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Application of additional dose of 
N could sustain rice yield and 
maintain plant nitrogen under 
elevated ozone (O3) and carbon 
dioxide (CO2) condition
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Introduction: Global food security is challenged by the increasing levels of 
air pollutants like ozone (O3) through their impacts on crop productivity. The 
present study was conducted to quantify the interactive effect of elevated 
ozone (O3) and carbon dioxide (CO2), on different rice varieties in northern India.

Methods: An experiment was conducted in Genetic H field, Environment 
science, IARI for two consecutive years (2020 and 2021) during the kharif season, 
to quantify the impact of elevated O3 and CO2 interaction on productivity, and 
plant N in three rice varieties (Pusa basmati 1121, Nagina 22, IR64 Drt1) under 
different nitrogen (N) management practices. Rice crop was grown in Free Air 
Ozone-Carbon dioxide Enrichment rings (FAOCE) rings with two levels of O3 
(elevated 60 ±10ppb and ambient) and two levels of CO2 (elevated, 550±25 
ppm and ambient) concentration and their interaction with two N fertilizer 
treatments i.e., 100% RDN (recommended dose of N) and 125% RDN.

Results and discussion: Elevated O3 significantly decreased physiological 
parameters like photosynthesis rate, stomatal conductance and transpiration 
rate of the crop. Grain yield reduced by 7.2-7.5%, in Pusa Basmati 1121 and 
from 6.9-9% in IR64 Drt1 varieties in elevated O3 treatment as compared to 
ambient treatment. Yield reduction in Nagina 22 variety was not significant in 
elevated O3 treatment. Elevated CO2 concentration of 550 ppm was able to 
fully compensate the yield loss in Nagina 22 variety and partially compensate 
(3.9-8.0%) in Pusa Basmati 1121 and IR64 Drt1 varieties. Grain N concentration 
in rice varieties decreased by 10.8-14.7% during first year and by 7.8-20.6% 
during second year in elevated O3 plus CO2 interaction treatment than ambient. 
Grain N uptake also decreased (13.2-17.1% in first year and 4.5-22.8% in second 
year) in elevated O3 plus CO2 interaction treatment as compared to ambient. 
Application of additional 25% of recommended dose of N improved grain N 
concentration, grain N uptake as well as available N of soil as compared to 100% 
RDN treatment in elevated O3 plus CO2 interaction treatment. Additional 25% 
N dose could help in sustaining rice productivity and quality under elevated O3 
and CO2 condition.
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Introduction

Air pollution is only one of several environmental issues that 
threaten food production. Tropospheric ozone (O3) is one of the major 
air pollutants harmful to plants (Feng et al., 2015). The O3 pollution is 
expected to worsen in the future due to a warmer climate, depending 
on the location, and increased anthropogenic emissions of 
O3 precursors.

Following the Industrial Revolution, the percentage of ground-
level O3 has been steadily rising, reaching 35–40 ppb globally. In the 
21st century, it may continue to rise more rapidly in developing 
countries with fast-growing economies (Proietti et  al., 2016). The 
tropospheric O3 level might exceed 70 ppb by 2050, according to the 
Environmental Protection Agency, if worldwide emissions of O3 
precursors continue at their current rate (Pfister et  al., 2014). 
Tropospheric O3 concentrations are increasing at a higher rate in 
tropical regions due to favorable conditions for O3 formation (Agrawal 
et al., 2003; Tiwari et al., 2008). Following the mid-1990s, the decadal 
increase in tropospheric O3 levels has been 2–14% in the tropics, 2–7% 
in northern mid-latitude areas, and 8–14% in the South Asian region 
(IPCC, 2021). Tropospheric O3 is created as a secondary pollutant in 
the atmosphere through photochemical interactions between volatile 
organic compounds (VOCs) and nitrogen oxides (NOx) in the 
presence of sunlight (Lefohn et al., 2017). Due to increased economic 
growth accompanied by higher NOx and VOC emissions, 
tropospheric O3 levels are rising and are expected to continue to do so 
across the Asian region, leading to more crop losses (Ashmore, 2005). 
The O3 concentration ranged from 45 to 65 ppb across the Indian 
region (David and Nair, 2013; Deb Roy et al., 2009). In most regions 
of the world, ozone is now the most significant air pollutant that has 
a detrimental effect on the growth and productivity of crops. 
Tropospheric O3 is also a greenhouse gas (GHG) and contributes to 
climate change (Feng et al., 2019). Exposure to O3 leads to stomatal 
closure, which limits carbon dioxide (CO2) and water uptake by 
plants, further compromising photosynthetic efficiency and causing 
reduced growth and decreased grain filling in crop plants (Feng and 
Kobayashi, 2009). Several studies have quantified the impact of O3 on 
crop development and yield (Ainsworth, 2008; Mills et al., 2018; Tai 
et  al., 2014; Yadav et  al., 2021). There are reports of reduced 
photosynthesis rates, leaf senescence, and changes in assimilate 
partitioning in plants due to exposure to elevated levels of O3 (Mina 
et al., 2016; Tomer et al., 2015). Increased concentrations of surface O3 
diminish carbon storage in vegetation, leading to reduced growth and 
yield of crops (Tai et  al., 2014). On the other hand, elevated 
atmospheric CO2 concentrations lead to the accumulation of carbon, 
thereby increasing crop growth and also reducing plant nitrogen (N) 
and protein content (Abebe et al., 2016; Chakrabarti et al., 2020; Raj 
et al., 2019). The global average concentration of CO2 has increased 
from 280 ppm to 409.7 ppm (NOAA, ESRI, 2019). An increase in 
atmospheric CO2 concentrations improves the growth and 
productivity of crop plants (Bhatia et al., 2012; Singh et al., 2013; 
Deryng et al., 2016).

