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Global climate change has intensified pressure on China’s agricultural

carbon emissions reduction. This study investigates the impact of agricultural

technological progress on carbon emissions using panel data from 30 Chinese

provinces (2002–2021). The research employs the DEA-Malmquist index to

measure agricultural total factor productivity, the emission factor method to

calculate carbon emissions, and two-tier stochastic frontier models for analysis.

Results reveal that agricultural technological progress exhibits a significant

double-edged e�ect on carbon emission intensity, with a positive e�ect

increasing intensity by 9.01% and a negative e�ect reducing it by 12.18%, resulting

in a net reduction of 3.17%. Di�erent technological types show varying impacts:

mechanical progress increases emission intensity, while resource-saving and

biochemical technologies reduce it. Notable regional heterogeneity exists, with

Southwest, South, Central, Northeast, and Northwest regions showing negative

net e�ects, while North and East China exhibit positive e�ects. The findings

suggest the need for di�erentiated regional policies and targeted agricultural

emission reduction strategies to achieve China’s agricultural “dual carbon” goals.

KEYWORDS

TFP, agricultural technological progress, agricultural carbon emissions, two-tier

stochastic frontier models, carbon intensity

1 Introduction

Global climate change has emerged as one of the most critical challenges facing

humanity in the 21st century. According to research data from the Intergovernmental Panel

on Climate Change (IPCC), global average temperatures continue to rise, extreme weather

events are becoming more frequent, and ecosystems face severe threats. The reduction of

greenhouse gas emissions has become an international consensus (Jha et al., 2023; Stetter

and Sauer, 2022). Among various greenhouse gas emission sources, agricultural activities

contribute a significant proportion to global total emissions (Zhao et al., 2018). Agricultural

carbon emissions not only influence climate change progression but are also intricately

linked to crucial issues such as food security and environmental protection. Agricultural

technological progress serves as a key pathway for reducing agricultural carbon emissions
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and plays a vital role in achieving sustainable agricultural

development. Recent years have witnessed significant advancement

in agricultural technology as the industry faces unprecedented

challenges in food security and sustainability (Smith et al., 2014).

The integration of Internet of Things (IoT) and smart monitoring

systems has transformed traditional farming practices into

precision agriculture (Lavanya et al., 2019). Mobile technologies

and smartphone applications have emerged as crucial tools

for agricultural management and decision-making (Pongnumkul

et al., 2015), while advanced sensing technologies and unmanned

aerial vehicles (UAVs) enable precise monitoring of crop health

and environmental conditions (Wortmann and Flüchter, 2015).

Smart farming technologies are expected to play an increasingly

vital role in achieving sustainable agriculture and food security

(Gorli, 2017). However, the impact mechanism of agricultural

technological progress on agricultural carbon emissions is complex,

involving the interaction ofmultiple factors including technological

innovation, economic benefits, and environmental effects. This

study conducts empirical analysis to thoroughly examine the

relationship between agricultural technological progress and

agricultural carbon emissions. The findings hold significant

theoretical value and practical implications for formulating

precise emission reduction policies and promoting agricultural

green transformation. Currently, most scholars believe that

agricultural technological progress has had a positive effect

on reducing agricultural carbon emissions (Cillis et al., 2018;

Koondhar et al., 2021; Shan et al., 2022; Huang and Zhu,

2022; Liu et al., 2023; Wang et al., 2024). However, some

researchers have reached opposite conclusions, arguing that

agricultural technological advancements have led to increased

total agricultural carbon emissions (Ismael et al., 2018; Xie

et al., 2021; Anser et al., 2021; Li and Wang, 2023). These

divergent views stem from the different types of agricultural

technological progress examined in these studies. The classification

of agricultural technological progress has evolved significantly

in theoretical research. Early studies primarily adopted a binary

classification approach, distinguishing between embodied and

disembodied technological progress (Shih and Chang, 2009;

Dosi et al., 2021). As research deepened, scholars proposed

various classification frameworks based on different criteria. Some

researchers categorized agricultural technology according to its

application domains, such as cultivation technology, irrigation

technology, and fertilization technology (Lu et al., 2022). Others

classified it based on innovation characteristics, including radical

innovation and incremental innovation in agricultural production

(Acemoglu et al., 2022). Recent studies have increasingly focused on

the environmental impacts of agricultural technological progress,

leading to more sophisticated classification systems. Liu et al.

(2023) analyzed agricultural technical efficiency and technical

progress from the perspective of spatial spillovers and threshold

effects. Wang et al. (2024) developed a classification system based

on carbon emission effects, examining the impact of technical

progress and fiscal support on agricultural carbon emissions.

These classification approaches have provided valuable insights but

often overlook the complex interactions between different types

of technological progress and their comprehensive environmental

impacts, as evidenced by the contrasting findings of Xie et al.

(2021) and Li and Wang (2023). This study adopts a four-category

classification framework (mechanical, structural, resource-saving,

and biochemical technological progress) based on three theoretical

considerations. First, this classification comprehensively covers

the main technological pathways in modern agriculture, reflecting

both traditional mechanization and emerging green technologies.

Second, it allows for clear differentiation of carbon emission effects,

as each category has distinct mechanisms influencing agricultural

carbon emissions. Third, this classification aligns with China’s

agricultural development strategy and policy framework, making

it particularly relevant for policy analysis and recommendations.

This framework builds upon previous research while addressing the

need for a more nuanced understanding of how different types of

agricultural technological progress affect carbon emissions.

These different types of agricultural technological progress can

be classified into two categories based on their impact mechanisms

on agricultural carbon emissions: carbon-promoting and carbon-

inhibiting effects. Mechanical technological progress falls under

the category of carbon-promoting technologies. Agricultural

mechanization effectively replaces traditional manual labor by

introducing various mechanical equipment.While this substitution

reduces labor dependency and costs, it also significantly increases

production efficiency (Gallardo and Sauer, 2018). However, the

production and use of agricultural machinery typically consume

substantial energy and materials, directly leading to increased

carbon emissions (Mantoam et al., 2020). Moreover, the carbon-

promoting effect of agricultural mechanization on agricultural

emissions is persistent over time (Guan et al., 2023). Structural

technological progress refers to changes in production structures

and methods through the introduction of new technologies,

varieties, or management practices to improve agricultural

production efficiency. This type of progress may lead to a shift

towardmonoculture, resulting in excessive utilization of certain soil

nutrients while others accumulate excessively. The imbalanced use

of soil nutrients affects soil fertility balance and microbial activity,

increasing the risk of carbon emissions (Zhang, 2015). Structural

technological progress can also cause land-use changes, leading

to non-agricultural land use and increased carbon emissions

(Fan, 2022). Therefore, structural technological progress is also

considered a carbon-promoting technology.

Resource-saving technological progress refers to the use of

scientific and technological means to more effectively utilize

resources in agricultural production, thereby improving efficiency,

reducing production costs, and minimizing negative environ-

mental impacts. Precision fertilization technology accurately

determines crop nutrient requirements, reducing fertilizer use

and improving nutrient utilization efficiency while decreasing

greenhouse gas emissions (Zhang et al., 2023; Xia et al., 2017).

Yrjälä et al. (2022) explored the role of agricultural waste as a

resource in the circular economy and carbon reduction, identifying

biochar production through biomass pyrolysis as a highly feasible

method. Additionally, research has found that the application

and promotion of efficient, low-carbon irrigation technologies can

significantly reduce energy consumption and carbon emissions

(Qin et al., 2024). Biochemical technological progress focuses on

utilizing biological and chemical knowledge and techniques to

play a crucial role in reducing carbon emissions. Bachleitner et al.
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(2023) found that converting carbon dioxide and its derived carbon

substrates into valuable compounds through microbial processes

can contribute to carbon neutrality and sustainable development.

Innovation and improvement in chemical fertilizers have great

potential for reducing greenhouse gases. Gao and Cabrera

Serrenho (2023) predicted that by improving fertilizer production

technologies and optimizing application methods, fertilizer-related

carbon emissions could be reduced by approximately 80% by 2050.

