the activities of soil 
enzymes such as urease, catalase, and phosphatase by 22.83, 93.01, and 
61.35%, respectively, while augmenting the biomass of bacteria, fungi, 
and actinomycetes by 49.06, 50.18, and 20.39%, respectively (Lei et al., 
2022). The application of microbial organic fertilizer (MOF) at a rate 
of 2.4 t/ha significantly enhances soil moisture by up to 36.42% and 
improves water-holding capacity by up to 15.98%. It also increases the 
activities of soil enzymes—including urease by up to 100.5%, 
peroxidase by up to 148.5%, and invertase by up to 32.9%. These 
enhancements lead to a substantial increase in jujube yield of 19.22%, 
demonstrating an effective strategy for sustainable jujube production 
and the mitigation of desertification in southern Xinjiang (Shao 
et al., 2023).
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Different water-fertilizer rates have varied effects on soil microbes 
and enzyme activities. An optimal substrate composition of 
vermicompost and coconut bran at a 5:1 ratio improved water 
retention by up to 5.80% and increased nitrogen-use efficiency. This 
composition also enhanced plant nitrogen and phosphorus uptake by 
81.18 and 4.74%, respectively, while increasing urease and catalase 
activities. Consequently, strawberry yield and quality improved, with 
total yield and average fruit weight increasing by 22.98 and 36.22%, 
respectively, compared to the control group (Tang X. et al., 2024). The 
short-term co-application of 15–30% organic fertilizer alongside 
chemical fertilizers (OFCF1 and OFCF2) enhanced topsoil aggregate 
stability, reduced bulk density, and increased soil organic carbon. This 
practice also boosted key enzyme activities, such as sucrase and 
urease, by up to 28 and 35%, respectively, while promoting maize yield 
by up to 12% compared to the application of chemical fertilizers alone 
(Zhai et al., 2023). These findings suggest that moderate water and 
fertilizer inputs are crucial for maintaining soil health and microbial 
activity within integrated water-fertilizer management.

5 Coupling of water and fertilizer to 
soil biological properties

5.1 Soil microbial community structure

The application of integrated water and fertilizer irrigation 
technology has significantly altered the structure and composition of 
soil microbial communities (Li et al., 2014). Drip fertigation enhances 
crop yields by 12.0%, improves water productivity by 26.4%, and 
increases nitrogen use efficiency by 34.3%. It also reduces 
evapotranspiration by 11.3% and can potentially decrease water inputs 
by up to 22% and nitrogen inputs by up to 33% without compromising 
yield (Li H. et al., 2021). Under water deficit conditions (50% ETc), 
inoculation with beneficial microorganisms—specifically Bacillus 
amyloliquefaciens and Azospirillum brasiliense—resulted in a 35% 
increase in corn productivity, enhanced soil microbial activity, and a 
93% increase in mineral nitrogen content compared to full irrigation 
(Araujo et  al., 2023). These findings demonstrate the potential of 
beneficial microorganisms to mitigate the effects of drought stress, 
primarily due to the favorable soil ecological environment created by 
integrated water and fertilizer management, which promotes 
microbial proliferation (Tan et al., 2021). However, excessively high or 
low water-fertilizer rates may suppress microbial activity, leading to a 
decline in their populations (Tuo et al., 2023).

Integrated water and fertilizer management also markedly affects 
the proportions of bacterial and fungal communities within the soil 
(Wang et al., 2019). Metagenomic sequencing analysis has revealed 
that appropriate water-fertilizer rates can maintain the balance 
between bacteria and fungi, enhancing soil microbial diversity indices 
(Gupta et al., 2022). Drip fertigation surpasses traditional methods by 
improving yield, water productivity, and nitrogen use efficiency by 
12.0, 26.4, and 34.3%, respectively. Furthermore, it reduces 
evapotranspiration by 11.3% and has the potential to further decrease 
water and nitrogen inputs by up to 22 and 33%, respectively, without 
compromising yield (Li H. et  al., 2021). Irrigated soils in the 
Mediterranean region exhibited increases in Ca2+, K+, and Na+ by 25, 
8, and 7%, respectively, from 2002 to 2012, alongside a 5% increase in 
pH. In contrast, rain-fed soils showed long-term increases in soil 