The world’s most important food crop, rice, is vulnerable to a 
variety of contaminants, especially air pollutants such as tropospheric 
O3. Global food security is likely to suffer if the productivity of rice 
declines. Elevated tropospheric O3 levels cause stress to rice plants 
during both the vegetative and reproductive stages, affecting their 
physiology, yield, and grain quality. According to Xia et al. (2021), 

major food crops, such as rice, wheat, and maize, are less tolerant to 
elevated O3 than trees, such as spruce, silver fir, and pine. Elevated O3 
levels can alter physiological processes in crop plants, leading to 
changes in crop morphology and reduced crop growth (Bhatia 
et al., 2013).

Some reports elevated O3 levels reduced yield by 11.4–12.3% 
compared to ambient levels in rice crops (Bhatia et al., 2011). Pandey 
et al. (2018) observed that grain yield and grain N content in wheat 
decreased under elevated O3 concentrations. Along with reduced plant 
growth and productivity, higher O3 levels also affect grain quality in 
crops as it is a strong oxidant and reduces important physiological 
processes in plants (Avnery et al., 2011; Broberg et al., 2015). Some 
researchers have reported that protein content in crops gets negatively 
affected by elevated O3, but to a lesser extent than grain yield (Broberg 
et al., 2015; Grünhage et al., 2012). The interactive effect of elevated 
O3 and CO2 on crop growth, yield, and plant nutrient content will 
differ from the individual effect of O3. Phothi et al. (2016) reported 
that elevated CO2 levels would mitigate the negative impact of elevated 
tropospheric O3 in rice crops. A simultaneous increase in both O3 and 
CO2 concentrations could nullify the negative effects of elevated O3 on 
the ecosystem (Bhatia et al., 2012). Therefore, the negative effects of 
elevated tropospheric O3 would be overestimated if the impact of 
elevated CO2 concentrations is not considered (Xia et al., 2021).

Crop productivity is affected by the availability of N supplied to 
plants through various sources, including inorganic fertilizers. The 
interaction between O3 and CO2 will also affect the nutrient levels in 
crops (Phothi et al., 2016). As crop growth is reduced under elevated 
O3 conditions (Pleijel et al., 2014), the demand and uptake of nutrients 
will also get altered under such situations, thereby reducing total 
nutrient content in plants. A study comprising data analysis of peer-
reviewed literature depicted that the translocation of nitrogen from 
straw and leaves to grain in wheat crops was negatively affected by O3. 
As N fertilizer use efficiency is reduced under elevated O3 conditions, 
the risk of N losses from agroecosystems increases (Broberg et al., 
2017). Elevated O3 also affects soil microbial function and N 
transformation in the soil (Chen et al., 2015; Wu et al., 2016), which 
could, in turn, affect nutrient availability and uptake in plants. As crop 
productivity is often limited by nitrogen, N management becomes 
very crucial, especially under changing climatic conditions (Bhatia 
et al., 2010). A study by Singh et al. (2009) showed that the application 
of 1.5 times of recommended NPK can help ameliorate the negative 
effects of elevated tropospheric O3 in mustard crops.

Estimating the effects of crop loss caused by tropospheric O3 is 
crucial for nations, such as India, that are experiencing rapid 
urbanization and population growth. A few studies have investigated 
the interactive effects of elevated O3 and CO2 on crop plants. However, 
studies on elevated O3 and CO2 interactions with rice productivity and 
plant N are very limited. In addition, most studies were conducted 
earlier using open-top chambers (OTCs). It is imperative to conduct 
studies on the interaction between elevated levels of O3 and CO2 in 
open-field conditions, as such research is rarely reported. There is a 
need for a better understanding of cultivar-specific responses to 
elevated O3 and CO2 interactions to identify suitable adaptation 
options in rice under ozone stress conditions. In addition, N 
management strategies need to be  formulated to sustain crop 
productivity and quality under elevated O3 and CO2 conditions. The 
hypothesis is that elevated O3 and CO2 can negatively affect rice 
productivity and quality. An additional N dose may counteract the 
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harmful effects by improving growth, yield, and plant N uptake under 
elevated O3 and CO2 conditions. Therefore, the following study was 
conducted using a free air ozone and carbon dioxide enrichment 
(FAOCE) facility under open-field conditions (1) to quantify the yield 
and N uptake in rice varieties under the interaction of elevated O3 and 
CO2 and (2) to investigate the effect of an increased N dose on the 
yield and plant N in rice under elevated O3 and CO2 conditions.