To explore the relationship between agricultural technological

progress and carbon emissions, existing literature has employed a

variety of econometric methods and models. Some scholars have

used double fixed-effects models, endogenous technology models,

autoregressive distributed lag models, and granger causality test

to investigate the directional impact of agricultural technological

progress on carbon emissions (Liu et al., 2023; Gerlagh, 2007;

Koondhar et al., 2021; Ismael et al., 2018). Others have examined

the non-linear relationship between the two using threshold

effect models (Liu et al., 2023). Additionally, some researchers

have explored spatial effects through spatial Durbin models

(Wang et al., 2024). However, these methods fall short in

simultaneously measuring the positive and negative effects of

agricultural technological progress on carbon emissions, i.e., the

bidirectional impact. To address this gap, the two-tier stochastic

frontier (2TSF) model emerges as a promising tool. This model

was proposed by Kumbhakar and Parmeter (2009), which allows for

the estimation of two interdependent stochastic frontier functions

simultaneously. In recent years, it has been applied to various

economic issues, including auctions (Verteramo Chiu et al., 2022),

bargaining processes (Xu et al., 2021), and investment efficiency

analyses (Xie and Li, 2018). Notably, it has been used to examine

the bidirectional impact of China’s outward direct investment

on carbon emissions (Wang et al., 2023). The 2TSF model is

particularly well-suited for analyzing the bidirectional effects of

agricultural technological progress on carbon emissions. Therefore,

it can simultaneously estimate how technological advancements

influence emission levels and how emission constraints affect

technological adoption and development in agriculture.

In summary, scholars have investigated the impact of

agricultural production activities on carbon emissions from

multiple perspectives, establishing a solid foundation for

understanding the mechanisms and characteristics of agricultural

carbon emissions. However, as research has deepened, some

limitations in the existing literature have become apparent.

Firstly, there is no consensus on the impact of agricultural

technological progress on carbon emissions. Some studies suggest

that technological advancements can reduce emissions, while

others reach opposite conclusions. This discrepancy reflects the

potentially complex relationship between agricultural technological

progress and carbon emissions. Secondly, existing research often

focuses on single technologies or specific aspects, lacking a

systematic analysis of the relationship between agricultural

technological progress and carbon emissions. Agricultural

production involves multiple stages, and different types of

technological advancements may have varied or even opposing

effects on carbon emissions. Thirdly, few studies have quantitatively

measured the bidirectional impact of agricultural technological

progress on carbon emissions. Most research focuses on overall

effects, neglecting the potential dual role of technological progress

in both promoting and inhibiting carbon emissions. Lastly,

there is insufficient research on the regional heterogeneity of the

impact of agricultural technological progress on carbon emissions.

Given China’s vast territory and significant regional differences in

natural conditions and economic development levels, the carbon

emission effects of technological progress may vary considerably

across regions.

Based on these research gaps, this study makes several

important contributions to the existing literature. First, this

study establishes a comprehensive theoretical framework by

categorizing agricultural technological progress into four types:

mechanical, structural, resource-saving, and biochemical,

providing a systematic foundation for understanding its diverse

impacts on agricultural carbon emissions. Second, this study

innovatively investigates and quantifies the impact of agricultural

technological progress on agricultural carbon emissions from both

carbon-promoting and carbon-suppressing perspectives. Third,

the empirical analysis reveals significant regional heterogeneity in

the impact of agricultural technological progress on agricultural

carbon emissions. Overall, China shows a “strong South, weak

North” pattern, with the Southwest region displaying unique “dual

optimal” characteristics. Finally, based on the multidimensional

impacts of technological progress and regional heterogeneity

characteristics, this study proposes a differentiated policy

recommendation framework, providing theoretical basis and

practical guidance for formulating precise regional agricultural

emission reduction policies.

The remainder of this paper is structured as follows: Section

2 introduces the data sources and variable composition; Section

3 presents the research methodology, constructing the 2TSF

model; Section 4 presents the empirical results and analysis,

including the overall effect of agricultural technological progress

on carbon emissions, differentiated impacts of various types

of technological progress, regional heterogeneity analysis, and

discussion of influencing factors; Section 5 concludes the paper

with main research findings, policy recommendations, limitations,

and future research directions.

2 The data

This study utilizes panel data from 30 provincial-level regions

in China spanning from 2002 to 2021. The primary data

sources include the China Statistical Yearbook (2002–2021), China

Rural Statistical Yearbook (2002–2021), China Population and

Employment Statistical Yearbook (2002–2021), National Bureau of

Statistics of China (2002–2021), and the Wind database. Missing

data were supplemented using provincial statistical yearbooks.

2.1 Agricultural carbon emission intensity

The calculation of agricultural carbon emissions (C) primarily

employs three methods: the emission factor method, model

simulationmethod, and fieldmeasurement method. Each approach

has its own scope of application, advantages, and disadvantages
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TABLE 1 Agricultural carbon emission factors and reference sources.

Carbon
source

Carbon
emission
factors

Reference sources

Chemical fertilizer 0.859 kg/kg Oak Ridge National Laboratory,
USA

Agrochemical 4.934 kg/kg

Agricultural film 5.180 kg/kg Institute of Agricultural Resources
and Ecological Environment,
Nanjing University

Agricultural diesel 0.5927 kg/kg IPCC (2006) United Nations
Intergovernmental Panel on
Climate Change

Agricultural sown
area

312.6 kg/hm2 College of Biology and Technology,
China Agricultural University

Irrigated
agricultural area

266.48 kg/hm2 Duan et al., 2011

(Hu et al., 2023). The model simulation method requires

extensive parameter inputs and is primarily utilized for simulating

carbon emissions within ecological systems. While the field

measurement method yields precise results, its application is

confined to microscopic emission sources due to cost constraints.

In comparison, the emission factor method offers greater data

accessibility and proves more suitable for the macro-level emission

sources selected in this study (Chen et al., 2024; Lauk et al., 2024).

This method multiplies the activity level data of agricultural carbon

emission sources by their respective emission coefficients to obtain

the emissions of various greenhouse gases in the agricultural sector.

These are then summed to derive the total carbon emissions. The

specific calculation formula is as follows:

Cit =
∑

Tnit ∗ σ
n

(1)

where Cit represents the total agricultural carbon emissions of

province i in year t; Tnit denotes the activity level of the nth carbon

emission source in province i in year t; and σn is the carbon

emission coefficient for the nth carbon emission source. Based

on existing research, the carbon emission coefficients for various

input factors are shown in Table 1. It is important to note that

different greenhouse gases have varying global warming potentials.

To ensure consistency in results, this study converts all greenhouse

gases to standard carbon dioxide equivalents. According to the

IPCC Fourth Assessment Report, the conversion factors for carbon,

methane, and nitrous oxide are 44/12, 25, and 298, respectively.

To mitigate the impact of agricultural economic growth on

carbon emission data, it is necessary to further measure the carbon

emission intensity per unit of agricultural gross domestic product.

This study employs the Agricultural Carbon Emission Intensity

(CI) index, which represents the carbon emissions produced per

10,000 yuan of agricultural GDP (tons/10,000 yuan). A higher index

value indicates greater carbon emission intensity in agricultural

production, and vice versa. The calculation formula is as follows:

CIit = Cit/GDPit (2)

where CIit is the agricultural carbon emission intensity of province

i in year t, and GDPit is the agricultural gross domestic product of

province i in year t.

2.2 Total factor productivity in agriculture

This study employs a broad definition of agricultural

technological progress, following Zhang et al. (2023), using

Agricultural Total Factor Productivity (ATFP) as a proxy indicator.

ATFP is measured and decomposed using Data Envelopment

Analysis (DEA) and the Malmquist index method. DEA, first

proposed by Charnes et al. (1978), is a non-parametric method

that uses linear programming to evaluate the efficiency of

decision-making units of the same type. To analyze inter-

temporal consumption changes, Malmquist (1953) constructed a

distance function and introduced the Malmquist index concept.

Fare et al. (1994) further developed the Malmquist index and

effectively combined it with DEA theory. Subsequently, the DEA-

Malmquist index has become an important tool for measuring

production efficiency. The Malmquist index can be decomposed

into two components: effch and tech. Effch represents efficiency

change, reflecting the distance between decision-making units

and the current production frontier. It is closely related to

efficient resource utilization and optimal resource allocation. Tech

represents technological change, capturing the movement of the

production frontier from period t to t+1. It primarily stems from

technological advancements brought about by new knowledge,

skills, organizational structures, and innovations. Furthermore,

when considering variable returns to scale, efficiency change (effch)

can be further decomposed into scale efficiency change (sech) and

pure efficiency change (pech).

