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This study investigates the potential of using visual features to predict key

material attributes in wakame, focusing on thickness, strength, and chlorophyll

content (SPAD values). We compared frozen and salted wakame samples

to understand how di�erent processing methods a�ect these predictions.

Using a combination of RGB, L*a*b*, and HSV color features, we developed

and evaluated various regression models, including simple linear regression,

quadratic regression, and random forests. Our results indicate that color features

can e�ectively predict SPAD values, particularly in frozen samples, with the

best models achieving an R2 of 0.900. However, predicting thickness and

strength proved more challenging, with models showing limited predictive

power. Interestingly, strength predictions weremore accurate for salted samples,

suggesting that salt curing may enhance the relationship between visual features

and physical strength. We found that processing methods significantly impact

the e�ectiveness of prediction models. Freezing appears to better preserve

the original optical properties of wakame, while salt curing introduces greater

complexity, necessitating more sophisticated modeling approaches. This study

contributes to the development of rapid, non-destructive methods for assessing

wakame quality, which is crucial for the growing wakame industry. Our findings

highlight the potential of visual analysis in wakame quality assessment while also

emphasizing the need for tailored approaches based on processing methods.

Future work should focus on refining these models and exploring additional

factors that influence wakame properties.
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1 Introduction

Wakame [Undaria pinnatifida (Alaria pinnatifida Harvey)], a highly versatile marine

resource, is receiving growing global attention as an edible seaweed due to its substantial

economic and ecological value. Current challenges in the industry include the need for

rapid, non-destructive, and reliable quality assessment methods, especially as traditional

methods are labor-intensive and often inconsistent. This research highlights the need for

innovative approaches to overcome these limitations and meet the quality demands of

large-scale production. As Japan’s primary wakame production region, the Sanriku area

plays a crucial role in meeting these demands; the area’s favorable geographical conditions

significantly enhance wakame growth and quality.
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The Sanriku region is one of the world’s top three fishing

grounds. Here, the cold Oyashio Current flows from the north

and meets the warm Kuroshio Current from the south, creating

a convergence zone that results in an abundance of plankton.

These plankton attract small fish, which in turn draw in larger

fish such as Pacific saury, bonito, and mackerel, making this area

a crucial hub for Japan’s seafood catch. From autumn to winter,

which is the key growing season for wakame, the cold current

brings abundant nutrients and maintains ideal water temperatures

for growth. This results in thick, elastic, and flavorful wakame.

The Sanriku area produces about 70% of Japan’s wakame (as of

2022). Of this, Miyagi Prefecture leads with a production of 22,052

tons, accounting for 47.0% of the national share, while Iwate

Prefecture follows with 14,253 tons, representing 30.4%. To ensure

high quality, Sanriku (including Iwate and Miyagi Prefectures) is

the only region in Japan that conducts grade-based inspections and

strict quality management.

The applications of wakame span various industries, including

food, pharmaceuticals, and cosmetics, making it a key component

in these sectors (Torres et al., 2020). With the rapid expansion

of the global wakame industry, there is a rising demand for

rapid, accurate, and non-destructive methods to assess the

quality of wakame. Traditionally, seaweed quality assessment

has been primarily reliant on subjective evaluations based on

visual inspection of appearance, thickness, and strength, which

are often time-consuming and labor-intensive (Calmes et al.,

2020). These conventional methods are insufficient for large-

scale, real-time assessments, as they depend heavily on laboratory

analysis, which lacks efficiency and environmental sustainability

(Richardson et al., 2002). Consequently, developing non-invasive,

high-throughput techniques for wakame quality assessment,

particularly emphasizing color, thickness, and strength, has become

a significant priority in the field.

Recent advancements in optical sensing technologies offer

promising solutions for non-destructive seaweed analysis.

Techniques such as Fourier-transform infrared (FT-IR) and

Raman spectroscopy have successfully measured key components,

including fucoidan in brown seaweeds (Zhao et al., 2021; Beratto-

Ramos et al., 2020). These methods not only provide quantitative

analysis but also yield insights into the molecular structure of

seaweed, which enhances the overall quality assessment process.

Additionally, multispectral and hyperspectral imaging techniques

have broadened the scope of research by allowing detailed spatial

mapping of seaweed properties, facilitating the identification and

quantification of internal quality variations (Selvaraj, 2021; van

Ginneken and de Vries, 2017). These optical methods offer new

perspectives on the growth and metabolic processes of seaweed,

making them invaluable tools in modern research.

Chlorophyll content is another critical parameterx in assessing

seaweed quality. SPAD-502, a portable chlorophyll meter, is widely

applied across various plant studies to measure chlorophyll content

indirectly. SPAD stands for Soil Plant Analysis Development,

and it functions by measuring the light transmission through

leaves, correlating this with chlorophyll concentration. Netto et al.

(2005) demonstrated the effectiveness of SPAD-502 in assessing

chlorophyll content in coffee leaves, laying the groundwork for

non-destructive chlorophyll measurement. Research on other

species, such as Arabidopsis, wheat, and deciduous shrubs, by

Ling et al. (2011), Shah et al. (2017), and Donnelly et al. (2020),

respectively, highlights the potential for applying SPAD-502 in

wakame through appropriate calibration. Studies like Aryee et al.

(2018) further demonstrate the relevance of seaweed pigments in

food processing, providing practical applications for SPAD-based

chlorophyll measurements. In addition to chlorophyll content,

color has emerged as a crucial parameter for evaluating wakame

quality. Manninen et al. (2015) developed a digital image analysis

method to assess the green color in vegetables, a technique that

could be adapted for wakame. This method utilizes advanced

image processing algorithms to quantify color, providing a non-

invasive approach to quality assessment. Studies by Charles

et al. (2020), Indrawati et al. (2015), and Sung et al. (2023)

specifically examined the impact of different processing methods

on seaweed color and related quality parameters. These studies

established correlations between color, texture, and nutritional

components, forming a scientific foundation for optimizing

seaweed processing techniques.

Emerging technologies like remote sensing have opened

new frontiers for large-scale seaweed monitoring and quality

assessment. Wang et al. (2018) and Selvaraj (2021) successfully

applied remote sensing technologies, including satellite and drone

platforms, for assessing seaweed resources. These tools provide a

macroscopic view of seaweed distribution, offering critical insights

into growth dynamics and ecosystem changes over time. While

Galieni et al. (2021) focused on stress detection in terrestrial plants,

the principles of remote sensing and multi-source data fusion from

this study offer valuable lessons for monitoring wakame health and

environmental stress responses. Moreover, emerging technologies

such as non-invasive imaging techniques have shown potential

in assessing dynamic changes in biological systems, as explored

in the work of Drenthen et al. (2020), which could inspire new

applications in wakame research.

Building on recent advancements, this study aims to explore

the potential of using visual features, including color, thickness,

and strength, to predict key material attributes of wakame. By

employing machine learning techniques such as linear regression,

quadratic regression, and random forests, the study addresses the

limitations of traditional methods related to non-linearity and

complex data interactions. RGB, Lab*, and HSV color data are

integrated with regression models to assess the effects of different

processing methods (e.g., freezing and salting) on wakame quality

attributes. Through detailed analysis and comparison, the study’s

ultimate goal is to develop a rapid, non-destructive method for

assessing wakame quality, focusing on chlorophyll content (SPAD

values), thickness, and strength. This approach offers the wakame

industry a reliable, high-throughput quality assessment solution,

with potential to enhance quality control and production efficiency,

laying the groundwork for broader applications.