Materials and methods

Experimental site

A field experiment was conducted during the kharif season (July–
October) for two consecutive years, i.e., 2020 and 2021, inside free air 
O3 and CO2 enrichment (FAOCE) rings located at the experimental 
farm of the-Indian Agricultural Research Institute (ICAR), New Delhi 
(28°35’N and 77°12′E) India. The mean temperatures during the 
cropping season were 29.5°C in the first and 29.1°C in the second year 
of the study. Three different rice varieties, Pusa Basmati 1121, Nagina 
22, and IR64 Drt1, were grown in crates inside the free air ozone and 
carbon dioxide enrichment (FAOCE) facility. Pusa Basmati 1509 is a 
popular basmati variety of rice in the northwestern Indo-Gangetic 
Plain (IGP). It is known for its long, slender grains and distinct aroma. 
IR64 DRT1 is a high-yielding, drought-tolerant rice variety that is 
resistant to major pests and diseases and can be grown in different 
agro-climatic conditions. Nagina 22 is a short-duration rice variety 
adaptable to various abiotic stresses and also resistant to pests and 
diseases. The rice varieties were grown under ambient and elevated 
(60 ppb) O3 levels, as well as ambient and elevated (550 ± 25 ppm) CO2 
concentrations. The ambient CO2 concentration ranged from 398 to 
421 ppm and from 404 to 420 ppm in 2020 and 2021, respectively. The 
elevated CO2 concentration ranged from 518 to 570 ppm and from 
526 to 575 ppm in the FAOCE rings in 2020 and 2021, respectively. 
The 5 m diameter FAOCE rings were effective in exposing the crops 
to elevated O3 and CO2 under natural field conditions. Air mixed with 
CO2 was supplied at the canopy level through perforated pipes with 
laser-drilled holes (0.3 mm in diameter) inside the ring from 
commercial-grade compressed 30 kg pure CO2 gas cylinders. The 
release of CO2 inside the rings was controlled by the opening and 
closing of the solenoid valves depending on the wind speed and 
direction (Yadav et al., 2021). Ozone generators were used to convert 
atmospheric oxygen (O2) into O3, which was then released inside the 
rings with the help of flappers through a common duct placed 
perpendicular to the rings (Yadav et  al., 2019). Air samples were 
drawn from the center of the rings, and the CO2 concentration was 
measured using a CO2 analyzer (NDIR, Topak United States), while 
the O3 concentration was measured using an O3 analyzer (2B 
Technologies). The CO2 and O3 concentrations in the rings were 
automatically logged in the computer by microprocessors through 
digital input and output modules on a real-time basis. The crops were 
exposed to elevated CO2 and O3 for 7 h (10.00 am to 17.00 pm). Four 
rings were used for the study: (1) ambient CO2 and O3, (2) ambient 
O3 and elevated CO2, (3) elevated O3 and ambient CO2, and (4) 
elevated O3 and elevated CO2. Rice seedlings (30 days old) were 
transplanted into crates (42 cm × 63 cm) filled with 40 kg of soil inside 
the FAOCE rings during the second week of July. The crops were 
fertilized with two doses of N: the recommended dose of N (RDN) 

(120 kg ha−1) and 125% of the recommended dose of N (150 kg ha−1). 
Phosphorus (P) and potassium (K) were applied at the rate of 
60 kg ha−1. Half of the N dose and the total amount of P and K were 
applied at the time of transplanting. The remaining half of the N dose 
was applied in two equal splits at the maximum tillering and flowering 
stages of the crops. In total, there were 24 treatments, each with 
three replications.

Measurements of the crop growth 
parameters

Gas exchange parameters, such as photosynthesis rate, stomatal 
conductance, and transpiration rate, were measured using the Portable 
Photosynthesis System IRGA (LI-6400XT, LiCOR, United States) at 
the maximum tillering stage of the crops. The observations were 
recorded on physiologically active, fully expanded leaves exposed to 
the sun between 9:00 AM to 11:00 AM. The flow rate of input air was 
set at 300 μmol s−1, and photosynthetically active radiation (PAR) was 
set at 1,000  μmol  m−2  s−1. The reference CO2 concentration was 
maintained at 410  ppm. Ten readings were recorded for each 
observation in each treatment. The number of tillers per hill was also 
counted for each treatment. The plant samples were harvested at 
maturity and air-dried, and the weights of the grain and straw were 
recorded. The number of grains per panicle was counted after 
harvesting the crops for each treatment.