For the input-output indicators, this study employs agricultural

gross output value (100 million yuan) as the output measure,

deflated to 2002 prices to eliminate the impact of price factors.

Input indicators are selected from four aspects: agricultural labor

input, agricultural machinery input, fertilizer input, and land input.

These are represented by the number of employees in the primary

industry (10,000 people), total power of agricultural machinery

(10,000 kilowatts), pure amount of fertilizer (10,000 tons), and total

sown area of crops (10,000 hectares), respectively. Finally, the ATFP

panel data for 30 Chinese provinces from 2002 to 2021 is calculated

and decomposed using DEAP2.1 software.

2.3 Covariate

This study employs the two-tier stochastic frontier models

to disentangle the positive and negative effects of agricultural

technological progress on carbon emissions. Four types of

technological progress are introduced as covariates: resource-

saving technological progress (RSTP), biochemical technological

progress (BTP), mechanical technological progress (MTP), and

structural technological progress (STP).

Resource-saving technological progress (RSTP) is represented

by water-saving irrigation technology, a typical example of

resource-efficient techniques. The adoption rate of water-saving
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irrigation technology (ratio of water-saving irrigation area to total

crop sowing area) serves as a proxy for RSTP.

Biochemical technological progress (BTP) primarily involves

germplasm innovation and the use of new fertilizers and pesticides.

This study uses the application rate of compound fertilizers

(proportion of compound fertilizer application to total fertilizer

application) as a proxy for BTP.

Mechanical technological progress (MTP) is influenced by both

per-machine carbon emissions and the number of agricultural

machines. Considering the ongoing increase in both the variety and

total number of agricultural machinery, this study uses the total

power of agricultural machinery per unit area of cultivated land as

a measurement indicator for MTP.

Structural technological progress (STP) is represented by the

proportion of agriculture within the primary industry, calculated

as the ratio of agricultural output value to the total output value of

agriculture, forestry, animal husbandry, and fishery.

2.4 Control variables

To systematically analyze the dual effects of agricultural

technological progress on carbon emissions, it is necessary

to control for other influencing factors. Based on existing

research, this study selects control variables from three aspects:

agricultural production conditions, government support, and rural

human capital.

Agricultural Production Conditions: (1) Agricultural Economic

Development Level (ey): Measured by per capita agricultural

GDP. Improved agricultural economic development typically leads

to enhanced production efficiency, potentially affecting carbon

emissions through optimized resource allocation and increased

crop yields (Zang et al., 2022). (2) Agricultural Land Management

Scale (sl): Calculated as the ratio of crop sowing area to the number

of primary industry employees. The development of land transfer

markets has enabled large-scale farming, contributing to reduced

production costs and green agricultural development (Ma et al.,

2023). (3) Total agricultural machinery power (mp): Represented

by the total power of agricultural machinery (10,000 kilowatts) in

each province. This factor is both an indicator of technological

progress and directly related to carbon emissions (Guan et al.,

2023). To mitigate heteroscedasticity, a logarithmic form (lnmp)

is used. (4) Agricultural Disaster Impact (ad): Measured by the

ratio of disaster-affected agricultural area to total crop sowing area.

Kirat et al. (2024) found that climate-induced natural disasters

significantly impact energy consumption and carbon emissions. (5)

Agricultural External Dependence (ed): Represented by the ratio

of total agricultural product import and export value to primary

industry added value. Gao et al. (2021) noted that foreign trade

significantly promotes carbon emissions, with effects varying across

regions and time periods. Import and export data are sourced

from the Ministry of Commerce’s monthly statistical reports,

converted from USD to CNY using year-end exchange rates from

the Wind database.

Government Support: (6) Agricultural Fiscal Support (fs):

Measured by the ratio of agricultural expenditure to total

government fiscal expenditure. Guo et al. (2022) found that fiscal

support significantly reduces agricultural carbon emissions. For

data after 2006, expenditure on agriculture, forestry, and water

affairs under public finance is used as a proxy.

Rural Human Capital Conditions: (7) Human Capital Level

(hc): The improvement of human capital, such as the educational

level of agricultural producers, enables farmers to make better

choices in agricultural production tools and methods, serving as

an important pathway to promote green agricultural production

and reduce agricultural carbon emissions (Shabani, 2024). This

study uses the average education level in each province to measure

this indicator. The population aged 6 and above is categorized by

education level into primary school, junior high school, high school

and vocational school, and college and above. The average years

of education for each province are calculated by multiplying the

proportion of each category by its corresponding years of education

(assigned values of 6, 9, 12, and 15 years, respectively), summing

these products, and then dividing by the total population aged 6 and

above. (8) Urbanization Level (ur): Measured by the ratio of urban

population to total population. Higher urbanization levels typically

indicate a more modernized economic structure, potentially

facilitating the development of green ecological agriculture and

reducing carbon emissions (Prastiyo et al., 2020). (9) Rural Per

Capita Income Level (lnpi): Represented by the logarithm of annual

per capita net income of rural residents. Increased income may

have dual effects on agricultural carbon emissions. It could lead to

higher use of agricultural inputs, increasing emissions, or enable

the adoption of more advanced, efficient agricultural practices,

potentially reducing emissions (Chang et al., 2022).

The descriptive statistics for all variables used in this study are

presented in Table 2.

3 Methodology

Following Kumbhakar and Parmeter (2009) and Papadopoulos

(2021), a framework of the 2TSFmodel is constructed to analyze the

impact of agricultural technological progress on agricultural carbon

emission intensity. The agricultural carbon emission intensity can

be expressed as:

CI = CI + η(CI − CI) (3)

where CI represents the actual level of agricultural carbon emission

intensity. Influenced by agricultural technological progress, the

value of CI may range from a lower limit CI to an upper limit

CI. Agricultural technological progress can affect carbon emission

intensity in two opposing directions: a positive effect and a negative

effect. The parameter η (0 ≤ η ≤ 1) is an unobservable coefficient

that measures the relative impact of these two effects of agricultural

technological progress on carbon emission intensity. When η =1,

CI = CI, indicating that carbon emission intensity reaches its

maximum value, suggesting that agricultural technological progress

only has positive effect on agricultural carbon emission intensity.

Conversely, when η = 0, CI = CI, signifying that carbon emission

intensity reaches its minimum value, implying that agricultural

technological progress only has negative effect on agricultural

carbon emission intensity.
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TABLE 2 Description of variables and descriptive statistics.

Variables Variable
symbol

Variable declaration Mean S.D. Minimum Maximum

Explained
variable

Agricultural Carbon Emission
Intensity

CI ln (Agricultural Carbon Emission
Intensity)

5.54 0.504 3.751 6.737

explaining
variable

Agricultural technological progress ATFP Total factor productivity in agriculture 1.055 0.078 0.839 1.643

Covariate Resource-saving technological
progress

RSTP The adoption rate of water-saving
irrigation technology

0.238 0.254 0.0236 2.393

Biochemical technological progress BTP The application rate of compound
fertilizers

0.334 0.103 0.107 0.73

Mechanical technological progress MTP The total power of agricultural
machinery per unit area of cultivated
land

0.058 0.026 0.015 0.143

Structural technological progress STP The proportion of agriculture within the
primary industry

0.52 0.085 0.339 0.74

Control
variables

Agricultural Economic
Development Level

ey Agricultural GDP per capita by province 1.249 1.017 0.174 9.525

Agricultural Land Management
Scale

sl Cultivated land area per capita by
province

0.613 0.331 0.057 2.49

Total agricultural machinery power lnmp ln (Total Power of Agricultural
Machinery by province)

3.271 0.472 1.973 4.126

Agricultural Disaster Impact ad Disaster-affected agricultural area/Total
crop sowing area

0.209 0.149 0 0.936

Agricultural External Dependence ed Total agricultural product import and
export value/Primary industry added
value

0.756 2.402 0.006 21.791

Agricultural Fiscal Support fs Agricultural expenditure/Total
government fiscal expenditure