2 Materials and methods

2.1 Data collection and sample preparation

To ensure the dataset’s diversity and representativeness, we

collected wakame samples measuring 1–2 m in length and ∼1 year

old from January to March 2022, when the seawater temperature
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was ∼1◦C. Both frozen and salted samples were included

from various locations across Iwate Prefecture, including Fudai,

Yoshihama, Kamaishi, and Ofunato, as well as from Omotehama

in Miyagi Prefecture. In total, 480 wakame samples were collected,

with 180 frozen samples and 300 salted samples. These samples

were obtained from five locations: Fudai, Yoshihama (Yshi),

Kamaishi (Kmai), Ofunato (Ofun), and Omotehama (Omote). The

samples were further categorized by sections: stem (upper, middle,

and lower) and leaf (upper, middle, and lower). From each section

and location, we collected 10 samples from the left side of the

sample batch, resulting in a comprehensive dataset that supports

robust analysis.

To establish a comprehensive dataset for analysis, we utilized a

visible light camera to capture images of wakame leaves and stems

subjected to different processing methods, including blanching

and salt curing, as well as various storage conditions such as

temperature and duration. For blanching of frozen wakame, the

stems were cut into sections and blanched in boiling water for 20 s,

followed by a quick blanching of the remaining parts. The wakame

was immediately cooled under running water, then immersed

in cold water. For rehydration of salted wakame, samples were

rehydrated in distilled water adjusted to∼17◦C, using 10 times the

amount of water relative to the sample, for 3 min.

The wakame samples were divided into upper, middle, and

lower sections for both leaves and stems. From each section,

20 pieces were initially cut into uniform sizes of 10 x 30 mm.

However, only the left 10 pieces from each section were selected for

further analysis. These selected samples were then photographed

under a range of seven color temperatures, from 3,300 to 5,600

K. Figures 2, 3 and display the photographic results of frozen

and salted wakame samples from Fudai under these different

color temperatures. This approach enabled us to create a detailed

image database, categorizing the data based on processing method,

storage conditions, shooting location, and color temperature.

To ensure that the model accurately represents wakame under

varying lighting conditions, we chose to average the RGB values

across different color temperatures, rather than controlling for a

single experimental color temperature. This approach, inspired by

the goal of simulating real-world lighting conditions, enhances the

model’s applicability in diverse environments. Although controlling

a single color temperature might yield higher prediction accuracy

in specific cases, it does not adequately reflect the variability

in illumination that would occur in practical applications. By

integrating data from multiple color temperatures, we aim to

improve the robustness and accuracy of the model in real-

world settings, allowing for better adaptability across various

application scenarios.

2.2 Image capture and color feature
extraction

To thoroughly analyze the optical properties of wakame, we

extracted color features from images captured in RGB, Lab*, and

HSV color spaces. These color spaces provide a comprehensive

framework for examining the color characteristics of wakame

and their potential correlations with physical and biochemical

properties. The RGB (Red, Green, Blue), Lab* (CIE Lab*), and

HSV (Hue, Saturation, Value) color features extracted from the

wakame images were subsequently used in predictive modeling.

The abbreviations and descriptions for these color spaces are

summarized in Table 1.

The process for extracting the RGB, L*a*b*, and HSV color

features from the wakame images is as follows:

1. Preprocessing: Initially, images are preprocessed to emphasize

features that distinguish wakame from other elements. This may

include adjusting lightness and contrast or applying filters to

highlight the texture and color of wakame.

2. Color Space Transformation: Images are usually in the RGB

color space, but for the task of segmentation, converting the

image to the HSV color space makes to separate wakame based

on color characteristics.

3. Color Data Extraction: Once converted to the HSV color space,

specific color ranges corresponding to wakame are identified.

This involves analyzing the image to find the range of hues,

saturations, and values that best represent wakame.

4. Thresholding: After color data is extracted, thresholding is

performed. This process sets pixels within the color range of

wakame to white, and all other pixels to black, creating a

binary image.

5. Morphological Operations: Following thresholding,

morphological operations such as erosion and dilation are

used to remove noise and small objects not part of wakame and

to close gaps within the segmented wakame areas.

6. Segmentation: The segmented wakame is visualized to assess the

accuracy of the segmentation. In addition, the color distribution

and average values within each segmented area are analyzed.

The average RGB values are converted to HSV and L*a*b* color

spaces, providing a detailed color profile of the wakame that will

be utilized in subsequent steps.

7. Visualization: The segmented wakame can be visualized to

verify the accuracy of the segmentation. Additionally, the color

distribution and average values within each segmented area can

be analyzed. To ensure consistency and accuracy, the average

RGB values are first calculated for each segmented area under

various color temperatures. These RGB values are then averaged

across all color temperatures to obtain the final, composite

RGB values. Subsequently, these final composite RGB values

are transformed into the HSV color space and L*a*b* color

space. These transformed values will be used in the subsequent

analysis steps.

2.3 Physical and biochemical
measurements

In addition to optical analysis, we conducted physical

and biochemical measurements to obtain a comprehensive

understanding of wakame characteristics. The experimental setup,

illustrated in Figure 1, included a digital thickness gauge tomeasure

the thickness of the wakame, a rheometer to assess mechanical

strength, and a chlorophyll meter to evaluate chlorophyll content

(SPAD values). These measurements allowed us to develop a

prediction model that integrates image analysis with physical and
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TABLE 1 Color space abbreviations and descriptions.

Abbreviation Full name Description

RGB Red, Green, Blue Additive color model in which red, green, and blue light are added together to reproduce a broad array of colors

R Red Red component of the RGB color space

G Green Green component of the RGB color space

B Blue Blue component of the RGB color space

L*a*b* CIE L*a*b* Color space designed to approximate human vision, with L for lightness and a and b for the color opponents green—red

and blue—yellow

L Lightness Lightness component of the L*a*b* color space

a Green-Red Axis Color component of the L*a*b* color space, representing green to red

b Blue-Yellow Axis Color component of the L*a*b* color space, representing blue to yellow

HSV Hue, Saturation, Value Alternative representation of the RGB color model, designed to more closely align with the way human vision perceives

color-making attributes

H Hue Hue component of the HSV color space

S Saturation Saturation component of the HSV color space

V Value Value (lightness) component of the HSV color space

FIGURE 1

The diagram illustrates the experimental setup used to measure the physical and biochemical properties of the wakame samples. The setup includes

a digital thickness gauge for measuring the thickness of the wakame, a rheometer for determining the mechanical strength, and a chlorophyll meter

for assessing the chlorophyll content (SPAD values). The RGB, L*a*b*, and HSV color features extracted from the wakame images were used to

predict these properties, forming a comprehensive prediction model that combines image analysis with physical and biochemical measurements.

biochemical data, offering a robust approach to understanding

wakame quality characteristics.