Soil and plant sample collection and 
analysis

Soil samples were collected at the flowering stage. Available N in 
the soil was estimated using the Subbiah and Asija (1956) method. The 
soil was distilled with alkaline KMnO4 (potassium permanganate) and 
NaOH (sodium hydroxide) solutions, and the amount of liberated 
NH3 (ammonia) was estimated by titration with standard H2SO4 
(sulphuric acid). The plant samples were collected after harvesting the 
crops. The rice grains were separated from the straw biomass, and the 
samples were dried in an oven at 65 ± 2°C for 72 h. The nitrogen 
concentration in the grain and straw samples was determined using 
the method described by Jackson (1956). The plant samples were 
digested using concentrated H2SO4 and a digestion mixture in a micro 
Kjeldahl digestion block. The digested samples were distilled with 
NaOH, and the liberated NH3 was absorbed in H3BO3 (boric acid) and 
then titrated against standard H2SO4. The grain N uptake (mg plant−1) 
was then calculated by multiplying the grain weight/plant by the grain 
N concentration, as described by Cowan et al. (2021).

Statistical analysis

The experiment was a factorial, completely randomized design 
with 24 treatments, each having three replicates. Four factorial (CO2 
level, O3 level, variety, and N dose) analysis of variance (ANOVA) was 
carried out using SAS (ver. 9.3) statistical package (SAS Institute Inc., 
CA, United States). Tukey’s honestly significant difference (HSD) test 
at the 5% level of significance was performed to check if the differences 
were statistically significant.
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Results

Effect of elevated O3 and CO2 on the rice 
physiology

The photosynthesis rates varied among the different rice varieties, 
ranging from 23.1 to 36.1 μmol CO2 m−2 s−1 in the first year and from 
23.2 to 35.1  μmol CO2 m−2  s−1 in the second year under the 
recommended N dose (Figures 1a,b). Pusa Basmati 1121 exhibited a 
significant decrease in the photosynthesis rates, dropping from 30.3 
to 26.5 μmol CO2 m−2 s−1 in the first year and from 31.1 to 27.9 μmol 

CO2 m−2  s−1 in the second year. In the case of IR64 Drt1, the 
photosynthesis rate was significantly lower under the elevated O3 
levels compared to the ambient levels in the second year. Conversely, 
there was no notable reduction in the photosynthesis rates for the 
Nagina 22 variety over both years under the elevated O3 conditions. 
The elevated CO2 concentration exhibited a positive impact on the 
photosynthesis rates of all rice varieties. However, the interactive 
treatment of elevated O3 and CO2 still maintained the photosynthesis 
rates similar to those under the ambient condition. The application of 
additional N positively influenced the photosynthesis rates across all 
treatments. When 25% additional N was applied, the photosynthesis 

FIGURE 1

Photosynthesis rates (μmol CO2 m−2 s−1) in the rice varieties under the elevated O3 and CO2 conditions during the (a) first and (b) second year. Columns 
with different letters are significantly different (p  ≤  0.05). The error bars represent the standard deviation of the data, indicating the variability around the 
mean.
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rates in the elevated O3 treatment became comparable to those in the 
ambient treatment.

Stomatal conductance in the rice varieties decreased in the 
presence of the elevated O3 and elevated O3 plus CO2 treatments 
compared to the ambient treatment. In the treatments with the 
recommended N application, stomatal conductance ranged from 0.31 
to 0.42 m mol H2O m−2 s−1 in Pusa Basmati 1121, 0.29 to 0.31 m mol 
H2O m−2 s−1 in Nagina 22, and 0.33 to 0.41 m mol H2O m−2 s−1 in IR64 
Drt1 under the ambient conditions (Figures 2a,b). However, stomatal 
conductance decreased in the elevated O3 plus CO2 treatment, ranging 
from 0.24 to 0.30 m mol H2O m−2 s−1 in Pusa Basmati 1121, 0.22 to 
0.24 m mol H2O m−2 s−1 in Nagina 22, and 0.29 to 0.30 m mol H2O 
m−2 s−1 in IR64 Drt1. Furthermore, the elevated O3 and elevated O3 
plus CO2 treatments significantly reduced transpiration rates in the 
Pusa Basmati 1121 and IR64 Drt1 varieties. Over the two-year study, 
the transpiration rates in Pusa Basmati 1121 ranged from 12.3 to 
16.4 m mol H2O m−2 s−1 in the ambient treatment, while decreasing to 
9.5 from 11.9 H2O m−2 s−1 in the elevated O3 treatment (Figures 3a,b). 
Similarly, in the IR64 Drt1 variety, the transpiration rates ranged from 

14.5 to 15.0 m mol H2O m−2 s−1 in the ambient treatment, but in the 
elevated O3 treatment, they ranged from 9.5 to 11.8  m  mol H2O 
m−2 s−1.