0.102 0.037 0.021 0.27

Human Capital Level hc The average years of education in each
province

7.501 0.736 5.149 9.91

Urbanization Level ur The ratio of urban population to total
population

0.537 0.148 0.243 0.896

Rural Per Capita Income Level lnpi ln (The logarithm of annual per capita
net income of rural residents)

3.861 0.312 3.816 4.586

To better identify the positive and negative effects of

agricultural technological progress on carbon emission intensity,

the Equation 3 can be rewritten as:

CI = µ(x)+ η(CI − µ(x))− (1− η)(µ(x)− CI) (4)

where µ(x) represents the baseline level of agricultural carbon

emission intensity at a specific economic development level,

without considering agricultural technological progress. The

positive effect (PE) and negative effect (RE) of agricultural

technological progress on carbon emission intensity can be

expressed as:

PE = η(CI − µ(x)) (5)

RE = (1− η)(µ(x)− CI) (6)

Consequently, the net effect (NE) of agricultural technological

progress on carbon emission intensity can be represented as:

NE = PE− RE = η(CI − µ(x))− (1− η)(µ(x)− CI) (7)

Under this framework of carbon emission, the 2TSF model

is used to estimate the double-edged sword effect of agricultural

technological progress on carbon emission intensity, and can be

expressed as:

CIit = x′itβ + εit = x′itβ + wit − uit + vit (8)

εit = wit − uit + vit (9)

where CIit represents the actual agricultural carbon emission

intensity for province i in year t; x′it include ATP, ey, sl, lnmp,

ad, ed, fs, hc, ur, lnpi; β is the parameter to be estimated.

wit = η(CI − µ(x)) ≥ 0 represents the positive effect of

agricultural technological progress on carbon emission intensity.

uit = (1− η)
(

µ (x) − CI
)

≥ 0 represents the negative effect of

agricultural technological progress on carbon emission intensity.

wit and uit are independently distributed, following exponential

distributions: wit ∼ i.i.d.Exp(σw) and uit ∼ i.i.d.Exp(σu). vit is a

randomdisturbance term following a standard normal distribution:

vit ∼ i.i.d.N(0, σ 2
v ).
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Based on the above settings, the conditional expectation of wit

and uit can be derived as respectively:

E(wit|εit) =
1

λ
+

σv
[

∅(−hit)+ hit8(hit)
]

8(hit)+ exp(ait − bit)8(cit)
(10)

E(uit|εit) =
1

λ
+

exp(ait − bit)σv
[

∅(−cit)+ cit8(cit)
]

8(hit)+ exp(ait − bit)8(cit)
(11)

In this model: λ = 1
σu

+ 1
σw
, ait =

σ 2
v

2σ 2
u
+

εit
σu
, bit =

σ 2
v

2σ 2
w
−

εit
σw
,

cit = −
εit
σv

−
σv
σu
, hit =

εit
σv

−
σv
σw

. 8(·) and ∅(·) denote the

cumulative distribution function and probability density function

of the standard normal distribution, respectively.

Given that the dependent variable is in logarithmic

form, the following equations are used to obtain accurate

percentage indicators of agricultural carbon intensity increase

or decrease due to the positive or negative effects of agricultural

technological progress:

E(1− e−wit |εit)

= 1−
λ

1+ λ

[

8(cit)+ exp(bit − ait)exp(
σ 2
v
2 − σvhit)8(hit − σv)

]

exp(bit − ait)
[

8(hit)+ exp(ait − bit)8(cit)
]

(12)

E(1− e−uit |εit)

= 1−
λ

1+ λ

[

8(hit)+ exp(ait − bit)exp(
σ 2
v
2 − σvcit)8(cit − σv)

]

8(hit)+ exp(ait − bit)8(cit)

(13)

The net effect (NE) of agricultural technological progress can

then be expressed as:

NEit = PEit − REit = E(1− e−wit |εit)− E(1− e−uit |εit) (14)

A positive net effect indicates that agricultural technological

progress increases carbon emission intensity, while a negative net

effect suggests a decrease.

Based on the research of Parmeter (2018) and Liu et al. (2019),

this study incorporates covariates to explain the one-sided error

terms wit and uit . As wit and uit follow exponential distributions,

we can get the following equations:

E(wit|x, zw) = σw exp(z′w,itδw) (15)

E(uit|x, zu) = σuexp(z
′
u,itδu) (16)

where zw and zu are covariates affecting wit and uit , and δw and σu

are their respective estimated parameters. zw includes the covariates

TGTP and SGTP, zu includes the covariates AEGTP and BGTP. The

parameters δw and σu set the scale range for each individual mean,

independent of zw and zu.

4 Empirical results

4.1 Estimation results of the benchmark
regression

To ensure the robustness of our empirical results, we employed

three econometric models: mixed effect model, two-way fixed

TABLE 3 Estimation results of the benchmark regression.

Variables Mixed e�ect
model

Two-way
fixed e�ects

model

Two-way
random

e�ects model

cons 10.7030∗∗∗ (0.3265) 13.7872∗∗∗ (1.1064) 10.5717∗∗∗ (0.2066)

ATFP −0.4171∗∗∗ (0.1436) −0.2020∗∗∗ (0.0696) −0.2508∗∗∗ (0.0676)

ey −0.0265 (0.0276) −0.1369∗∗∗ (0.0159) −0.1388∗∗∗ (0.0154)

sl 0.2101∗∗∗ (0.0461) 0.2244∗∗∗ (0.0535) 0.1444∗∗∗ (0.0485)

lnmp 0.1468∗∗∗ (0.0408) −0.0533 (0.0640) −0.1216∗∗ (0.0541)

ad 0.3810∗∗∗ (0.0905) 0.1082∗∗ (0.0450) 0.1295∗∗∗ (0.0465)

ed 0.0363∗∗∗ (0.0091) 0.0286∗∗∗ (0.0059) 0.0367∗∗∗ (0.0058)

fs −2.0750∗∗∗ (0.5075) −0.9574∗∗∗ (0.2679) −0.7779∗∗∗ (0.2645)

hc 0.0209 (0.0234) −0.0359 (0.0261) −0.0100 (0.0237)

ur 0.7847∗∗∗ (0.2198) −1.8202∗∗∗ (0.2536) −1.3518∗∗∗ (0.2155)

lnpi −1.4950∗∗∗ (0.1153) −1.6900∗∗∗ (0.3102) −0.8962∗∗∗ (0.0837)

∗∗∗ , ∗∗ indicate significance at the 1% and 5% levels, respectively.

effects model, and two-way random effects model. The estimation

results are presented in Table 3. Across all threemodels, agricultural

technological progress (ATFP) demonstrates a significant negative

correlation with agricultural carbon emission intensity at the

1% significance level. Specifically, the coefficients of ATFP are

−0.4171, −0.2020, and −0.2508 respectively, indicating that

technological advancement in agriculture consistently contributes

to reducing carbon emission intensity. Among the control

variables, several factors show significant effects across all models.

The agricultural land management scale (sl) exhibits positive

coefficients, suggesting that larger-scale agricultural operations

tend to increase carbon emission intensity. Agricultural disaster

impact (ad) and external dependence (ed) both show positive and

significant effects, implying that natural disasters and international

trade integration may increase carbon emissions. Conversely,

fiscal support for agriculture (fs) and rural residents’ income

(lnpi) demonstrate significant negative effects, indicating that both

government support and increased rural income contribute to

reducing agricultural carbon emissions. Moreover, the consistency

of coefficient signs and significance levels across all three models

supports the robustness of our findings.

4.2 Robustness test and endogeneity test

4.2.1 Robustness test
To further validate the reliability of the empirical results,

this study employed two distinct robustness tests. The first

test involved removing provinces with relatively low carbon

emissions from the sample to examine whether the findings were

potentially influenced by regional heterogeneity. This approach

helps ensure that the results are not driven by outliers or specific

regional characteristics. The second test divided the study period

into two sub-periods: 2002–2011 and 2012–2021. This temporal

division allows investigation of whether the relationship between

agricultural technological progress and carbon emissions remains
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TABLE 4 Robustness test.