organic matter (SOM), pH, Ca2+, Mg2+, and K+ by 23, 8, 60, 21, and 
193%, respectively, coupled with a 50% decrease in Na+ (Telo da Gama 
et  al., 2021). These changes, attributed to climatic shifts from 
sub-humid to semi-arid conditions, underscore the necessity for 
improved soil management practices to enhance sustainability. 
Understanding nitrogen transformation processes in soil and 
implementing sustainable fertilization practices are crucial for 
maintaining soil health, minimizing environmental pollution, and 
ensuring long-term agricultural productivity (Grzyb et  al., 2021). 
Consequently, the use of integrated water and fertilizer technology 
assists in cultivating a healthy soil microbial community structure (Jin 
et al., 2022).

Beyond microbial quantity and diversity, integrated water and 
fertilizer management impacts the functional activities of soil 
microbes (Wang C. et al., 2022). Research has shown that appropriate 
water-fertilizer rates can enhance soil enzyme activities such as 
catalases, transferases, and ureases, which play vital roles in soil 
organic matter decomposition and nutrient transformation (Yang 
et al., 2022b). Additionally, judicious water and fertilizer management 
practices can amplify the degradation potential of microbes, 
accelerating the removal of pollutants like pesticide residues and 
heavy metals, thereby improving soil environmental quality (Akhtar 
et al., 2021).

5.2 Soil biodiversity

Soil biodiversity is a critical indicator of soil health, serving as a 
barometer of ecosystem stability and a driver of soil fertility, nutrient 
cycling, and resilience to environmental stresses (Bhaduri et al., 2022). 
The optimization of irrigation and fertilization through water-fertilizer 
coupling techniques significantly impacts soil biotic community 
composition and activity (Li H. et al., 2021). Nitrogen fertilization has 
been shown to significantly influence soil microbial biomass and 
composition, with the highest microbial biomass recorded at 80 and 
60% field capacity when nitrogen was applied at 20 and 40 g N m−2 per 
year, respectively (Li W. et  al., 2023). Notable shifts in microbial 
community structure and enzyme activities were also observed under 
these conditions, highlighting the importance of optimizing water-
fertilizer rates to enhance soil microbial dynamics and nutrient 
cycling. Integrated water and fertilizer management practices enhance 
soil microbial diversity and abundance, fostering beneficial microbial 
groups such as actinobacteria and nitrifying bacteria, which are 
crucial for nutrient cycling and soil health (Sabir et  al., 2021). 
Adequate moisture and fertilizer supply create favorable conditions 
for soil microbes, promoting the growth and proliferation of beneficial 
microorganisms (Vurukonda et al., 2024).

Integrated and conservation agricultural practices have been 
demonstrated to enhance the abundance of soil fauna, with 
populations of beetles and earthworms increasing by as much as 100% 
compared to conventional tillage (Mamabolo et  al., 2024). Soil 
physicochemical properties, particularly the carbon-to-nitrogen (C:N) 
ratio and organic matter content, significantly influence overall fauna 
abundance and diversity, highlighting the interdependence of soil 
biodiversity and ecosystem multifunctionality. Under varying water 
and fertilizer rates, the density and diversity of small soil animals such 
as nematodes and mites exhibit distinct differences. A global meta-
analysis revealed that organic nitrogen fertilization significantly 
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increases the density of springtails, mites, and earthworms, as well as 
the biomass of earthworms, compared to conditions without 
fertilization (Betancur-Corredor et al., 2023). These findings indicate 
that adopting organic fertilization, tailored to site-specific nitrogen 
regimes, enhances soil fauna communities and overall ecosystem 
functioning. Moderate water and fertilizer supply enhances both the 
abundance and diversity indices of soil fauna, whereas excessive or 
insufficient inputs hinder their activity. Projected drought scenarios 
have been shown to significantly reduce the biodiversity and 
abundance of oribatid mites, particularly in soils with lower fertility 
(Watzinger et  al., 2023), underscoring the necessity for adjusted 
fertilization regimes to mitigate adverse effects on soil fauna and 
overall ecosystem functioning. Additionally, the processes involved in 
plant selection modulate the impact of agricultural management on 
rhizosphere microbial communities. The interaction between 
management practices and plant root exudates significantly influences 
microbial diversity and nitrogen-cycling processes. Notably, the 
abundance of the nosZ gene, associated with denitrification, was found 
to be higher in organically managed systems (Schmidt et al., 2019), 
underscoring the intricate relationship between management 
practices, rhizosphere microbiomes, and soil health.