Effect of elevated O3 and CO2 on rice yield

The elevated O3 level significantly decreased the grain yield of the 
Pusa Basmati 1121 and IR64 Drt1 varieties in both years of the study. 
The grain yield was reduced by 7.2–7.5%, in Pusa Basmati 1121 and 
by 6.9–9% in IR64 Drt1 in the elevated O3 treatment as compared to 
the ambient treatment (Figure 4). In the Nagina 22 variety, there was 
a reduction in the yield by 4.4% in the elevated O3 treatment compared 
to the ambient treatment during the first year. However, in the second 
year, there was no reduction in the grain yield of this variety under the 
elevated O3 condition. Nagina 22 is a stress-tolerant variety, which is 
why an increase in the O3 levels had little to no effect on it. In the 
present study, the reduction in the grain yield in the elevated O3 
treatment was attributed to a lower number of panicles per hill and 

FIGURE 2

Stomatal conductance (mmol H2O m−2  s−1) in the rice varieties under the elevated O3 and CO2 conditions during the (a) first and (b) second year. The 
error bars represent the standard deviation of the data, indicating the variability around the mean.
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fewer grains per panicle under the elevated O3 condition. Under the 
ambient condition, the number of grains per panicle ranged from 101 
to 111 among the different rice varieties, while in the elevated O3 
treatment, the number of grains per panicle ranged from 95 to 101 
(Table  1). The number of panicles per hill also decreased in the 
elevated O3 treatment compared to the ambient treatment. In the 
ambient treatment, the number of panicles per hill ranged from 14 to 
17, while in the elevated O3 treatment, it decreased from 15 to 13.

In the elevated O3 plus elevated CO2 treatment, the grain yield was 
2.9–3.4% lower than in the ambient treatment for the Pusa Basmati 
1121 variety. This shows that the increased CO2 concentration of 
550 ppm was able to compensate for 3.9–4.6% yield loss in the Pusa 
Basmati 1121 variety. In the IR64 Drt1 variety, the grain yield in the 
elevated O3 plus elevated CO2 treatment was 3.4% lower than in the 
ambient during the first year of the study. However, during the second 
year, the yield was 1.1% higher than in the ambient treatment for this 

variety. The Nagina 22 variety recorded higher yields in the elevated 
O3 plus elevated CO2 treatment compared to the ambient treatment in 
both years. The application of a higher N dose also helped in 
preventing the yield loss in the rice varieties under the elevated O3 
concentration. In the treatment with elevated O3 plus CO2, along with 
125% of the RDN, the grain yield of the Pusa Basmati 1121 variety 
increased by 11–13% compared to the ambient treatment (Figure 4). 
Similarly, in the IR64 Drt1 variety, the yield increased by 9–10%, and 
in the Nagina 22 variety, it increased by 6–7% in this treatment.

The grain number per panicle also increased in the elevated CO2 
plus elevated O3 treatment compared to that in the elevated O3 
treatment. The elevated CO2 level increased the photosynthesis rates 
of the crops, which led to greater biomass accumulation and 
subsequently more grains, resulting in higher crop yields. The 
application of a higher dose of N also increased the grain number in 
all three rice varieties, which led to higher crop yields. In the elevated 

FIGURE 3

Transpiration rates (mmol H2Om−2  s−1) in the rice varieties under the elevated O3 and CO2 conditions during the (a) first and (b) second year. Columns 
with different letters are significantly different (p  ≤  0.05). The error bars represent the standard deviation of the data, indicating the variability around the 
mean.
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O3 treatment, the application of a higher N dose also helped in 
increasing the panicle number and grain number, thereby increasing 
the grain yield to a certain extent.

Effect of elevated O3 and CO2 on the plant N

The responses of the grain N concentration (%) in the rice 
varieties to the elevated CO2 and O3 treatments are shown in 
Figure 5a. In the 100% recommended N applied treatments, the 
grain N concentration ranged from 1.20–1.36% under the ambient 
condition, with a mean value of 1.30%. The grain N concentration 
significantly decreased in the elevated CO2 and elevated O3 plus 

CO2 interaction treatment compared to the ambient treatment. In 
the elevated O3 plus CO2 interaction treatment, the grain N 
concentration ranged from 1.07–1.18%, with a mean value of 
1.13%. The application of an additional 25% of N improved the 
grain N concentration in both years. When the additional N dose 
was applied, the grain N concentration ranged from 1.25–1.33% 
in the elevated O3 plus CO2 interaction treatments, with a mean 
value of 1.29%. The grain N concentration was higher in the Pusa 
Basmati 1121 and IR64 Drt1 varieties than in the Nagina 
22 variety.