Variables Model (1) Model (2) Model (3)

Removing
low emission
province

Period 1
(2002–2011)

Period 1
(2012–2021)

cons 12.0352∗∗∗

(1.0707)
8.2003∗∗∗

(1.0706)
27.4692∗∗∗

(2.6898)

TFP −0.2175∗∗

(0.0791)
−0.3800∗∗∗

(0.0776)
−0.1236∗∗

(0.0671)

ey −0.1258∗∗∗

(0.0252)
−0.0905∗∗∗

(0.0239)
−0.0823∗∗∗

(0.0188)

sl 0.2741∗∗∗

(0.0781)
−0.0032
(0.1015)

0.2204∗∗∗

(0.0561)

lnmp 0.0990
(0.0719)

0.3117∗∗∗

(0.1093)
0.0310
(0.0859)

ad 0.0871∗

(0.0464)
0.0757∗∗

(0.0365)
−0.0044
(0.0625)

ed 0.0310∗∗∗

(0.0107)
0.0274∗∗

(0.0126)
0.0401∗∗∗

(0.0067)

fs −0.8993∗∗∗

(0.3031)
0.2123
(0.3792)

−1.7341∗∗∗

(0.2630)

hc −0.0354
(0.0265)

−0.0110
(0.0284)

−0.0242
(0.0312)

ur −1.0284∗∗∗

(0.3657)
−2.1180∗∗∗

(0.3389)
−0.0079
(0.5397)

lnpi −1.5294∗∗∗

(0.3504)
−0.5024
(0.3296)

−5.4764∗∗∗

(0.7308)

Individual-
fixed effect

Yes Yes Yes

Time-fixed
effect

Yes Yes Yes

R2 0.960 0.950 0.956

∗∗∗ , ∗∗ , ∗ indicate significance at the 1%, 5%, and 10% levels, respectively.

TABLE 5 Endogeneity test.

Variables Lag
substitution

model

2SLS Dynamic
GMM

Lag (lnCI, 1) 0.6269∗∗∗ (0.0486)

ATFP/
ATFP(−1)

−0.0960∗∗ (0.0440) −0.1784∗∗∗ (0.0686) −0.4406∗∗∗ (0.0601)

ey −0.1396∗∗ (0.0565) −0.1385∗∗∗ (0.0159) −0.0434∗∗∗ (0.0119)

sl 0.2131 (0.1359) 0.2261∗∗∗ (0.0538) 0.1886∗∗ (0.0817)

lnmp −0.0287 (0.1507) −0.0369 (0.0655) −0.0153 (0.0962)

ad 0.0578 (0.0402) 0.0679 (0.0460) 0.0856∗∗∗ (0.0280)

ed 0.0307∗∗ (0.0147) 0.0294∗∗∗ (0.0059) 0.0068 (0.0069)

fs −1.0568 (0.7433) −1.0113∗∗∗ (0.2683) −0.1984 (0.3452)

hc −0.0320 (0.0542) −0.0260 (0.0272) −0.0218 (0.0228)

ur −1.7514∗ (0.9659) −1.7717∗∗∗ (0.2738) −0.6964 (0.4499)

lnpi −2.0747∗∗∗ (0.6257) −2.0005∗∗∗ (0.3299) −0.8633∗∗(0.3395)

∗∗∗ , ∗∗ , ∗ indicate significance at the 1%, 5%, and 10% levels, respectively.

stable across different time periods, particularly considering China’s

significant policy changes and economic development during these

two decades. According to Table 4, the results from both robustness

tests strongly support themain findings.When excluding provinces

with low carbon emissions, the regression results maintained their

statistical significance and directional consistency with the baseline

model. The coefficients of key variables, such as agricultural

fiscal support (fs), urbanization level (ur), and rural per capita

income (lnpi), retained their signs and significance levels, with

only minor variations in magnitude. This consistency suggests that

the findings are not driven by specific regional characteristics or

outliers in the data. The temporal analysis revealed interesting

patterns while confirming the overall stability of the results. During

both sub-periods (2002–2011 and 2012–2021), the fundamental

relationship between agricultural technological progress and

carbon emissions remained consistent with the main findings.

However, a slightly stronger effect was observed in the 2012–

2021 period, possibly reflecting the enhanced effectiveness of

China’s environmental policies and technological advancement in

recent years. This temporal stability provides additional confidence

in the robustness of the conclusions and suggests that the

findings are not sensitive to specific time period selections. These

comprehensive robustness checks demonstrate that the empirical

results are stable across different sample specifications and time

periods, thereby strengthening the reliability and generalizability

of the findings. The consistency of results across these alternative

specifications provides strong evidence that the conclusions about

the relationship between agricultural technological progress and

carbon emissions are robust and reliable.

4.2.2 Endogeneity test
To verify the robustness of the research findings, this study

conducted rigorous tests for potential endogeneity issues in the

model. The relationship between agricultural technological

progress and carbon emissions may exhibit bidirectional

causality. Agricultural technology progress affects carbon emission

intensity, while carbon emission constraints may conversely drive

agricultural technology progress. Additionally, omitted variables

and measurement errors could also lead to endogeneity problems.

This study employed three methods for robustness testing:

one-period lag substitution, two-stage least squares (2SLS) with

instrumental variables, and dynamic panel GMM estimation. In the

one-period lag substitution model, the coefficient of agricultural

technological progress was −0.0960, significant at the 10% level,

indicating a significant negative impact on carbon emission

intensity. For the 2SLS estimation, the lagged terms of agricultural

technological progress were selected as instrumental variables.

The results showed that the impact coefficient of agricultural

technological progress on carbon emission intensity was −0.1784,

significant at the 1% level. This aligned with the direction of the

results in Table 5, with a stronger magnitude of influence. In the

dynamic GMM estimation, the lagged dependent variable served

as an instrumental variable, controlling for two-way fixed effects.

The Sargan test p-value of 1 indicated appropriate instrumental
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TABLE 6 Estimation results of the two-tier stochastic frontier models.

Variables Model
(1)

Model
(2)

Model
(3)

Model
(4)

2TSF 2TSF-u 2TSF-w 2TSF-uw

ATFP −0.3821∗∗∗

(0.1314)
−0.4006∗∗∗

(0.1317)
−0.3777∗∗∗

(0.1308)
−0.4018∗∗∗

(0.1303)

ey −0.0407∗

(0.0235)
−0.0096
(0.0245)

−0.0430∗

(0.0242)
−0.0034
(0.0224)

sl 0.5117∗∗∗

(0.0497)
0.4052∗∗∗

(0.0133)
0.5202∗∗∗

(0.0504)
0.4104∗∗∗

(0.0129)

lnmp −0.0493
(0.04860)

0.0293
(0.0289)

−0.0683
(0.0479)

0.0137∗∗∗

(0.0026)

ad 0.2130∗∗∗

(0,0777)
0.2230∗∗∗

(0.0793)
0.2060∗∗∗

(0.0786)
0.1828∗∗

(0.0783)

ed 0.0391∗∗∗

(0.0081)
0.0288∗∗∗

(0.0074)
0.0399∗∗∗

(0.0081)
0.0288∗∗∗

(0.0073)

fs −0.9656 ∗∗

(0.4673)
−0.6908
(0.4259)

−1.0283∗

(0.5275)
−0.5984∗

(0.3341)

hc −0.1145∗∗∗

(0.0228)
−0.1101∗∗∗

(0.0179)
−0.1258∗∗∗

(0.0234)
−0.1135∗∗∗

(0.0094)

ur 0.0663
(0.2293)

0.3574∗

(0.2037)
0.0156
(0.2283)

0.3643∗∗

(0.1684)

lnpi −1.2008∗∗∗

(0.1293)
−1.4295∗∗∗

(0.1053)
−1.1521∗∗∗

(0.1429)
−1.4781∗∗∗

(0.0501)

MTP 19.9622∗∗∗

(2.0517)
7.3320∗∗∗

(2.0207)

STP 6.0897∗

(3.7675)
0.5684
(0.7195)

σw 0.0050
(0.2708)

0.1096∗∗∗

(0.0073)
0.0002
(0.0010)

0.0861∗∗

(0.0360)

RSTP −1.6218∗∗∗

(0.3380)
−1.6304∗∗∗

(0.3217)

BTP −0.0377
(0.2848)

−0.1545∗∗∗

(0.0275)

σu 0.1827∗∗∗

(0.0216)
0.1859∗∗∗

(0.0000)
0.1891∗∗∗

(0.0202)
0.2000∗∗∗

(0.0000)