For specific physical properties, a rheometer CR-100

(manufactured by Sun Science Corporation, Tokyo, Japan)

was used to record the tensile strength (in grams) of each

individual wakame frond piece (10 x 30 mm) when pulled at

a speed of 300 mm per minute. Measurements were taken for

the upper, middle, and lower sections of both wakame leaves

and stems. Regarding leaf thickness, a digital thickness gauge

(manufactured by Neoteck, Hong Kong) was used to measure the

thickness of the specified areas. Similarly, measurements were

taken for the upper, middle, and lower sections of wakame leaves

and stems. The results of the strength and thickness measurements

revealed significant variations in these characteristics based on

the origin, suggesting their potential as effective indicators for

distinguishing the origin and grade. For biochemical properties,

the amount of chlorophyll was measured using a chlorophyll meter

SPAD-502Plus (manufactured by Konica Minolta, Tokyo, Japan).

2.4 Regression models for property
prediction

To further analyze the relationships between color

features and wakame properties, we developed and evaluated

various regression models. These models included linear,
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TABLE 2 Mathematical formulas for wakame regression models.

Model Formula

Linear y = β0 + β1R+ β2G+ β3B+ β4L+ β5a+ β6b+

β7H + β8S+ β9V

Quadratic y = β0 +
∑9

i=1 βixi +
∑9

i=1

∑9
j=i βijxixj

where xi , xj ∈ {R,G,B, L, a, b,H, S,V}

Partial linear (frozen) y = β0 + β1B+ β2L+ β3H

Partial quadratic (frozen) y = β0 +β1B+β2L+β3H+β4B
2 +β5L

2 +β6H
2

Partial linear (salted) y = β0 + β1R+ β2L+ β3V

Partial quadratic (salted) y = β0 +β1R+β2L+β3V +β4R
2 +β5L

2 +β6V
2

Random forest Ensemble of decision trees using

R,G,B, L, a, b,H, S,V as features

The color features used are: R (red), G (green), B (blue) from RGB color space; L (lightness),

a (green-red axis), b (blue-yellow axis) from Lab color space; and H (hue), S (saturation), V

(value) from HSV color space. Note that the Partial Linear and Partial Quadratic models use

different features for frozen and salted wakame samples.

quadratic, partial linear, partial quadratic, and random

forest models, each of which was designed to capture the

potential relationships between color features and wakame

properties. We used color features from RGB, Lab, and

HSV color spaces, such as R (red), G (green), B (blue), L

(lightness), a (green-red axis), b (blue-yellow axis), H (hue),

S (saturation), and V (value), as the predictor variables in

these models.

The mathematical formulas for each model type are

summarized in Table 2. The partial linear and partial quadratic

models were tailored to account for different feature sets

between frozen and salted wakame samples, optimizing

the model to better reflect differences due to processing

methods.

2.5 Analysis of variance for properties

The Analysis of Variance (ANOVA) is a statistical method

used to determine whether there are statistically significant

differences between the means of two or more groups. It works

by partitioning the total variation in a dataset into components

attributable to group differences and random error. The key

output of ANOVA is the F-statistic, which compares the variance

between groups to the variance within groups. A larger F-

statistic indicates that the group means are more likely to be

significantly different. The method is widely used in experimental

and observational studies to assess the effects of different treatments

or conditions.

For example, in the context of food science, ANOVA could

be used to compare the chlorophyll content (SPAD values)

of frozen and salted samples of wakame to evaluate how

processing methods influence this property. Similarly, it could

be applied to examine whether there are significant differences

in physical attributes such as thickness or strength between

processing groups. By testing these hypotheses, ANOVA provides a

statistical foundation for determining whether observed differences

are due to the effects of processing methods rather than

random variation.

This method is particularly valuable in food quality studies

where multiple factors influence the properties of interest. Its

application helps researchers validate observed trends and ensure

that the results are statistically robust before proceeding to

predictive modeling or further analysis.

3 Results

3.1 Color temperature e�ects analysis

Figure 2 demonstrated the visual appearance of segmented

frozen wakame samples across a spectrum of color temperatures,

from warm (3,300 K) to cool (5,600 K). The samples showed

the subtle changes in color perception as the color temperature

increased. The frozen samples generally maintained a consistent

appearance, with slight shifts from a warmer, reddish tone at

lower color temperatures to a cooler, slightly bluish tint at higher

temperatures. This consistency in appearance across different color

temperatures suggested that the freezing process helped preserve

the original pigments of the wakame. The minimal color variation

observed might have been primarily due to the changing light

conditions rather than significant alterations in the wakame’s

intrinsic color properties. This stability in appearance could have

been advantageous for color-based quality assessments of frozen

wakame products.

Figure 3 illustrated the visual appearance of segmented salted

wakame samples across a spectrum of color temperatures, from

warm (3,300 K) to cool (5,600 K). The samples showed the

pronounced changes in color perception as the color temperature

increased. The salted samples exhibited more noticeable color

shifts compared to their frozen counterparts, transitioning from

a warmer, brownish tone at lower color temperatures to a cooler,

distinctly greenish hue at higher temperatures. This variability

in appearance across different color temperatures suggested that

the salt-curing process might have altered the wakame’s pigments,

making them more susceptible to perceived color changes under

different lighting conditions. The more significant color variation

observed in salted samples could be attributed to both the

changing light conditions and alterations in the wakame’s intrinsic

color properties due to the curing process. This increased

sensitivity to color temperature changes presented challenges for

color-based quality assessments of salted wakame products and

highlighted the importance of standardized lighting conditions in

visual inspections.

3.2 Property distributions analysis

The ANOVA analysis revealed significant differences in color

and physical properties between frozen and salted wakame samples,

indicating distinct effects of the two preservation methods. These

p-values provide a quantitative measure of these differences,

supporting a more rigorous interpretation of the data.

For the RGB color components, the p-values obtained for

R (p = 5.6745e-52) and B (p = 1.1597e-06) suggest statistically
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FIGURE 2

Frozen wakame samples from Fudai region photographed under di�erent color temperatures (3,300, 3,700, 4,100, 4,500, 4,900, 5,300, and 5,600 K).

The left side shows the stems, and the right side shows the leaves.
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FIGURE 3

Salted wakame samples from Fudai region photographed under di�erent color temperatures (3,300, 3,700, 4,100, 4,500, 4,900, 5,300, and 5,600 K).

The left side shows the stems, and the right side shows the leaves.
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significant differences between the two sample groups, with

frozen samples showing higher mean values, particularly in the R

component (mean 131.36 vs. 88.15), indicating that freezing better

preserves the original red color. The G component (p = 0.1456)

showed no significant difference, while in Lab* color space, both L

(p = 5.9175e-10) and a (p = 1.1151e-196) values were significantly

different, with higher L values (mean 41.07 vs. 35.39) in frozen

samples, indicating increased brightness. The green-red axis (a)

shifts notably from positive in frozen samples (mean 11.91) to

negative in salted samples (mean –7.26), suggesting that salting

shifts color toward green.

In the HSV color space, the H (p = 6.4135e-192) and S (p =

5.8472e-06) values were statistically different between frozen and

salted samples, with salted samples having a higher H-value (mean

0.16 vs. 0.10), consistent with a green shift, and a lower V-value (p

= 4.4399e-48; mean 0.35 vs. 0.52), which aligns with the decreased

lightness in salted wakame.

For physical properties, the thickness (p = 1.8470e-05) and

strength (p = 6.0608e-05) of wakame were also significantly

affected by the preservation method. Frozen samples retained

higher thickness (mean 0.56 vs. 0.50 mm) and strength (mean 2.97

vs. 2.61 N), suggesting that freezing better preserves the structural

integrity of wakame, while salting may lead to dehydration and

slight reduction in structure.