Elevated O3 also reduced the grain N uptake of the rice varieties 
compared to the ambient treatment. In the ambient treatment, the 
grain N uptake ranged from 189 to 269 mg hill−1, with a mean value 

FIGURE 4

Percent change in the yield in the rice varieties under the elevated O3 and CO2 conditions.

TABLE 1 Effect of the elevated CO2, O3 and N treatments on the yield parameters of rice.

Variety O3 CO2 Panicles hill−1 Panicles hill−1 Grains panicle−1 Grains panicle−1

First year Second  year First year Second  year

100% 
RDN

125% 
RDN

100% 
RDN

125% 
RDN

100% 
RDN

125% 
RDN

100% 
RDN

125% 
RDN

PB1121 Ambient Ambient 16.4 ± 1.8def 20.2 ± 0.2abcd 16.4 ± 0.5cdef 18.3 ± 0.7abcd 111.4 ± 3.8abcde 120.4 ± 2.9ab 104.9 ± 3.1bcd 116.1 ± 4.5abc

Elevated 20.2 ± 25.4abcd 23.3 ± 0.6a 18.0 ± 1.2cde 22.0 ± 0.9ab 115.7 ± 6.1abcd 124.9 ± 4.0a 112.2 ± 3.6abcd 119.3 ± 2.9ab

Elevated Ambient 14.1 ± 1.5f 18.5 ± 0.9abcd 14.0 ± 1.1efg 17.2 ± 1.6cde 96.5 ± 3.9e 105.5 ± 3.4bcde 94.9 ± 3.1f 101.1 ± 3.0cde

Elevated 17.4 ± 0.2cde 18.8 ± 0.4abcd 16.0 ± 0.8defg 18.5 ± 0.8abcd 106.8 ± 4.8bcde 113.9 ± 6.6abcd 98.9 ± 1.9 def 106.2 ± 1.7bcd

Nagina 22 Ambient Ambient 14.9 ± 0.5ef 18.5 ± 0.8abcd 13.7 ± 0.7fg 16.1 ± 1.1cdef 106.3 ± 2.0bcde 113.3 ± 3.9abcd 100.7 ± 1.3def 114.0 ± 2.3abcd

Elevated 17.3 ± 0.5cde 21.8 ± 0.8abc 16.5 ± 0.4cdef 19.2 ± 2.1abc 114.9 ± 6.0abcd 117.6 ± 4.2abc 109.8 ± 3.3abcde 116.5 ± 0.9abc

Elevated Ambient 14.4 ± 0.6f 17.7 ± 0.9cde 12.5 ± 0.8g 15.1 ± 1.3defg 97.0 ± 1.2e 104.1 ± 4.2cde 98.1 ± 3.6ef 105.5 ± 3.1bcd

Elevated 16.4 ± 0.5def 18.0 ± 1.0cde 14.0 ± 0.5efg 15.9 ± 1.1defg 106.3 ± 2.0bcde 110.8 ± 8.9abcde 99.8 ± 1.5def 110.8 ± 3.7abcde

IR64 Drt1 Ambient Ambient 14.9 ± 0.6ef 18.7 ± 0.6abcde 17.1 ± 0.6cdef 19.1 ± 10abc 106.8 ± 5.9bcde 110.5 ± 5.4abcde 106.8 ± 0.9bcd 114.3 ± 4.6abcd

Elevated 19.2 ± 1.1abcd 23.1 ± 1.2ab 19.7 ± 0.4abc 22.8 ± 0.3a 108.8 ± 4.0abcde 118.5 ± 2.5abc 118.3 ± 1.2ab 125.2 ± 5.5a

Elevated Ambient 14.3 ± 0.7f 18.1 ± 1.1cde 15.4 ± 0.7defg 17.5 ± 0.5cde 96.1 ± 2.0e 102.4 ± 3.1cde 100.6 ± 1.0def 107.7 ± 2.7bcd

Elevated 17.0 ± 1.2def 19.5 ± 1.1abcd 16.2 ± 0.1cdef 19.1 ± 0.5abc 100.1 ± 7.3de 108.3 ± 2.5bcde 105.1 ± 3.1bcd 113.3 ± 3.9abcd

Numbers in each column represent the mean values along with their standard deviation. Means with at least one letter in common are not statistically significant (p ≤ 0.05).
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of 229 mg hill−1 in the treatment with the 100% RDN (Figure 5b). In 
the elevated O3 plus CO2 interaction treatment, the grain N uptake 
decreased and ranged from 165 to 223 mg hill−1, with a mean value of 
196 mg hill−1. The application of a higher N dose increased the grain 
N uptake in the rice varieties. In the elevated O3 plus CO2 interaction 
treatment, the grain N uptake was even higher than in the ambient 
treatment. It ranged from 204 to 292 mg hill−1, with a mean value of 
247 mg hill−1. The grain N uptake was greater in the Pusa Basmati 
1121 and IR64 Drt1 varieties than in the Nagina 22 variety. The 
application of an additional 25% of N increased the grain N uptake by 
30.2–40.8% in Pusa Basmati 1121, by 15.3–22.3% in Nagina 22, and 
by 21.7% in the IR64 Drt1 variety of the rice crops (Table 2).