σv 0.1471∗∗∗

(0.0180)
0.1385
(0.1011)

0.1391∗∗∗

(0.0146)
0.1378∗

(0.0803)

cons 11.3933∗∗∗

(0.4458)
11.6407∗∗∗

(0.3642)
11.3980∗∗∗

(0.3741)
11.9222∗∗∗

(0.3616)

Individual-
fixed
effect

Yes Yes Yes Yes

Time-fixed
effect

Yes Yes Yes Yes

R-squared - - - -

Log-
likelihood

52.4876 57.1923 57.1923 61.3449

AIC −34.9751 −40.3845 −37.8575 −44.6898

∗∗∗ , ∗∗ , ∗ indicate significance at the 1%, 5%, and 10% levels, respectively.

variable selection. The p-values for first-order and second-

order autocorrelation tests were 0.1987 and 0.6173, respectively,

suggesting no autocorrelation issues. The estimation revealed that

agricultural technological progress had a coefficient of −0.4406

on carbon emission intensity, significant at the 1% level. The

lagged dependent variable coefficient of 0.6269 (significant at 1%)

demonstrated significant dynamic persistence in carbon emission

intensity. Regarding control variables, the agricultural economic

development level (ey) showed significant negative coefficients

across all three models: −0.1396 (5%), −0.1385 (1%), and−0.0434

(1%). Agricultural land operation scale (sl) was insignificant in the

lag substitution model but significantly positive in both 2SLS (1%)

and GMM (10%) models. Agricultural external dependence (ed)

showed significant positive effects in the lag substitution and 2SLS

models but was insignificant in the GMMmodel. The findings from

these three methods consistently demonstrate that the negative

impact of agricultural technological progress on carbon emission

intensity remains significant after controlling for endogeneity,

further confirming the reliability of this study’s conclusions.

4.3 Estimation results of the two-tier
stochastic frontier model

Table 6 presents the estimation results of the two-tier

stochastic frontier model. Models (1)-(4) are four different 2TSF

models that are used to examine the double-edged effect of

agricultural technological progress on carbon emissions. Model

(1) is a traditional 2TSF model without covariates, including only

conventional agricultural input-output data. Model (2) introduces

resource-saving (RSTP) and biochemical (BTP) technological

progress as covariates to explain uit, examining their negative effects

on agricultural carbon emission intensity. Model (3) incorporates

mechanical (MTP) and structural (STP) technological progress

as covariates to explain wit, investigating their positive effects

on carbon emission intensity. Model (4) includes all types of

agricultural technological progress to assess their double-edged

effects on carbon emission intensity.

The maximum likelihood function values and AIC results for

Models (1)–(4) indicate that Model (4) has the highest likelihood

value and lowest AIC. Based on model selection criteria, Model

(4) is optimal. Model (4) in Table 6 reveals that the impact of

China’s agricultural technological progress on agricultural carbon

emission intensity is statistically significant at the 1% level, with

a negative regression coefficient. This indicates that agricultural

technological progress has a negative effect on agricultural carbon

emission intensity.

Further analysis of different types of technological progress

shows that mechanical technological progress (MTP) has a

positive coefficient, significant at the 1% level. This suggests

that increased mechanization has led to higher carbon emission

intensity. Conversely, resource-saving (RSTP) and biochemical

(BTP) technological progress have negative coefficients, both

significant at the 1% level, indicating their effectiveness in

reducing carbon emission intensity. These findings demonstrate

that agricultural technological progress exhibits a “double-edged

sword” effect on carbon emission intensity, with both positive and

negative impacts. It is noteworthy that the coefficient for structural

technological progress (STP) is not statistically significant. This

may be due to the complex nature of China’s agricultural structural
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TABLE 7 Double-edged sword e�ect and net e�ect of agricultural

technological progress on agricultural carbon emission intensity in

Chinese provinces.

Formulas Mean S.D. Q1 Q2 Q3

Positive
effect

E(1− e−w|ε) 9.01 4.89 6.06 7.47 9.69

Negative
effect

E(1− e−u|ε) 12.18 8.93 6.51 9.32 14.36

Net effect E(e−u − e−w|ε) −3.17 11.93 −8.25 −1.83 2.14

changes, which do not follow a simple linear development path,

making its impact on agricultural carbon emission intensity

difficult to estimate.

Analysis of control variables provides further insights into

other factors affecting agricultural carbon emissions. All control

variables, except for agricultural economic development level (ey),

are significant at various levels. Agricultural land management

scale (sl), total agricultural machinery power (lnmp), agricultural

disaster rate (ad), agricultural external dependence (ed), and

urbanization level (ur) have significantly positive coefficients,

indicating positive correlations with agricultural carbon emission

intensity. In contrast, fiscal support for agriculture (fs), rural human

capital level (hc), and rural per capita net income (lnpi) have

significantly negative coefficients, suggesting negative correlations

with agricultural carbon emission intensity.

4.4 Double-edged sword e�ect results

Based on the estimation results of model (6) and in conjunction

with Equations 12–14, we calculated the positive, negative, and net

effects of agricultural technological progress on carbon emission

intensity. The results are presented in Table 7. On average, the

positive effect of agricultural technological progress increases

agricultural carbon emission intensity by 9.01%, while the negative

effect reduces it by 12.18%. Consequently, the net effect of

agricultural technological progress leads to an average decrease

of 3.17% in agricultural carbon emission intensity. At different

quantile levels, the net effect of agricultural technological progress

varies. At Q1 and Q2 quantiles, the net effects are negative, at

−8.25% and−1.83% respectively. However, at the Q3 quantile, the

positive effect exceeds the negative effect, resulting in a positive

net effect.

Figure 1 illustrates the temporal changes in the negative,

positive, and net effects of China’s agricultural technological

progress on agricultural carbon emission intensity from 2002 to

2021. Throughout this period, the net effect remained negative,

indicating that the negative effect consistently outweighed the

positive effect, thereby reducing carbon emission intensity. The

absolute value of the net effect showed a general decreasing

trend from 2003 to 2012, followed by an increasing trend from

2012 to 2021. This suggests that the carbon reduction effect

of agricultural technological progress diminished from 2003 to

2012 but strengthened overall from 2012 to 2021. In 2021,

there was a sharp increase in the carbon emission intensity

reduction effect of agricultural technological progress. This may

FIGURE 1

Positive, negative and net e�ects of agricultural technology progress

on agricultural carbon emission intensity in China, 2002–2021.

be attributed to the enhanced innovation and promotion of low-

carbon agricultural technologies following the introduction of the

“dual carbon strategy” in 2020, leading to the application of more

environmentally friendly technologies in agricultural production.

4.5 Heterogeneity analysis

4.5.1 Regional di�erence
Considering the diverse natural conditions and resource

endowments across China, there are significant differences in

agricultural production methods and planting structures among

regions. Based on geographical location, topography, climate

characteristics, and economic development levels, this study

divides China into seven geographical regions: Northeast, East

China, North China, Central China, South China, Southwest,

and Northwest.

As shown in Table 8, several significant patterns emerge in

the regional distribution of agricultural technological progress’s

impact on carbon emissions. The net effects analysis reveals

that the Southwest, South China, Central China, Northeast,

and Northwest regions demonstrate negative effects, indicating

that agricultural technological advancement in these regions

generally contributes to carbon reduction. Conversely, North

China and East China regions exhibit positive effects, suggesting

that technological progress has intensified carbon emissions.

These regional disparities may be attributed to variations in

agricultural development stages and technological application

pathways across regions. The analysis of effect intensity distribution

demonstrates that coastal regions predominantly show positive

effects, while inland areas exhibit more significant negative effects.

A distinct “South-strong, North-weak” pattern is observed, with

southern regions displaying stronger negative emission reduction

effects compared to northern regions. This phenomenon may

be associated with the earlier implementation of agricultural

green transformation and ecological agriculture demonstration

zones in southern regions. The Southwest region exhibits unique

“dual-optimal” characteristics. Its positive effect is merely 6.00%,

the lowest among the seven regions, while its negative effect

reaches 21.14%, the highest among all regions. This effect

combination results in a net effect of −15.14%, making the

Southwest region the most significant area where agricultural
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TABLE 8 E�ects of agricultural technology progress on agricultural

carbon emission intensity in seven geographic regions of China.