The ANOVA results underscore the conclusion that freezing

better preserves wakame’s original color and structure, resulting

in brighter, redder, and slightly stronger and thicker samples. In

contrast, salting shifted the color toward green, decreased lightness,

and reduced thickness and strength, impacting both visual and

functional qualities for food and industrial applications.

3.3 Correlation analysis

The correlation matrix analysis provided in Figures 4, 5

revealed the relationships between various parameters in wakame

samples. These parameters include RGB components, L*a*b*

components, HSV components, SPAD (chlorophyll content),

thickness, and strength. These data not only provided a quantitative

basis for understanding the physiological and physical properties of

wakame but also offered valuable insights for further research into

the relationships between these characteristics.

3.3.1 Correlation analysis of frozen wakame
Figure 4 revealed several strong correlations in the frozen

wakame samples. Firstly, the strong positive correlation between

R and L (0.993) indicated that the red intensity was closely

related to the lightness of the wakame samples. This suggested

that as the sample exhibited higher red intensity, its lightness

also increased, which might have been related to the surface

reflection characteristics of the sample. Similarly, the correlation

between G and L was also very high (0.995), further reinforcing

this observation. These strong correlations revealed a significant

linear relationship between the RGB components and L, a

relationship that was likely determined by the combined effects

of lighting conditions and the uniformity of the sample color in

visual detection.

Moreover, there was a significant positive correlation (0.914)

between G and the red-green axis (a), implying that an increase

in green intensity was closely related to changes in the red-green

axis. This correlation reflected changes in the chlorophyll content

of wakame under different growth conditions, as chlorophyll

concentration was typically represented by green intensity. A high

concentration of chlorophyll likely indicated that the sample was

healthy and growing well, which manifested as a higher green

component and a shift in the red-green axis in color measurements.

There was a moderate negative correlation (−0.444) between

B and the red-green axis (a), suggesting that an increase in

blue intensity might have caused the color to shift toward

the green direction on the red-green axis. This phenomenon

could have been related to the interaction of chlorophyll and

other photosynthetic pigments, especially in frozen samples under

different environmental conditions. In wakame, an increase in

the blue component might have been associated with chlorophyll

degradation or other factors related to the physiological state,

leading to a color shift from red to green.

Notably, there was a negative correlation between the RGB

components and SPAD values (indicating chlorophyll content).

This negative correlation suggested that as color intensity

increased, SPAD values might decrease, which could mean that

darker or more vibrant wakame samples tended to have lower

chlorophyll content. This finding was significant for understanding

the physiological state and growth conditions of wakame, as

chlorophyll content is a crucial indicator of plant health and

nutritional status.

This negative correlation in frozen wakame samples might have

indicated that during the freezing process, chlorophyll underwent

some degree of degradation, or changes in pigment concentration

led to darker colors and lower SPAD values. This had important

implications for further research on how to maintain the quality of

wakame during the freezing process.

3.3.2 Correlation analysis of salted wakame
In contrast, Figure 5 shows that the correlation matrix of salted

wakame samples exhibited similar trends to the frozen wakame

but also presented some notable differences. Firstly, the correlation

between R and L remained high (0.968), similar to the frozen

samples, indicating that the relationship between red intensity

and lightness remained consistent across different preservation

methods. The correlation between G and L was even stronger

(0.997), further indicating a very strong linear relationship between

green intensity and lightness. This suggested that regardless of

whether the wakame was frozen or salted, the relationship between

color intensity and lightness in the samples was consistent,

likely related to the surface structure and optical properties of

the sample.

However, in the salted wakame samples, the correlation

between SPAD values and other color parameters was generally

weaker or negative, suggesting that the preservation method

significantly affected the relationship between chlorophyll content

and color properties. Specifically, the salting process might have
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FIGURE 4

Correlation plot for frozen wakame samples. The color and size of the circles represent the strength and direction of the correlations. Blue indicates

positive correlation, red indicates negative correlation, and white indicates no correlation. The variables are: R (red), G (green), B (blue), L (lightness), a

(green-red axis), b (blue-yellow axis), H (hue), S (saturation), and V (value), SPAD (chlorophyll content), Thick (thickness), and Str (strength).

led to chlorophyll degradation, thereby altering the correlation

between SPAD values and color components. The salt used in the

salting process might have accelerated chlorophyll degradation,

resulting in lower SPAD values, while changes in other color

components did not fully offset this effect.

For example, the correlation between G and SPAD values

was significantly reduced in salted samples, indicating that

during chlorophyll degradation, the green component was no

longer directly related to chlorophyll content. Additionally, the

negative correlation between SPAD values and the red-green

axis (a) suggested that changes in the red-green axis might

have been related to the degree of chlorophyll degradation.

Overall, these findings revealed the critical role of preservation

methods in influencing the relationship between the physiological

properties and color attributes of wakame, especially when

selecting preservation methods for quality assessment using

non-invasive techniques.

In summary, the correlationmatrix analysis of frozen and salted

wakame samples illustrated the complex relationships between

color and physical properties and revealed the significant impact

of preservation methods on these relationships. These results

provided new perspectives on understanding the physiological state

of wakame and offered empirical evidence for developing more

effective wakame quality assessment techniques.
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FIGURE 5

Correlation plot for salted wakame samples. The color and size of the circles represent the strength and direction of the correlations. Blue indicates

positive correlation, red indicates negative correlation, and white indicates no correlation. The variables are: R (red), G (green), B (blue), L (lightness), a

(green-red axis), b (blue-yellow axis), H (hue), S (saturation), and V (value), Thick (thickness), and Str (strength).

3.4 Regression analysis

3.4.1 Regression analysis of frozen wakame
3.4.1.1 SPAD value prediction models

For frozen wakame samples, Table 3 presents the parameter

estimates, standard errors, t-statistics, and p-values for various

regression models. The performance metrics for these models are

summarized in Table 4.

Linear regression model: The simple linear regression model

for frozen wakame samples demonstrated excellent performance.

This model used nine color features (R, G, B, L, a, b, H, S, V) to

predict SPAD values. The adjusted R2 reached 0.768, indicating

that the model could explain about 76.8% of the variation in

SPAD values. This was a considerably high explanatory power,

suggesting a strong linear relationship between color features

and SPAD values. The model’s F-statistic was 66.9, with an

extremely small p-value (3.11e-51), indicating that the model

was highly significant overall, far superior to the baseline model

containing only the intercept. However, it was worth noting that

despite the model’s overall excellent performance, the p-values

of individual predictor variables were generally high, with none

reaching the traditional 0.05 significance level. This situation

might have suggested the presence of multicollinearity, i.e., strong

correlations between predictor variables. The model’s Root Mean
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TABLE 3 Model parameters and statistics for frozen wakame samples, including parameter estimates, standard errors (SE), t-statistics, and p-values for

various regression models, excluding the quadratic (SPAD) model due to its complexity.