Optimizing water and fertilizer management is vital for sustaining 
soil biodiversity and promoting ecosystem health (Shah and Wu, 
2019). Soil biodiversity is closely correlated with soil quality and crop 
growth (Wang Y. et  al., 2024). Long-term no-tillage practices 
significantly enhance soil carbon content, microbial biomass, and 
enzyme activity within micro-aggregates, which in turn improve soil 
nutrient availability and crop yield, promote soil aggregate stability, 
and reshape microbial community structures in semiarid 
agroecosystems (Han et al., 2024). Biodiverse soils exhibit greater 
resilience and self-repair capability, alleviating problems associated 
with consecutive monoculture and enhancing farm productivity (Di 
Sacco et al., 2021). Thus, soil biodiversity has become a key indicator 
for assessing soil health. By optimizing the spatiotemporal distribution 
of water and fertilizers, water-fertilizer coupling cultivates healthy soil 
biotic communities crucial for maintaining agroecosystem balance 
and achieving sustainable agriculture. Future research should further 
elucidate the mechanisms of soil biodiversity changes under water-
fertilizer regulation to inform scientific farm management practices.

5.3 Soil enzyme activity

Microbial inoculants and organic fertilizers significantly enhance 
soil enzyme activities, notably increasing urease and alkaline 
phosphatase activities by up to 32.8 and 52.58%, respectively 
(Guangming et al., 2017). These enhancements improve soil quality 
and fertility in coastal saline soils by promoting more effective 
decomposition of organic matter and nutrient cycling. Integrating 
subsoiling with organic fertilizer application significantly improves 
soil structure, increases soil organic carbon, microbial biomass, and 
enzyme activities, and boosts winter wheat yield and water use 
efficiency by up to 32.0 and 42.7%, respectively (Yang et al., 2022b). 
Under deficit irrigation using brackish groundwater, combining 
organic manure and chemical fertilizer with an irrigation level of 
150 mm (OM-I150 treatment) significantly enhances soil enzyme 
activities, microbial biomass, and overall soil quality. This treatment 

results in a 144% increase in urease activity and a 48% increase in 
alkaline phosphatase activity, accompanied by a notable improvement 
in alfalfa biomass yield over a two-year period (Jia et  al., 2018). 
Increased nitrogen inputs and water availability in arid ecosystems 
significantly alter microbial enzyme activities. Specifically, the 
activities of β-glucosidase and phosphomonoesterase decrease by up 
to 47.1 and 36.3%, respectively, while N-acetyl-β-glucosaminidase 
activity increases by up to 80.8% (Wang et al., 2015). Crop rotations 
that include pulses and integrated nutrient management practices 
significantly enhance soil enzyme activities and microbial biomass. 
The activities of alkaline phosphatase, arylsulfatase, and dehydrogenase 
increase by 20–80%, 16–35%, and 52–79%, respectively, compared to 
continuous maize-wheat rotation (Borase et al., 2020). The integration 
of straw application with appropriate nitrogen and phosphorus supply 
significantly enhances soil enzyme activities, including phosphatase, 
β-glucosidase, protease, and urease.