Regions PE (%) RE (%) NE (%)

Southwest 6.00 21.14 −15.14

South China 7.16 15.75 −8.59

Central China 7.25 13.28 −6.02

Northeast 10.16 15.45 −5.29

Northwest 9.26 10.55 −1.29

North China 11.19 8.81 2.37

East China 10.10 6.74 3.36

TABLE 9 The e�ect of agricultural technological progress on the intensity

of agricultural carbon emissions (grouped by the scale of agricultural land

management).

Group PE (%) RE (%) NE (%)

Small scale of agricultural land
management

7.51 15.09 −7.56

Medium scale of agricultural land
management

8.96 11.65 −2.69

Large scale of agricultural land
management

10.41 10.13 0.28

FIGURE 2

The net e�ect under di�erent groups of agricultural land

management scales, 2002–2021.

technological progress effectively inhibits carbon emissions.

The mountainous terrain in the Southwest region objectively

limits the application of mechanization-oriented technological

progress due to relatively low agricultural mechanization levels,

thereby suppressing positive effects. Simultaneously, due to the

region’s environmental sensitivity, both government authorities

and farmers demonstrate stronger environmental awareness,

favoring resource-conserving and biochemical technologies, which

promotes negative effects.

4.5.2 The scale of agricultural land management
The scale of agricultural land management significantly

influences land utilization methods and agricultural production

efficiency, thereby affecting the impact of agricultural technological

progress on carbon emission intensity in agriculture. This study

categorizes 30 Chinese provinces into three equal groups based on

their scale of agricultural land management, from small to large,

with each group comprising 10 provinces.

According to Table 9, in provinces with small and medium

scales of agricultural landmanagement, the net effect of agricultural

technological progress on carbon emission intensity is negative.

Agricultural technological advancements have reduced carbon

emission intensity by an average of 7.56% and 2.69% respectively in

these regions. However, in provinces with large-scale agricultural

land management, the net effect is positive. Overall, as the scale

of agricultural land management increases, the positive effect of

technological progress on agricultural carbon emissions intensifies,

while the negative effect diminishes.

Figure 2 illustrates the dynamic evolution of agricultural

technological progress’s net effect on carbon emissions from

the perspective of farmland operation scale. The three scale

groups demonstrate distinct differentiation characteristics, which

can be analyzed from several aspects. From the overall trend

perspective, large-scale and medium-scale groups exhibit relatively

stable patterns with minimal fluctuations and weak carbon

reduction effects. These larger-scale operators tend to adopt highly

mechanized production methods, resulting in substantial positive

effects. Due to their scale and significant initial investments,

these operators often experience path dependency, making it

more challenging to implement technological transitions and

improvements in production methods. The small-scale group

demonstrates notably larger fluctuations in net effects compared

to the other two groups, reflecting higher sensitivity to external

environmental changes. This phenomenon can be attributed

to two primary factors. First, recent agricultural policies have

provided targeted support to small-scale farmers, with government

fiscal support reducing the cost threshold for adopting green

technologies. Second, enhanced environmental awareness and the

widespread promotion of green technologies have made low-

carbon agricultural technologies more accessible and applicable for

small-scale operators. Turning point analysis identifies 2011 as a

crucial temporal node. Prior to 2011, the net effects among the

three scale groups showed relatively minor differences. However,

significant divergence emerged after 2011. This differentiation

trend closely aligns with China’s agricultural policy transformation

period, reflecting the differential impact of policy regulations on

operators of varying scales.

4.5.3 Fiscal support for agriculture
Analysis of data from Table 10 reveals a significant gradient

pattern: the impact of agricultural technological advancement

on carbon emissions varies notably with the intensity of fiscal

support for agriculture. Specifically, in regions with high fiscal

agricultural support, technological progress generates a 7.66%

positive emission effect alongside a 15.64% negative reduction

effect, resulting in a net emission reduction of 7.98%. In contrast,

regions with moderate fiscal support achieve only a 1.97% net

reduction effect, while areas with low fiscal support exhibit negative

net emission reduction effects. This gradient distribution indicates

a significant positive correlation between fiscal agricultural support

intensity and the emission reduction effectiveness of technological
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TABLE 10 The e�ect of agricultural technological progress on the

intensity of agricultural carbon emissions (grouped by the fiscal support

for agriculture).

Group PE (%) RE (%) NE (%)

High fiscal support 7.66 15.64 −7.98

Medium fiscal
support

9.23 11.19 −1.97

Low fiscal support 10.14 9.70 0.45

FIGURE 3

The net e�ect under di�erent groups of fiscal support for

agriculture, 2002–2021.

advancement. The underlying mechanisms may be attributed

to three factors: First, higher fiscal support reduces barriers

for farmers to adopt green, low-carbon technologies, enhancing

their motivation for technological updates. Second, fiscal support

typically integrates with complementary technical extension

services, facilitating effective technology implementation. Third,

adequate fiscal funding enables local governments to provide more

comprehensive infrastructure and technical service systems for

agricultural green transformation.

Temporal analysis of the evolutionary trends in Figure 3

identifies distinctly different development trajectories among

the three groups during 2002–2021. Regions with high fiscal

agricultural support demonstrate the most pronounced dynamic

characteristics, with their net effect curve showing substantial

fluctuations. A notable inflection point emerged after 2011,

marking a significant enhancement in emission reduction effects.

This transition likely correlates with China’s agricultural policy

transformation around 2011, coinciding with the initiation of

the 12th Five-Year Plan, which strengthened policy support for

agricultural green development. In comparison, regions with

moderate and low fiscal support exhibit relatively stable net

effect curves with minimal fluctuations, indicating more consistent

impacts of agricultural technological progress on carbon emissions.

Notably, the disparity between regions with different fiscal support

levels has progressively widened over time. This “Matthew Effect”

suggests the cumulative impact of fiscal support in agricultural

green transformation and emphasizes the necessity of increasing

fiscal support for less developed regions.

TABLE 11 The e�ect of agricultural technological progress on the

intensity of agricultural carbon emissions (grouped by human capital

levels).

Group PE (%) RE (%) NE (%)

Low human capital
levels

9.54 14.39 −4.84

Medium human
capital levels

8.43 11.57 −3.14

High human capital
levels

9.05 10.57 −1.52

FIGURE 4

The net e�ect under di�erent groups of human capital levels,

2002–2021.

4.5.4 Human capital levels
Similar to the previous analysis, this section categorizes 30

Chinese provinces into three groups based on rural human

capital levels, ranging from low to high. Table 11 illustrates

the impact of agricultural technological progress on agricultural

carbon emission intensity for each group. Overall, agricultural

technological progress exhibits a negative effect on carbon

emissions across all three groups, indicating a reduction in

agricultural carbon emission intensity. Regions with low human

capital levels demonstrate the most significant carbon reduction

effect, with an average decrease of 4.84% in agricultural carbon

emission intensity. Conversely, areas with high human capital levels

show the least pronounced effect. This suggests that the carbon

reduction efficacy of agricultural technological progress diminishes

as human capital levels increase. This phenomenon may be

attributed to the late-mover advantage in regions with low human

capital levels, allowing for faster adoption and dissemination of

advanced low-carbon technologies. In contrast, high human capital

regions may have already implemented advanced low-carbon

technologies, resulting in weaker emission reduction effects from

further technological progress.

Figure 4 illustrates the temporal evolution of the net effect of

agricultural technological progress on carbon emission intensity

across different groups. Prior to 2011, the net effects were relatively

similar across all three groups, generally reducing agricultural

carbon emission intensity, except for an increase in low human

capital regions in 2002. From 2012 onwards, the carbon reduction

effects began to diverge significantly among the groups, with low

human capital regions exhibiting the most pronounced reduction
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in agricultural carbon emission intensity. In 2021, high human

capital regions experienced a significant enhancement in the carbon

reduction effect, surpassing medium human capital areas. This may

be attributed to the emergence of more advanced and efficient

technologies in recent years, which are more readily adopted and

applied in regions with high human capital levels.