Model Parameter Estimate SE t-stat p-value

Linear (SPAD) Intercept −1.69e-14 0.0359 −4.70e-13 1.000

R −4.8925 4.5072 −1.0855 0.2793

G 0.56573 2.9613 0.19104 0.8487

B 0.45435 0.31685 1.434 ∗0.1534

L −4.5418 2.7589 −1.6462 ∗0.1016

a 0.10912 0.67826 0.16089 0.8724

b 1.7292 2.3565 0.73383 0.4641

H 0.3701 0.21149 1.75 ∗0.0819

S −0.58823 0.50968 −1.1541 0.2501

V 6.216 6.2971 0.98712 0.3250

Linear (thickness) Intercept 5.85e-15 0.0694 8.43e-14 1.000

R 8.4653 8.715 0.97135 0.3328

G −19.409 5.7259 −3.3896 0.0009

B 0.61236 0.61266 0.99951 0.3190

L 6.7856 5.3345 1.272 0.2051

a −2.8633 1.3115 −2.1833 0.0304

b 2.2266 4.5564 0.48867 0.6257

H −0.09406 0.40893 −0.23002 0.8184

S −0.84765 0.9855 −0.86012 0.3909

V 3.4956 12.176 0.2871 0.7744

Linear (strength) Intercept −3.13e-14 0.0727 −4.31e-13 1.000

R −7.9398 9.1325 −0.86941 0.3859

G −15.181 6.0002 −2.5302 0.0123

B 0.5534 0.64201 0.86199 0.3899

L 6.8844 5.5901 1.2315 0.2198

a −2.537 1.3743 −1.846 0.0666

b 7.3162 4.7747 1.5323 0.1273

H −1.0744 0.42853 −2.5073 0.0131

S −1.9252 1.0327 −1.8642 0.0640

V 11.657 12.759 0.91362 0.3622

Partial linear (SPAD) Intercept 5.06e-16 0.03575 1.41e-14 1.000

B 0.18537 0.03877 4.7809 3.67e-06

L −1.0988 0.05485 −20.033 2.87e-47

H 0.26181 0.05197 5.0376 1.16e-06

Partial quadratic (SPAD) Intercept 0.21542 0.10538 2.0442 0.04245

B −0.066323 0.063861 −1.0386 0.30046

L −0.15578 0.14005 −1.1123 0.26757

H −0.10597 0.12651 −0.83767 0.40337

B2 0.22774 0.1153 1.9752 0.04983

L2 −0.5688 0.083174 −6.8387 1.32e-10

H2 0.092646 0.096685 0.95823 0.33929

Color features are: R (red), G (green), B (blue), L (lightness), a (green-red axis), b (blue-yellow axis), H (hue), S (saturation), and V (value). The Partial Linear and Partial Quadratic models use

only B, L, and H features. Note that while some individual parameters may not be statistically significant (p > 0.05), they are still included in the models based on their theoretical importance

or potential interactions with other variables. The symbol (∗) indicates the three smallest.
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TABLE 4 Performance metrics for frozen wakame sample models.

Model R2 Adj. R2 RMSE F-stat p-value

Linear (SPAD) 0.780 0.768 0.482 66.9 3.11e-51

Linear

(thickness)

0.177 0.133 0.931 4.06 9.96e-05

Linear

(strength)

0.096 0.0481 0.976 2.01 0.0414

Quadratic

(SPAD)

0.818 0.757 0.493 13.4 8.19e-32

Partial linear

(SPAD)

0.774 0.770 0.480 201.0 1.46e-56

Partial

quadratic

(SPAD)

0.352 0.330 0.819 15.7 2.40e-14

Random forest

(SPAD)

0.905 0.900 0.308 179.2 0.00e+00

R2 is the coefficient of determination, Adj. R2 is the adjusted R2 , RMSE is the root mean

square error, F-stat compares the fitted model to a model with no predictors, and the p-value

is for the F-test. The number of observations for all models is 180. The Random Forest model

shows the best performance for SPAD prediction, while thickness and strength predictions

are less accurate across all models. The Partial Linear and Partial Quadratic models for SPAD

use only B, L, and H features, unlike the full linear models which use all color features (R, G,

B, L, a, b, H, S, and V).

Square Error (RMSE) was 0.482, which was acceptable considering

the range of SPAD values. This indicated that the model’s

average error in predicting individual samples was relatively

small.

Quadratic regression model: To capture potential non-

linear relationships, we introduced an extended model including

quadratic terms and interaction terms. This model contained

45 predictor variables and 46 terms. The results showed that

the adjusted R2 slightly increased to 0.757. Considering the

significant increase in model complexity, this minor improvement

might not have been worthwhile. In this extended model,

some quadratic terms and interaction terms showed statistical

significance. Notably, x18 (the quadratic term of B, p= 0.00018682)

and x26 (the interaction term of L and a, p = 0.0052781) reached

highly significant levels. This indicated that some non-linear

relationships existed, but these relationships might not have been

sufficient to significantly improve overall predictive performance.

The model’s F-statistic decreased to 13.4 (p = 8.19e-32), which,

although still highly significant, was lower compared to the simple

linear model. This might have been due to the increased degrees

of freedom. The RMSE slightly increased to 0.493, and this minor

increase might have been due to model overfitting.

Simplified quadratic regression model: To further explore

potential non-linear relationships in the simplified model, we

added quadratic terms to the simplified linear model. This model

contained six predictor variables, including the linear terms of B, L,

H, as well as their quadratic terms and interaction terms. The results

showed that the performance of this simplified quadratic model

decreased, with the adjusted R2 dropping to 0.33. This result was

unexpected, as we would typically expect the addition of non-linear

terms to improve model performance. This might have suggested

that in the simplified feature set, linear relationships had already

captured most of the meaningful variation, while the added non-

linear terms might have introduced noise. In this model, only the

quadratic term of L (p = 0.049834) showed statistical significance.

This indicated that there might have been a curvilinear relationship

between lightness and SPAD values, but this relationship was

relatively weak. The model’s F-statistic was 15.7 (p = 2.4e-14),

which, although still highly significant, was far lower than the

simplified linear model. The RMSE increased to 0.819, further

confirming the performance decline of this model.

Simplified quadratic regression model: To further explore

potential non-linear relationships in the simplified model, we

added quadratic terms to the simplified linear model. This model

contains six predictor variables, including the linear terms of B,

L, H, as well as their quadratic terms and interaction terms. The

results show that the performance of this simplified quadratic

model decreased, with the adjusted R2 dropping to 0.33. This result

is unexpected, as we would typically expect the addition of non-

linear terms to improve model performance. This may suggest

that in the simplified feature set, linear relationships have already

captured most of the meaningful variation, while the added non-

linear terms may have introduced noise. In this model, only the

quadratic term of L (p = 0.049834) shows statistical significance.

This indicates that there may be a curvilinear relationship between

lightness and SPAD values, but this relationship is relatively weak.

The model’s F-statistic is 15.7 (p = 2.4e-14), which, although still

highly significant, is far lower than the simplified linear model.

The RMSE increased to 0.819, further confirming the performance

decline of this model.

Random forest model: The random forest model

demonstrated the best predictive performance, with an adjusted R2

reaching an impressive 0.900. This indicated that by considering

non-linear relationships and feature interactions, we could

explain 90% of the variation in SPAD values. This model’s RMSE

decreased to 0.308, the lowest among all models, indicating that

its prediction error was significantly reduced. The F-statistic

was as high as 179.2 (p-value close to 0), further confirming the

model’s strong predictive power. However, it should have been

noted that the interpretability of the random forest model was less

intuitive than linear models, which might have been a drawback

in some application scenarios. Figure 6 illustrated the non-linear

relationships captured by this model for frozen wakame samples.