The application of gypsum, manure, and rice straw significantly 
enhances enzymatic activities and organic matter mineralization, 
particularly in Solonetz soils characterized by a high sodium adsorption 
ratio and low electrical conductivity. This amendment results in 
increased CO₂ emissions, reaching levels up to 3,890 mg kg−1, while 
simultaneously improving nutrient availability for crops (Shaaban 
et al., 2023). Long-term manure fertilization significantly enhances the 
soil’s nutrient cycling capacity, as evidenced by increases in the 
activities of β-glucosidase, β-glucosaminidase, alkaline phosphatase, 
and arylsulfatase by up to 59% compared to urea-ammonium nitrate 
fertilization or no fertilization. These enzyme activities are strongly 
correlated with total carbon (C), nitrogen (N), sulfur (S), and pH, even 
after oven-drying and storage, underscoring the crucial role of manure 
in improving soil health and function (Reardon et al., 2022). These 
variations could be linked to dynamic changes in crop root exudates 
and soil moisture and temperature conditions.

A balanced water and fertilizer regimen not only increases crop 
yield and quality but also regulates soil biological characteristics, 
thereby improving soil quality (Table 2). Moderate levels of water and 
fertilizer inputs significantly enhance soil enzyme activities such as 
amylase, dehydrogenase, and phosphatase (Page et al., 2020). This 
enhancement promotes the decomposition of soil organic matter and 
contributes to maintaining the ecological balance of the soil, which is 
crucial for sustaining soil health and fertility in agricultural ecosystems.

During the hot and humid summer months, the activities of 
carbon-cycle enzymes such as amylase and invertase increase 
significantly, with Random Forest models achieving up to 99% 
accuracy in predicting these activities. In contrast, nitrogen-cycle 
enzymes, including urease and protease, exhibit relatively lower 
activity during this period (Shahare et al., 2023). This observation 
highlights the seasonal influence on soil biochemical processes and 
underscores the predictive capability of Random Forest models for 
enzyme activity. In winter and spring, soil enzyme activities 
generally decrease, with smaller fluctuations observed in 
phosphatase and catalase activities (Wu et al., 2020). Drought stress 
significantly disrupts the structure of soil microbial communities 
and enzyme activities, leading to reduced soil fertility and 
diminished plant productivity. However, these adverse effects can 
be mitigated through the regulation of water and fertilizers, which 
optimize soil environmental factors and enhance enzyme synthesis 
and catalysis (Bogati and Walczak, 2022).
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6 Water and fertilizer optimization and 
environmental benefit assessment

6.1 Water-fertilizer coupling optimization 
strategy

The coordinated management of irrigation and fertilization not 
only enhances crop yield and quality but also improves the soil 
environment (Xu et  al., 2022). The W2F4 (0.75 field capacity; 
rooting stage: seedling stage: flowering stage: fruiting stage = 10%: 
40%: 20%: 30%) treatment, which employed irrigation at 0.75 field 
capacity and a fertilizer allocation of 10–40% to 20–30%, 
significantly enhanced the soil microbial activity of Panax 
notoginseng. This treatment resulted in increases of total nitrogen 
by 25%, organic carbon by 29.95%, and bacterial diversity indices, 

with Chao1 increasing by 9.33% and Shannon by 2.1%, in 
comparison to non-irrigated, non-fertilized controls (Shen et al., 
2024). These findings highlight the potential of tailored water-
fertilizer strategies to enhance soil fertility and promote 
microecological balance. Additionally, integrated water and 
fertilizer technologies reduce fertilizer loss and lower the risks of 
groundwater and soil pollution, supporting the sustainable 
development of the agricultural environment (Sang et al., 2023). 
However, excessive irrigation and fertilization can lead to nutrient 
leaching and non-point source pollution, necessitating enhanced 
real-time monitoring and dynamic management (Wang 
L. et al., 2022).

Water and nutrient requirements vary across different crop 
growth stages. Therefore, optimizing irrigation and fertilization timing 
should align with the crop growth cycle. Long-term field trials and 

TABLE 2 Effects of balanced water and fertilizer regimens on crop yield, quality, and soil characteristics.

Aspect Effect Supporting data References

Crop yield
Increased yield with balanced water and 

fertilizer management.

Significant differences in yield observed 

between users and non-users of proper 

water and fertilizer practices.

Mahmoodi-Eshkaftaki and Rafiee (2020)

Crop quality

Enhanced sugar content and overall 

quality due to appropriate irrigation and 

fertilization.