Effect of elevated O3 and CO2 on the soil 
available N

In the ambient treatment, the soil available N ranged from 176.4–
204.2 kg ha−1 in the first year and from 135.2–151.7 kg ha−1 in the 
second year among the different rice varieties with the recommended 
dose of the N application (Table  2). In the elevated O3 plus CO2 

interaction treatment, the soil available N was lower than in the 
ambient treatment in both years of the study. The soil available N was 
also found to be lower in the elevated CO2 treatment compared to the 
ambient treatment. The application of a higher dose of N increased the 
available N content of the soil. In the elevated O3 plus CO2 interaction 
treatment, the application of an additional 25% of N increased the soil 
available N by 5.3–14.9% in Pusa Basmati 1121, by 6.3–9.0% in Nagina 
22 and by 16–16.9% in IR64 Drt1 of the rice crops.

Discussion

Tropospheric O3 is a secondary air pollutant generated through 
photochemical reactions among precursors such as nitrogen oxides 
(NOx), volatile organic compounds (VOCs), and carbon monoxide 
(CO), primarily released from anthropogenic activities (Broberg et al., 
2015). Several researchers have reported the substantial impact of 
elevated O3 levels on crop productivity and quality (Singh et al., 2018; 
Yadav et al., 2019). The results from the current study showed that 
elevated O3 reduced the photosynthesis rates of the Pusa Basmati 1121 
and IR64 Drt1 varieties of the rice crop, while the elevated O3 plus CO2 

FIGURE 5

(a) Grain nitrogen concentration (%) and (b) grain N uptake (mg hill−1) in the rice varieties under the elevated O3 and CO2 conditions. The bottom and 
top of the whiskers denote the first and third quartiles, respectively. The line inside the box represents the median line.
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treatment was able to maintain the photosynthesis rates of the crops. 
The elevated O3 and elevated O3 plus CO2 treatments significantly 
reduced the stomatal conductance and transpiration rates of the Pusa 
Basmati 1121 and IR64 Drt1 varieties. Previous studies have also 
indicated that elevated O3 could hinder photosynthetic carbon 
acquisition in crops (Guidi et al., 2001; Morgan et al., 2003; Singh 
et al., 2009; Bhatia et al., 2012). There are reports that elevated CO2 
concentrations reduce stomatal conductance and transpiration rates 
in rice crops (Maity et al., 2023; Zhang et al., 2022). The elevated O3 
level substantially decreased the yield of the Pusa Basmati 1121 and 
IR64 Drt1 varieties. In contrast, the Nagina 22 variety demonstrated 
comparatively less or no yield reduction. Nagina 22 is known for its 
stress tolerance, and the results indicate that the increase in the O3 
concentration had minimal to no effect on its yield. Such yield losses 
under the O3 exposure occurred due to the reduction in 
photosynthesis, which reduced the supply of assimilates required for 
reproductive development and seed growth (Feng et  al., 2010). 
Tatsumi et  al. (2019) also reported that brown rice yield was 
significantly reduced under elevated O3 concentrations. A similar 
decrease in grain yield with exposure to elevated O3 concentrations 
was reported for wheat cultivars in north India (Daripa et al., 2016; 
Yadav et al., 2019). In our study, an elevated CO2 concentration of 
550 ppm was able to partially mitigate the reduction in the grain yield 
due to increased O3 exposure in the Pusa Basmati 1121 and IR64 Drt1 
varieties, while it fully compensated for the yield reduction in the 
Nagina 22 variety. Elevated CO2 has a fertilization effect on crops, 
which has helped compensate for yield losses in different rice varieties. 
The yield loss in the Nagina 22 variety, which is stress-tolerant, was 
already less than the other varieties. Therefore, the reduction in the 
yield in Nagina 22 was fully compensated under the elevated CO2 plus 
O3 treatment. Various researchers have earlier reported the beneficial 
effects of increased CO2 levels in terms of increasing yields in different 
crops (Dey et al., 2017; Kobayashi et al., 1999; Pramanik et al., 2018; 
Sanyal et al., 2023). Bhatia et al. (2021) observed that a high CO2 
concentration of 554 ppm was able to counter the harmful impacts of 
O3 exposure on yield and nutrient content in chickpeas. A study 
conducted with rice showed that elevated CO2 could counter yield 
reduction due to O3 exposure by more than 40% (Kumar et al., 2021).