3.4.1.2 Thickness prediction model

Linear regression model: The performance of the thickness

prediction model was significantly inferior to the SPAD value

prediction model. The linear regression model’s adjusted R2 was

only 0.133, indicating that color features could only explain 13.3%

of the thickness variation. This result suggested that wakame

thickness might have been primarily influenced by other factors,

rather than directly reflected in its color features. The model’s

F-statistic was 4.06 (p = 9.96e-05), which, although reaching

statistical significance, had limited predictive power. Among the

predictor variables, only G (green channel, p = 0.00087014) and a

(green-red axis, p = 0.030385) showed statistical significance. This

might have suggested that the degree of green in wakame had some

association with its thickness, but this association was relatively

weak. The RMSE was 0.931, which might have been relatively large
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FIGURE 6

Random Forest model predictions for frozen wakame samples. Each plot shows the relationship between SPAD values and a specific color feature (B,

L, H). The scatter points represent the actual data, while the lines show the mean response and quartiles predicted by the model. These plots

demonstrate the non-linear relationships captured by the Random Forest model and the varying levels of uncertainty in predictions across the range

of each feature.

considering the possible range of thickness. This further confirmed

the limitations of using only color features to predict thickness.

3.4.1.3 Strength prediction model

Linear regression model: The strength prediction model

performed the worst, with an adjusted R2 of only 0.0481, indicating

that color features could hardly explain the variation in wakame

strength. This result was not surprising, as strength was a physical

property that might not have had a direct relationship with color.

The model’s F-statistic was 2.01 (p = 0.0414), barely reaching

the 0.05 significance level. Among the predictor variables, only G

(green channel, p = 0.01231) and H (hue, p = 0.013105) showed

some degree of statistical significance. The RMSE was 0.976, which

might have been quite large considering the possible range of

strength. This result strongly suggested that we needed to seek other

features or methods to predict wakame strength.

3.4.2 Regression analysis of salted wakame
For salted wakame samples, Table 5 shows the parameter

estimates and related statistics for various regression models.

The performance metrics for these models are summarized in

Table 6.

3.4.2.1 SPAD value prediction models

Linear regression model: The simple linear regression model

for salted wakame samples performed less well than the frozen

samples. The adjusted R2 of the model was 0.553, indicating that

the model could explain 55.3% of the variation in SPAD values.

Although this explanatory power was less than that of the frozen

samples, it still indicated a moderate linear relationship between

color features and SPAD values. The model’s F-statistic was 42

(p = 1.23e-47), indicating that the model was highly significant

overall. Unlike the frozen samples, several variables in the salted
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TABLE 5 Model parameters and statistics for salted wakame samples, including parameter estimates, standard errors (SE), t-statistics, and p-values for

various regression models, excluding the quadratic (SPAD) model due to its complexity.

Model Parameter Estimate SE t-stat p-value

Linear (SPAD) Intercept −1.44e-14 0.03862 −3.72e-13 1.0000

R −5.3089 1.8172 −2.9215 ∗0.0038

G −2.3012 1.9963 −1.1527 0.2500

B −0.40389 0.29551 −1.3668 0.1728

L 6.9617 1.8485 3.7661 ∗0.0002

a 0.6567 0.81664 0.80414 0.4220

b −0.73348 1.1972 −0.61265 0.5406

H −0.14467 0.18623 −0.77687 0.4379

S −0.18198 0.40831 −0.44568 0.6562

V 1.2954 0.55486 2.3347 ∗0.0202

Linear (thickness) Intercept −7.98e-15 0.05583 −1.43e-13 1.0000

R −1.448 2.6269 −0.55123 0.5819

G −1.7446 2.8858 −0.60455 0.5460

B 0.3866 0.42719 0.90498 0.3662

L 2.3148 2.6722 0.86624 0.3871

a 0.21634 1.1805 0.18325 0.8547

b −1.1074 1.7307 −0.63984 0.5228

H 0.25208 0.26921 0.93635 0.3499

S 1.1875 0.59026 2.0119 0.0452

V 1.3518 0.80211 1.6853 0.0930

Linear (strength) Intercept 5.31e-15 0.04904 1.08e-13 1.0000

R 3.8231 2.3077 1.6567 0.0987

G −2.1835 2.5352 −0.86129 0.3898

B −0.52084 0.37528 −1.3879 0.1662

L 0.1991 2.3475 0.08481 0.9325

a −0.57518 1.0371 −0.55461 0.5796

b 0.95297 1.5204 0.62678 0.5313

H 0.18768 0.2365 0.79358 0.4281

S −1.2912 0.51853 −2.4901 0.0133

V −2.987 0.70465 −4.239 3.02e-05

Partial linear (SPAD) Intercept −2.07e-15 0.04221 −4.91e-14 1.0000

R −1.9254 0.37865 −5.0848 6.54e-07

L 1.1647 0.25234 4.6158 5.84e-06

V 0.18618 0.52414 0.3552 0.7227

Partial quadratic (SPAD) Intercept 0.25234 0.087965 2.8687 0.0044

R 1.747 3.2721 0.5339 0.5938

L 8.5186 5.6681 1.5029 0.1339

V −12.255 10.722 −1.143 0.2540

R2 −0.93442 1.1686 −0.79962 0.4246

L2 −6.521 7.5717 −0.86123 0.3898

V2 9.2663 8.815 1.0512 0.2940

Color features are: R (red), G (green), B (blue), L (lightness), a (green-red axis), b (blue-yellow axis), H (hue), S (saturation), and V (value). The Partial Linear and Partial Quadratic models use

only R, L, and V features. Note that while some individual parameters may not be statistically significant (p > 0.05), they are still included in the models based on their theoretical importance

or potential interactions with other variables. The symbol (∗) indicates the three smallest.
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TABLE 6 Performance metrics for salted wakame sample models.

Model R2 Adj. R2 RMSE F-stat p-value

Linear (SPAD) 0.566 0.553 0.669 42.0 1.23e-47

Linear

(thickness)

0.0932 0.065 0.967 3.31 0.000726

Linear

(strength)

0.300 0.278 0.849 13.8 1.74e-18

Quadratic

(SPAD)

0.646 0.584 0.645 10.3 1.82e-36

Partial linear

(SPAD)

0.471 0.465 0.731 87.8 1.19e-40

Partial

quadratic

(SPAD)

0.112 0.0941 0.952 6.18 4.04e-06

Random forest

(SPAD)

0.812 0.806 0.433 139.1 0.00e+00

R2 is the coefficient of determination, Adj. R2 is the adjusted R2 , RMSE is the root mean

square error, F-stat compares the fitted model to a model with no predictors, and the p-value

is for the F-test. The number of observations for all models is 300. The Random Forest model

shows the best performance for SPAD prediction, while thickness prediction is particularly

challenging. Strength prediction shows moderate accuracy, better than in frozen samples. The

Partial Linear and Partial Quadratic models for SPAD use only R, L, and V features, unlike the

full linear models which use all color features (R, G, B, L, a, b, H, S, and V).

samples showed significance, particularly R (red channel, p =

0.0037571), L (lightness, p = 0.00020077), and V (value, p =

0.020241). This suggested that after salt curing, these specific color

features formed a more direct relationship with SPAD values. The

model’s RMSEwas 0.669, lower than the frozen samples. This might

have reflected that the variation in SPAD values after salt curing was

smaller, or that the predictions for salted samples were relatively

more accurate.