Choice of irrigation water source affects 

crop quality and yield.
Yang et al. (2023)

Soil biological characteristics

Regulation and improvement of soil 

microbial community structure and 

activity through balanced fertilization.

Balanced fertilization enhances soil 

microbial biomass and diversity, 

promoting nutrient cycling and soil 

fertility.

Araujo et al. (2023)

Soil chemical properties

Improvement of soil chemical properties 

via balanced irrigation, aiding in 

nutrient availability and uptake by crop.

Proper irrigation improves soil nutrient 

balance, contributing to better technical 

quality and yield of crop.

Shen et al. (2024)

Soil physical properties

Enhanced soil aeration and water 

retention capacity through proper water 

management, supporting root growth 

and soil structure.

Improved root development due to 

better soil physical conditions resulting 

from appropriate irrigation practices.

Kang et al. (2022)

Nitrogen fertilizer application

Direct impact on crop growth and sugar 

content; requires careful management to 

prevent environmental degradation.

Excessive or improper use leads to soil 

quality degradation and water pollution; 

appropriate use must consider specific 

soil types.

Wang et al. (2023)

Irrigation system

Ensures adequate water supply at 

different growth stages, crucial for 

promoting crop growth and 

development.

Crop requires substantial water; proper 

irrigation systems are essential for 

optimal growth.

Kaur et al. (2024)

Irrigation water source

Choice between reclaimed water and 

surface water significantly affects crop 

growth quality and yield.

Studies indicate that different water 

sources alter soil properties and, 

consequently, crop yield and quality.

Feng et al. (2020)

Environmental impact

Improper or excessive fertilizer use can 

lead to soil degradation and water 

pollution, negatively impacting the 

environment.

Scientific and reasonable fertilizer 

application is necessary to avoid negative 

environmental consequences.

Azad et al. (2018)

Soil type considerations

Fertilizer application must be tailored to 

specific soil conditions (e.g., sandy or 

irrigated soils) to achieve optimal crop 

growth outcomes.

Appropriate nitrogen fertilizer use is 

closely related to soil type and requires 

adjustment based on soil characteristics.

Ordóñez et al. (2021)
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data analyses can identify water and nutrient demand patterns during 
key growth stages. Subsequently, crop growth models can simulate the 
impacts of various irrigation and fertilization schemes on crop 
development and yield, facilitating the selection of optimal timing 
plans (Behera and Panda, 2009). Modern information technologies, 
such as the Internet of Things and big data analysis, are employed to 
establish intelligent decision systems for precise water and 
fertilizer management.

The primary objective of optimizing irrigation and fertilization 
timing is to maximize the efficiency of soil water and nutrient use. This 
optimization considers factors such as crop water and nutrient needs, 
soil physical and chemical properties, and irrigation and drainage 
conditions. Proper scheduling in accordance with crop growth 
rhythms significantly improves water and fertilizer use efficiency 
(Grzebisz et al., 2022). Studies indicate that moderate increases in 
irrigation and fertilization during critical growth stages, such as stem 
elongation and grain filling, can enhance crop development, yield, and 
quality (Hlaváčová et al., 2018). Additionally, optimizing timing not 
only boosts efficiency but also enhances soil environmental quality 
(Shah and Wu, 2019). Effective management maintains a dynamic 
balance of soil moisture and nutrients, promotes soil aggregate 
formation, and improves soil structure (Karami et  al., 2012). 
Controlling irrigation and fertilizer applications reduces nutrient 
runoff and pollution, thereby decreasing non-point source pollution 
risks (Xia et al., 2020). Furthermore, it regulates soil temperature and 
moisture, creating favorable conditions for crop growth and enhancing 
resilience and yield stability (Jacobsen et al., 2012). Thus, optimizing 
irrigation and fertilization timing is essential for the efficient and 
sustainable use of agricultural water and nutrient resources.