The application of a 25% higher dose of N increased the 
photosynthesis rates and different yield parameters, such as the 
number of panicles and the number of grains per panicle, in the rice 
crops, thereby increasing the yield to a certain extent under the 
elevated O3 concentration. According to Chen et al. (2018), decreased 
photosynthesis in nitrogen-deficient leaves increases the yield 
sensitivity of crops to high O3 concentrations. Therefore, the increased 
dose of N had a positive effect on the yield parameters of the rice crops 
even under the elevated O3 condition. The beneficial impact of higher 
N doses was also reported by Raj et al. (2019), who observed that 
increased atmospheric CO2 concentrations and higher N doses 
synergistically contributed to an increase in the panicle number, 
thereby improving the yield of rice crops.

The elevated O3 plus CO2 interaction decreased the grain N 
concentration and N uptake in the rice varieties compared to the 
ambient condition. As O3 is a strong oxidant, it harmfully affects 
important physiological functions in plants, which leads to reduced 
quality in crops (Avnery et  al., 2011). Similar findings have been 
reported by earlier researchers, who found that protein content in 
plants is negatively affected by increased O3 (Broberg et al., 2015; T
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Grünhage et al., 2012). Broberg et al. (2017) reported that O3 impairs 
the N translocation from straw to grain, thereby reducing the N use 
efficiency of crops. In addition, the applied N fertilizer is used less 
efficiently under elevated O3, leading to adverse effects on grain 
protein content in crops. Under elevated CO2 conditions, higher 
photosynthesis rates lead to greater carbon assimilation in rice, 
thereby reducing plant N concentrations due to the dilution effect 
(Kim et al., 2001). Reports indicate that protein content and N content 
in plants, especially cereal crops, decrease under elevated CO2 
conditions (Abebe et al., 2016; Chakrabarti et al., 2020; Raj et al., 2019).

Soil available N is also negatively affected by elevated O3 and CO2 
treatment, which may be attributed to increased N losses from crop 
fields under elevated O3 (Broberg et al., 2017). Under O3 exposure, 
plant photosynthesis and grain filling duration are shortened (Gelang 
et al., 2000), which reduces the nutrient uptake period and increases 
the likelihood of greater N loss from the soil. Earlier studies 
(Chakrabarti et  al., 2020; Maity et  al., 2020) have also reported a 
decrease in soil available N under elevated CO2 conditions due to 
increased crop growth resulting in higher N demand by the crop. As 
plant photosynthesis is hampered under increased O3 concentrations, 
reduced photosynthates in the roots affect the root system and various 
soil processes (Chen et  al., 2008). This may further affect soil N 
transformation rates (Wu et al., 2016), thereby lowering the available 
N status in the soil. The application of a higher N dose increased both 
the grain N uptake and soil available N in rice. As the crop growth was 
greater under the higher N doses, this generated more aboveground 
and belowground biomass of the crops. This might have led to 
increased microbial activity in the rhizosphere, leading to enhanced 
availability of N to the plants.

The study showed that although the negative effects of elevated O3 
on the rice yield were negated by the elevated CO2 concentration, the 
adverse effect of elevated O3 on the grain N content could not 
be  compensated for. The response of rice to elevated CO2 may 
be  limited when nitrogen levels are sub-optimal. However, the 
decrease in plant N could be alleviated to a certain extent by applying 
higher doses of N (Maity et al., 2020). Our study showed that the 
application of the 25% RDN improved both the grain N concentration 
and grain N uptake, as well as soil available N, in the rice crops under 
the elevated O3 and CO2 interaction.

Conclusion

The grain yield of the rice varieties decreased under the elevated 
O3 condition. An elevated CO2 concentration of 550 ppm was able to 
compensate for the yield loss by 3.9–4.6% in the Pusa Basmati 1121 
rice variety and by 4.6–8.0% in the IR64 Drt1 variety. Although 
elevated CO2 was able to compensate for the yield loss due to elevated 
O3, the N content in the rice grains was further reduced in the 
elevated O3 plus CO2 treatment. The application of an additional 25% 
of the recommended dose of N improved the grain N uptake by 
15.3–40.8% in the different rice varieties compared to the 100% RDN 
in the elevated O3 plus CO2 interaction treatment. The study shows 
that nitrogen in rice grains and soil available N will decrease under 
elevated O3 plus CO2 conditions. An elevated CO2 concentration of 
550 ppm will be able to compensate for yield loss to a certain extent, 
but grain quality will further deteriorate in the elevated O3 plus CO2 
treatment. The application of an additional 25% of the recommended 
dose of N could help in sustaining rice yield and also maintaining 

plant and soil N under elevated O3 and CO2 conditions in the future. 
However, the response of rice varieties to elevated O3 and CO2 might 
vary with different climate types. Therefore, the findings of the study 
could be  further improved by testing different N fertilizer 
formulations to suggest the best N management options for the 
sustaining productivity and quality of rice under elevated O3 and 
CO2 conditions.
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