Quadratic regression model: After introducing quadratic

terms and interaction terms, the model performance improved,

with the adjusted R2 increasing to 0.584. This improvement was

more noticeable than in the frozen samples, suggesting that in

salted samples, there might have been more complex non-linear

relationships between SPAD values and color features. In this

extended model, multiple quadratic terms and interaction terms

showed statistical significance (p < 0.05). This further confirmed

the existence of complex non-linear relationships between SPAD

values and color features. The model’s F-statistic was 10.3 (p =

1.82e-36), which, although decreased, was still highly significant.

The RMSE decreased to 0.645, indicating that considering non-

linear relationships improved prediction accuracy. However, this

error value was still relatively high, suggesting that even more

complex models struggled to fully capture the variation in SPAD

values of salted wakame.

Simplified linear regression model: The simplified model for

salted samples used three variables: R, L, and V, and its performance

significantly decreased, with an adjusted R2 of only 0.465. This

indicated that, unlike frozen samples, SPAD value prediction for

salted wakame might have required more color features. In this

model, R (red channel, p = 6.5397e-07) and L (lightness, p =

5.8431e-06) showed high significance. Interestingly, V (value) was

not significant in this model (p = 0.72269), contrasting with

the full variable model. The model’s F-statistic was 87.8 (p =

1.19e-40), which, although still highly significant, was far lower

than the full variable model. The RMSE increased to 0.731,

further confirming the limitations of the simplified model in

salted samples.

Simplified quadratic regression model: The simplified

quadratic model for salted samples also used three basic variables

R, L, and V, and added their quadratic terms and interaction terms.

This model’s performance decreased, with an adjusted R2 of only

0.0941, worse than the simplified linear model. In this model, only

the intercept term (p = 0.0044211) showed statistical significance.

Other variables and interaction terms were not significant, which

might have indicated that in salted samples, a simplified non-linear

model was not suitable for predicting SPAD values. The model’s

F-statistic was 6.18 (p= 4.04e-06), which, although still significant,

was far lower than the simplified linear model. The RMSE

increased to 0.952, further confirming the performance decline of

this model.

Random forest model: The random forest model performed

best in salted samples as well, with an adjusted R2 reaching

0.806. Although this result was lower than the frozen samples,

it still indicated that random forests could effectively capture

complex non-linear relationships. The model’s RMSE decreased

to 0.433, the lowest among all salted sample models. The

F-statistic was 139.1 (p-value close to 0), further confirming

the model’s strong predictive power. Although this result

was lower than the frozen samples, it still indicated that

random forests could effectively capture complex non-linear

relationships. Figure 7 illustrated these complex, non-linear

relationships captured by the Random Forest model for salted

wakame samples.

3.4.2.2 Thickness prediction model

Linear regression model: The thickness prediction model for

salted wakame samples performed very poorly, with an adjusted R2

of only 0.065, even lower than the frozen samples. This indicated

that color features could barely explain the variation in salted

wakame thickness. The model’s F-statistic was 3.31 (p= 0.000726),

which, although reaching statistical significance, had extremely

limited predictive power. Among all predictor variables, only S

(saturation, p = 0.045158) barely reached the significance level.

This contrasted with the frozen samples where G and a were

significant, possibly reflecting the profound impact of salt curing

on wakame structure, fundamentally changing the relationship

between thickness and color features. The model’s RMSE was

0.967, comparable to the frozen samples. However, considering

the model’s low explanatory power, this might have more reflected

that the variation in thickness data itself was small rather than

high model accuracy. This result emphasized that predicting

thickness using only color features was even more challenging in

salted wakame.

3.4.2.3 Strength prediction model

Linear regression model: Surprisingly, the strength prediction

model for salted wakame samples performed significantly better
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FIGURE 7

Random Forest model predictions for salted wakame samples. Each plot shows the relationship between SPAD values and a specific color feature (R,

L, V). The scatter points represent the actual data, while the lines show the mean response and quartiles predicted by the model. These plots illustrate

the complex, non-linear relationships captured by the Random Forest model and the varying degrees of prediction uncertainty across di�erent color

features.

than the frozen samples. The model’s adjusted R2 reached 0.278,

which, although still not high, was a significant improvement over

the 0.0481 of the frozen samples. This interesting finding might

have suggested that salt curing altered the wakame’s structure,

making the relationship between color features and strength more

apparent. Themodel’s F-statistic was 13.8 (p= 1.74e-18), far higher

than the frozen samples, indicating that the model had stronger

overall significance. Among the predictor variables, S (saturation,

p = 0.013332) and V (value, p = 3.0207e-05) showed high

significance, both negatively correlated with strength. This finding

had important practical implications and might have reflected

changes in wakame structure and optical properties during the

salt curing process. The RMSE was 0.774, lower than the 0.976

of the frozen samples, further confirming the relative superiority

of the salted sample model. This result emphasized the profound

impact of processing methods on the relationship between wakame

physical properties and color features.

3.4.3 Comparative analysis of frozen and salted
wakame samples
3.4.3.1 Comparison of SPAD value prediction models

Linear regression model: Comparing Tables 4, 6, we could see

that the linear regression model for frozen samples (R2 = 0.768,

RMSE = 0.482) clearly outperformed the salted sample model (R2

= 0.553, RMSE= 0.669). This suggested that salt curingmight have

increased the complexity of the relationship between SPAD values

and color features.

Quadratic regression model: Both sample types showed

improvement, but to different degrees. The improvement in frozen
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samples was small (R2 from 0.768 to 0.757), while the improvement

in salted samples was more noticeable (R2 from 0.553 to 0.584).

This suggested that more complex non-linear relationships might

have existed in salted samples.

Simplified linear regression model: The simplified model for

frozen samples (R2 = 0.770) almost maintained the performance

of the full variable model, while the simplified model for salted

samples (R2 = 0.465) showed a significant performance decline.

This indicated that after salt curing, more color features might have

been needed to accurately predict SPAD values.

Simplified quadratic regression model: Interestingly, this

model performed poorly in frozen samples (R2 = 0.330) but

showed improvement in salted samples (R2 = 0.0941). This again

emphasized that salt curing might have introduced more complex

non-linear relationships that simple quadratic models might not

have been able to capture.

Random forestmodel: In both sample types, the random forest

model performed best, but frozen samples (R2 = 0.900, RMSE =

0.308) outperformed salted samples (R2 = 0.806, RMSE = 0.433).

This indicated that even when considering complex non-linear

relationships, SPAD values in frozen samples were still easier to

predict. Figures 6, 7 illustrate these differences visually.

Overall, SPAD value prediction models for frozen samples

generally outperformed those for salted samples, possibly because

freezing better preserved the original optical properties of wakame.

Salt curing might have altered the structure and pigment

distribution of wakame, increasing the difficulty of prediction.

3.4.3.2 Comparison of thickness prediction models

Linear regression model: Comparing the thickness prediction

models, we observed that themodel for frozen samples (R2 = 0.133,

RMSE = 0.931), although performing poorly, still significantly

outperformed the salted sample model (R2 = 0.065, RMSE =

0.967), as shown in Tables 4, 6. Both models demonstrated that

color features struggled to accurately predict wakame thickness,

but the situation was more severe for salted samples. Notably, G

and a variables were significant in frozen samples, while only the

S variable was barely significant in salted samples. This difference

might have reflected the profound impact of salt curing on

wakame structure, fundamentally altering the relationship between

thickness and color features. The vast difference in RMSE (0.931 vs.