Agricultural environment monitoring and early warning systems 
are crucial for precise integrated water and fertilizer management. By 
deploying various sensors in the field to collect real-time data on soil 
moisture, nutrients, temperature, and other environmental parameters, 
and integrating this with meteorological data and crop growth 
monitoring, a digital model of the farm environment is constructed. 
Model-based analyses can promptly detect anomalies in seedling 
conditions, pest and disease outbreaks, and soil degradation (Attri 
et  al., 2023). Intelligent decision systems then provide optimized 
irrigation and fertilization recommendations for precision 
management (Gallardo et al., 2020). Monitoring data is essential for 
calibrating and optimizing water-fertilizer coupling models, which are 
integral to integrated farm management systems. Various coupling 
models have been developed for different crops and environmental 
conditions, such as the Jensen model for wheat and the DSSAT model 
for maize (Gavasso-Rita et  al., 2024). These models quantify the 
relationship between crop development and water-fertilizer conditions, 
providing a scientific foundation for precise management plans. 
However, due to the complexity and regional variability of agricultural 
ecosystems, existing models encounter practical limitations, including 
calibration challenges and restricted applicability. This highlights the 
necessity for long-term field trials and comparative model research to 
improve their applicability and functionality (Figure 5).

6.2 Environmental benefit assessment

Through judicious and scientific irrigation and fertilization 
management, water-fertilizer coupling technology has been 

demonstrated to significantly enhance the efficiency of water and 
nutrient use in farmlands, thereby achieving the goal of water-saving 
and yield-increasing (Feng et  al., 2020). Studies indicate that the 
implementation of drip irrigation fertilization techniques in warm 
winter greenhouses has a notable effect on saving water and fertilizers 
in the production of cucumbers (Yao et  al., 2019). Appropriate 
irrigation and fertilization can enhance soil microbial biomass carbon 
and nitrogen, as well as enzyme activity, thereby ameliorating the soil 
micro-ecological environment (Zhang M. et al., 2022). Through the 
optimized irrigation and fertilization regime of water-fertilizer 
coupling, the efficient use of water and nutrient resources is achieved 
alongside the protection of the farmland ecological environment, while 
also realizing cost savings and increased effectiveness. Future endeavors 
should focus on the research of intelligent control and precision 
management techniques of water-fertilizer coupling, tailoring water-
nutrient rates for different crops and cultivation patterns, thus 
promoting high-quality agricultural development and providing 
scientific support for national food security and rural revitalization.

Water-fertilizer coupling technology, by optimizing irrigation and 
fertilization management, can significantly improve the quality of the 
soil environment. An appropriate water and nutrient rate effectively 
mitigate soil salinization issues (Singh, 2021). Rational water and 
fertilizer management maintains the soil water-salt balance, reducing 
salt accumulation in the soil profile, thereby lowering the risk of soil 
salinization (Jia et al., 2023). Moreover, integrated water and fertilizer 
technology enhances soil organic matter content (Yang et al., 2020). 
Under the optimal water and nutrient rate treatment, the content of 
soil microbial biomass carbon and nitrogen increases significantly (Jia 
et al., 2020). Soil organic matter is a key factor in maintaining soil 
fertility and health, with increases in its content beneficial for 
improving soil physical and biological properties. A proper water and 
nutrient rate can optimize soil porosity and promote the formation of 
soil aggregates (Zhang Y. et  al., 2021). A healthy soil structure is 
conducive to root growth and development, enhancing crop 
absorption and utilization efficiency of water and nutrients (Khalil 
et al., 2015). Additionally, rational water and fertilizer management 
improves soil moisture and temperature conditions, creating a 
favorable soil environment for crop growth. Suitable water and 
nutrient rates significantly increase soil enzyme activity, particularly 
hydrolase and urease activities. Soil enzymes are important indicators 
for evaluating soil quality and health. The improvement of soil enzyme 
activity reflected the improvement of soil biological characteristics 
(Bowles et al., 2014). Furthermore, reasonable water and fertilizer 
management helps maintain the stability of the soil microbial 
community structure, promoting the balance of the soil ecosystem.