4.6 Discussion

The empirical findings of this study reveal several important

theoretical and practical implications that warrant further

discussion. First, the double-edged sword effect of agricultural

technological progress on carbon emissions demonstrates the

complexity of agricultural modernization. This finding challenges

the simple linear relationship assumed in previous literature (Liu

et al., 2023; Gerlagh, 2007; Koondhar et al., 2021; Ismael et al.,

2018) and suggests that the impact of technological progress on

agricultural carbon emissions follows a more nuanced pattern.

The coexistence of positive and negative effects indicates that

technological advancement in agriculture should not be viewed

through a single lens like existing literatures (Shan et al., 2022;

Liu et al., 2023; Wang et al., 2024; Xie et al., 2021; Li and Wang,

2023). Furthermore, the regional heterogeneity identified in this

study reflects the structural differences in China’s agricultural

development. This study reveals two distinctive characteristics

in regional heterogeneity patterns. First, the spatial distribution

demonstrates a clear “stronger South, weaker North” pattern, which

corroborates the findings of He and Ding (2023). However, their

study did not conduct an in-depth analysis from both positive and

negative effect dimensions. Consequently, they failed to capture a

significant characteristic: the unique “dual advantage” possessed by

the southwestern region. The temporal evolution of technological

effects, particularly the significant divergence observed after 2011,

coincides with China’s agricultural policy transformation period.

This temporal pattern suggests that the effectiveness of agricultural

technology in reducing carbon emissions is not merely a function

of technological capability but is deeply embedded in the broader

institutional and policy environment. The finding contributes

to the institutional perspective in agricultural environmental

economics. The study also reveals an interesting paradox regarding

human capital levels. Contrary to conventional view (Yao et al.,

2021), regions with lower human capital levels demonstrated

more significant carbon reduction effects in recent years. This

unexpected finding suggests that the relationship between human

capital and environmental performance in agriculture might

be more complex than previously thought, possibly involving

factors such as risk aversion, traditional farming wisdom, and local

ecological knowledge.

These findings collectively suggest that the path toward

agricultural carbon reduction requires a more sophisticated

understanding of the interplay between technological progress,

institutional arrangements, and local conditions. Future research

could benefit from exploring these interactions through more

nuanced theoretical frameworks and methodological approaches.

5 Conclusions and policy implications

5.1 Conclusions

As global climate change intensifies, China, the world’s largest

carbon emitter, faces significant pressure to reduce emissions.

The agricultural sector, a major source of carbon emissions, has

garnered attention for its potential in carbon reduction. This

study focuses on the impact of agricultural technological progress

on agricultural carbon emissions, aiming to investigate whether

it can effectively reduce agricultural carbon emission intensity

and the underlying mechanisms. The research first analyzes

the double-edged effect of agricultural technological progress on

carbon emissions from a theoretical perspective. It then employs

panel data from 30 Chinese provinces for the period 2002–2021,

utilizing the DEA-Malmquist index to measure agricultural total

factor productivity and the emission factor method to calculate

agricultural carbon emissions. The 2TSF models are constructed

to empirically analyze the impact of agricultural technological

progress on agricultural carbon emission intensity.

Key conclusions include: (1) Agricultural technological

progress exhibits a significant double-edged effect on carbon

emission intensity. Empirical results show that the positive effect

increases intensity by 9.01% on average, while the negative effect

reduces it by 12.18%. Overall, the negative effect outweighs

the positive, resulting in an average net reduction of 3.17% in

agricultural carbon emission intensity. (2) Different types of

agricultural technological progress have varying impacts on carbon

emission intensity. Mechanical progress significantly increases

intensity, while resource-saving and biochemical advancements

reduce it. (3) The impact of agricultural technological progress on

carbon emission intensity shows notable regional heterogeneity.

The net effect is negative in Southwest, South, Central, Northeast,

and Northwest China, indicating a reduction in emission intensity.

However, North and East China exhibit positive net effects,

suggesting increased emission intensity due to technological

progress. (4) Farm operation scale, fiscal support for agriculture,

and agricultural human capital levels significantly influence the

carbon reduction effect of technological progress. Provinces with

smaller-scale operations, higher fiscal support, and lower human

capital levels demonstrate more pronounced carbon reduction

effects. (5) Time series analysis reveals that from 2002 to 2021, the

net effect of China’s agricultural technological progress on carbon

emission intensity remained negative, consistently contributing to

intensity reduction. Since 2011, the carbon reduction efficacy has

increased annually, with 2021 showing the largest increase.

5.2 Policy implications

Based on the conclusions drawn, the impact of agricultural

technological progress on agricultural carbon emission intensity

varies significantly across regions, necessitating targeted and

precise policy interventions. To leverage the role of agricultural

technological advancement in reducing carbon emissions,

promote green agricultural transformation, and contribute to
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China’s agricultural “dual carbon” goals, the following policy

recommendations are proposed:

Firstly, implement differentiated agricultural technology

promotion strategies. For regions with larger farm sizes and higher

agricultural human capital levels, governments should increase

support for high-tech research and development. These areas

typically have better infrastructure and financial resources to

facilitate the adoption of low-carbon technologies. Governments

can establish research funding programs, technical training,

and incentive mechanisms to accelerate the dissemination

of new technologies and further reduce agricultural carbon

emission intensity. For regions with lower agricultural economic

development and human capital levels, the focus should be on food

production security and sustainable agricultural development.

While ensuring food security, these regions can learn from

successful experiences elsewhere and gradually introduce proven

low-carbon agricultural technologies. Governments should provide

technical training, financial support, and policy guidance to assist

these areas in achieving green agricultural transformation and

improving production efficiency while reducing carbon emissions.

Secondly, incentivize low-carbon agricultural technology

innovation and application. The government can encourage

agricultural innovation through increased fiscal subsidies and

dedicated research and development funds. Environmental

sustainability should be embedded in the design, development,

and promotion of new technologies to ensure both economic

and ecological benefits. Emphasis should be placed on developing

disruptive carbon reduction technologies that are both cost-

effective and user-friendly. Collaboration with agricultural

extension departments and research institutions should be

strengthened through regular seminars, exhibitions, and training

programs. This will enable farmers to access the latest research

findings and market information, shortening the cycle from

technology development to practical application.

Thirdly, develop “carbon-smart” agricultural management
systems tailored to regional characteristics. Given the significant
regional heterogeneity in the carbon reduction effects of
agricultural technological progress, it is crucial to establish
region-specific agricultural management systems. These systems
should integrate carbon emission monitoring, technological

assessment, and decision-making support functions. For regions

like the Southwest that demonstrate strong negative effects, the

focus should be on preserving and enhancing their existing

advantages in resource-saving and biochemical technologies.

For regions showing positive net effects, such as North and

East China, the systems should prioritize the transformation

of mechanical technologies toward more environmentally

friendly alternatives. Local governments should establish carbon

emission monitoring platforms that can provide real-time data on

agricultural carbon emissions, helping stakeholders make informed

decisions about technology adoption and agricultural practices.

This approach aligns with the study’s finding that different types

of agricultural technologies have varying impacts on emission

intensity, with mechanical technologies increasing emissions while

resource-saving and biochemical technologies reducing them.

Finally, enhance agricultural human capital to drive

green agricultural development. Governments can strengthen

cooperation between agricultural universities and research

institutions to promote talent cultivation and research

commercialization. The China Ancient Village Science and

Technology Institute, established by China Agricultural University,

Yunnan Agricultural University, and Dali Prefecture Government,

serves as an exemplary model. It aims to protect Erhai Lake

while promoting farmers’ income and agricultural green

transformation. This institute has made significant contributions

to China’s high-quality agricultural development and can be

replicated nationwide.

Regarding the measurement of agricultural technological

progress, future studies should consider incorporating undesirable

outputs into the evaluation system. Additionally, the calculation

of agricultural carbon emissions should account for regional and

temporal variations in emission coefficients to improve accuracy.

Future research should focus on refining these methodologies to

provide more precise assessments of agricultural carbon emissions

and technological progress.

This study has certain limitations. Due to data constraints, the

carbon emission sources selected in this research are not sufficiently

comprehensive. Additionally, the two-tier stochastic frontier model

makes specific assumptions about the distribution of random error

terms, which may not always align with empirical data. Future

research directions could focus on expanding carbon emission

sources and refining econometric methodologies.
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