0.121) might have suggested different effects of the two processing

methods on wakame thickness distribution, which required further

research to explain.

3.4.3.3 Comparison of strength prediction models

Linear regression model: The strength prediction models

presented themost interesting contrast. As evident fromTables 4, 6,

the salted sample model (R2 = 0.278, RMSE = 0.849) significantly

outperformed the frozen sample model (R2 = 0.0481, RMSE =

0.976). This finding challenged our intuition, suggesting that salt

curing might have somehow enhanced the connection between

wakame strength and its visual features. In frozen samples, only

G and H variables showed weak significance. In contrast, S

and V variables in salted samples were highly significant and

negatively correlated with strength. This difference might have

reflected how the salt curing process altered wakame structure,

possibly making certain visual features more indicative of its

physical strength.

4 Discussion

4.1 Impact of processing methods on
wakame properties

The impact of processing methods on wakame properties

was significant, with freezing and salt curing producing markedly

different effects on both optical and physical characteristics.

Freezing appeared to be more effective in preserving original

property relationships, particularly in terms of SPAD value

prediction. In contrast, salt curing introduced greater complexity

to the prediction process, likely due to salt-induced changes

in wakame tissue structure and pigment distribution, which

aligns with previous findings on pigment alterations in processed

seaweed products (Torres et al., 2020). The novelty of this

study lay in systematically combining image analysis with physical

and biochemical measurements to assess the distinct effects of

freezing and salting on wakame’s color, thickness, and strength.

Results indicated that freezing better preserved the original color

and structural integrity of wakame, while salting led to a green

shift in color and slight structural reductions, providing scientific

insights into processing choices for food production, further

complementing research on seaweed quality assessment using

biochemical and structural measurements (Zhao et al., 2021).

4.2 Model performance and non-linear
relationships

Non-linear relationships played a crucial role in both

sample types, with their consideration through quadratic

models or random forests improving predictive performance to

varying degrees. Salted samples exhibited stronger non-linear

characteristics, possibly resulting from the complex changes

introduced by the curing process. The applicability of simplified

models varied between processing methods. For frozen samples,

simplified linear models excelled in SPAD value prediction, offering

valuable practical applications. However, these models showed

significant performance decline for salted samples, suggesting

the need for more complex models to accurately capture post-

processing property relationships. This finding supports prior

work emphasizing the necessity of advanced modeling techniques

in agricultural and food science contexts (Guo et al., 2022).

4.3 Prediction challenges across attributes

Prediction difficulty generally increased for salted samples

across various attributes such as SPAD value, thickness, and

strength, with strength prediction being a notable exception.

This underscored the profound impact of processing methods

on wakame properties and highlighted the complexity involved

in developing universal prediction models. The unexpected

superior performance of strength prediction models for
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salted samples compared to frozen samples warranted further

investigation. This finding might have provided insights into

how salt curing altered wakame structure, potentially enhancing

the correlation between certain visual features and physical

strength.

4.4 Model selection and practical
applications

Model selection considerations revealed that while random

forest models performed best for SPAD value prediction in both

sample types, they might have introduced issues of interpretability

and computational complexity. Practical applications might have

required a balance between prediction accuracy and model

simplicity. Simple linear models might have sufficed for frozen

wakame, especially in SPAD value prediction. However, salted

wakame might have required more complex models like random

forests to achieve acceptable prediction accuracy. The development

of universal wakame quality assessment methods had to consider

the impact of processing methods on prediction models. These

findings align with Guo et al. (2022), which highlights the

importance of model selection in addressing non-linear and

complex interactions in agricultural datasets, emphasizing the

adaptability of random forest models to scenarios requiring

nuanced analyzes of highly variable data.

4.5 Comparison with other studies

In this study, we used RGB, Lab*, and HSV color spaces for

predictive analysis, providing a refined perspective on the impact of

processing methods on wakame quality. This approach highlights

the unique capability of color features to predict SPAD values,

especially in frozen wakame samples.

To illustrate the effectiveness of the Random Forest model

in our study, we provide a brief comparison with other food-

related studies that also utilize SPAD value prediction models,

though focused on different subjects. For example, a broader

study on UAV-based SPAD estimation across crops (Wang

et al., 2021) reported that the RF-SVR sigmoid model achieved

an R2 of 0.754 and an RMSE of 1.716. This model effectively

supports large-scale SPAD measurements, demonstrating

Random Forest’s capacity in crop monitoring and management.

Additionally, in a maize study (Guo et al., 2022), a Support

Vector Machine (SVM) model outperformed the Random

Forest model, achieving an R2 of 0.81 and an RMSE of 0.14.

This comparison highlights how different models may perform

better depending on the sample’s unique characteristics. In

a smartphone-based SPAD estimation study using a 1-D

Convolutional Neural Network (CNN; Barman and Saikia,

2024), an R2 of 0.82 and an RMSE of 3.92 were reported,

suggesting CNN as a viable, low-cost alternative for crops like

tea leaves.

In contrast, our study achieved notably higher performance

with the Random Forest model for SPAD prediction in frozen

wakame, with an R2 of 0.905, an adjusted R2 of 0.900, and an

RMSE of 0.308, highlighting its particular suitability for wakame.

For salted samples, the Random Forest model also performed

best, with an R2 of 0.812, an adjusted R2 of 0.806, and an RMSE

of 0.433. While performance was slightly lower than in frozen

samples, it remains competitive, underscoring the complexity

introduced by salt curing and the need for higher-order models in

such cases.

These findings underscore the importance of selecting models

suited to specific characteristics of processed wakame. The Random

Forest model performed well in both frozen and salted wakame,

whereas simpler models were insufficient, particularly in handling

the complexity of salted samples. This demonstrates that higher-

order, nonlinear models are essential to accurately capture property

relationships under different processing conditions, suggesting

areas for further refinement in predictive modeling for wakame

quality assessment.

4.6 Future research directions and study
limitations

Future research directions should explore additional factors

influencing SPAD values, thickness, and strength, such as

growth conditions and age. Studies on how salt curing alters

wakame microstructure and optical properties could enhance

our understanding of prediction model differences. Additionally,

incorporating image texture features alongside color features

could provide a more comprehensive understanding of wakame

properties, as texture analysis might capture subtle changes

in tissue structure that color alone cannot. Combining image

analysis with other non-invasive measurement techniques and

developing hybrid or adaptive models capable of accommodating

different processing methods are also promising avenues for

investigation.

Limitations of the study included the relatively small

sample size (180 frozen samples, 300 salted samples), which

might have affected model generalization, the exclusion of

potentially influential factors such as specific wakame species

and environmental conditions, and the primary reliance on color

features, which might have overlooked other important visual or

non-visual characteristics.

5 Conclusion

This study investigated the effects of freezing and salt curing

on wakame property prediction, highlighting the significance of

processing methods in non-invasive quality assessments. Color

features were effective in predicting SPAD values, especially for

frozen samples, while properties like thickness and strength require

further exploration. Salt curing introduced complexities that non-

linear models, such as random forests, effectively addressed,

particularly in strength prediction. These findings underscore the

need for adaptive models to improve prediction accuracy. Future

research should focus on refining models to account for different

processing methods and enhance assessment accuracy, ultimately

contributing to reliable, rapid quality control methods for the
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wakame industry and advancing wakame science in production

and processing.
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