6.3 Water-fertilizer coupling and 
application prospect

The dissemination of water-fertilizer coupling technology 
necessitates systematic planning and comprehensive training to 
enhance farmers’ acceptance and application capabilities. Initially, a 
detailed extension pathway should be developed, outlining targets and 
measures for each phase. This approach should focus on 
demonstration areas before gradually expanding to broader regions. 
Strengthening training for agricultural technicians and large-scale 
growers is essential to enhance their roles in guidance and 
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FIGURE 5

Timing optimization model for irrigation and fertilization.

https://doi.org/10.3389/fsufs.2024.1494819
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Xing et al. 10.3389/fsufs.2024.1494819

Frontiers in Sustainable Food Systems 17 frontiersin.org

demonstration, thereby enabling ordinary farmers to master the 
operational and management aspects of water-fertilizer coupling 
(Shen et al., 2013).

Simultaneously, establishing a robust technical service system is 
crucial for providing timely and effective support and consultation to 
address challenges encountered during promotion. Conducting 
systematic trials and demonstrations across diverse regions and crop 
types is essential. By creating demonstration zones that highlight the 
productivity and cost-saving benefits of the technology, farmers’ 
awareness and acceptance can be enhanced. These zones should also 
promote adoption among neighboring farmers through field visits and 
technical training, thereby facilitating widespread application. The 
sustainable development of demonstration zones must take into 
account economic, social, and ecological factors to ensure long-
term stability.

To address the realities of agricultural production, it is essential to 
implement diverse training activities that enhance farmers’ 
understanding and application of water-fertilizer coupling technology. 
The utilization of modern information technologies, such as online 
courses and video tutorials, offers farmers convenient and practical 
training resources. Furthermore, organizing on-site training and 
observation sessions allows farmers to deepen their understanding 
through hands-on practice and interactive exchanges. Tailoring 
training content to regional and seasonal agricultural characteristics 
significantly enhances training effectiveness. Additionally, follow-up 
services and ongoing guidance are crucial for helping farmers 
overcome challenges in applying the technology. When promoting 
water-fertilizer coupling technology, it is important to consider the 
specific needs and conditions of smallholder farmers to increase the 
technology’s applicability and operability. Optimizing technical 
schemes for smallholders, who often face limited scale and investment 
capacity, involves minimizing equipment and financial inputs to 
enhance economic viability. Providing precise support, including 
credit and insurance services, can mitigate application risks and foster 
enthusiasm (Amarnath et al., 2023). Effective communication with 
smallholders is key to understanding their needs and refining 
technical approaches, thereby improving the specificity and 
effectiveness of the promotion.

Support and guidance from relevant policies and regulations are 
essential for the effective implementation of water-fertilizer coupling 
technology. Government policies should prioritize water-saving 
agriculture by investing in agricultural water infrastructure and 
improving water resource efficiency (Nouri et al., 2023). Furthermore, 
updating agricultural resource management regulations and 
establishing specific ordinances for integrated water and fertilizer 
technologies will create legal standards for the management of these 
resources in agricultural production. Sustainable soil management is 
vital for both agricultural productivity and ecological preservation. 
Governments should legislate to define legal protections for soil 
environments, enhance soil quality monitoring and assessment, 
control agricultural non-point source pollution, and promote 
improvements in soil physicochemical and biological properties. 
Additionally, encouraging protective cultivation practices to mitigate 
soil erosion and degradation is crucial for enhancing soil fertility and 
farmland productivity. Achieving these goals necessitates close 
collaboration among agriculture, environmental protection, water 
conservancy, and other relevant departments to advance legislation 
and its implementation.

Economic measures are essential for fostering sustainable 
agricultural development. Governments should refine subsidy policies 
for water-saving irrigation and soil testing, along with formulated 
fertilization, to guide farmers toward the rational use of water and 
fertilizers. Implementing tax incentives for farmers who adopt 
integrated water and fertilizer technologies can encourage cost-saving 
and environmentally friendly practices. Strengthening agricultural 
science and technology extension services, in conjunction with 
conducting comprehensive farmer training, will enhance their 
understanding and application of advanced technologies. In summary, 
through effective policy, regulation, and economic incentives, 
governments can create a supportive environment for promoting 
water-fertilizer coupling technology. Establishing laws for water-
saving agriculture and sustainable soil management, refining 
agricultural subsidies and tax incentives, and enhancing technical 
extension and training are crucial. A coordinated effort among the 
government, the market, and farmers is necessary to achieve the large-
scale application of water-fertilizer coupling technology and promote 
green agricultural development.

7 Summary and prospect

This review investigates the effects of water-fertilizer coupling 
technology on agricultural production and its impact on the soil 
environment. By optimizing the supply of water and nutrients, water-
fertilizer coupling better meets crop growth demands, enhancing 
farmland productivity. Appropriate water-nutrient rates significantly 
increase soil microbial biomass carbon and nitrogen contents, as well 
as soil enzyme activities. The increase in microbial biomass accelerates 
nutrient cycling, promotes the formation of soil aggregates, and 
improves soil structure. Soil enzymes, essential for nutrient 
transformation and cycling, play key roles in soil biochemical 
processes. Optimizing water-fertilizer rates stimulates soil enzyme 
activities, expediting the decomposition of organic matter and 
nutrient mineralization, thereby providing ample nutrients for crop 
growth. These findings indicate that water-fertilizer coupling 
technology significantly enhances soil fertility and soil quality.

However, excessive inputs of water and fertilizer cannot sustainably 
improve soil quality or crop production. High water-fertilizer rates may 
decrease soil enzyme activities, possibly due to ecological imbalances 
from nutrient overload. The impact of water-fertilizer rates on soil 
microbial biomass carbon and nitrogen is stage-specific, varying across 
different crop growth stages. Therefore, dynamically adjusting irrigation 
and fertilization plans based on crop water and nutrient requirements 
and soil nutrient status is essential to avoid the negative effects of over-
application. Promoting water-fertilizer coupling technology not only 
optimizes resource allocation and enhances crop yield and quality but 
also contributes to improving soil environmental quality and 
maintaining farmland ecosystem health.

Future research should delve deeper into the interaction 
mechanisms among crops, soil, and water-fertilizer, strengthening the 
development of control models and decision support systems for 
water-fertilizer coupling. Long-term studies are needed to assess the 
sustainability of this technology, considering the cumulative and 
delayed effects on soil physicochemical properties and microbial 
activity. Systematic monitoring of dynamic changes in soil nutrient 
cycling, organic matter transformation, and aggregate structure 
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evolution will help clarify the long-term mechanisms affecting soil 
quality and health, providing a scientific basis for formulating effective 
farmland management strategies.

The trend toward intelligent water-fertilizer management is 
noteworthy. Advances in technologies such as the IoT and big data 
analytics enable the integration of sensor monitoring and intelligent 
decision-making algorithms with water-fertilizer equipment, 
facilitating the construction of smart agricultural management 
platforms. By collecting real-time data on soil moisture, nutrient 
levels, and other parameters, and integrating them with crop growth 
models and environmental predictions, precise control and dynamic 
optimization of water and fertilizer can be achieved. This enhances 
resource use efficiency and elevates the level of intelligent agricultural 
production. Future research should strengthen multidisciplinary 
integration to develop intelligent water-fertilizer control systems 
suitable for different regions and crop types, promoting a 
transformation in modern agricultural practices.

Given the significant variability in soil environments, comparative 
experiments across a broader range of soil types and climatic 
conditions are necessary to analyze regional differences in the effects 
of water-fertilizer coupling. This will aid in adaptively optimizing 
management strategies, improving the precision and effectiveness of 
technology dissemination. The industrial application of water-
fertilizer coupling technology urgently requires reinforcement. 
Currently, the lack of mature integrated water-fertilizer products and 
equipment limits large-scale promotion. Future efforts should focus 
on enhancing industry-academia-research cooperation to advance 
new water-soluble fertilizers, intelligent fertilization machinery, and 
overcome core technological bottlenecks. Establishing a 
comprehensive technical extension service system—including 
demonstration projects and farmer training—can improve farmers’ 
awareness and acceptance of the technology. This will propel the 
sustainable development of water-saving and fertilizer-saving 
agriculture, contributing to environmental conservation and 
food security.
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