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Introduction: Food safety issues pose a significant threat to humanity. Precision 
agriculture leverages advanced technologies for real-time monitoring and 
management, improving agricultural productivity and sustainability while safeguarding 
food security. Nonetheless, acquiring a thorough comprehension of this continually 
shifting panorama remains of vital significance.

Methods: This study conducts a comprehensive bibliometric review of precision 
agriculture and food safety, utilizing quantitative methods to identify past, 
current, and future evolution. It includes citation, co-authorship, co-citation, 
and co-words analyses.

Results: Publications emerged in 1994 and began to rise significantly since 
2019. Citation analysis verified influencing works and journals, whereas 
co-authorship analysis identified how authors, institutions, and countries 
collaborate in this field. Co-citation analysis then classified past and current 
hotspots into four clusters: remote vegetation monitoring techniques, 
technological innovations and agricultural decision-making, precision 
agriculture and sustainable development, and deep learning in agriculture. 
After that, the co-occurrence of keywords revealed emerging trends, such 
as precision cultivation and yield prediction, smart agricultural technology 
and food management, precision information for climate change adaptation, 
and precision agriculture and food security.

Discussion: The findings provide insights for scholars, policymakers, researchers, 
practitioners, and industry stakeholders. They guide future research directions 
and address pressing challenges in agriculture and food safety.
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1 Introduction

Food safety has long been a global concern. The food safety landscape is marked by 
significant challenges and repercussions, as evidenced by the FAO and WHO. Shockingly, 
contaminated food causes over 200 diseases worldwide, with 1 in 10 people falling ill each 
year. Among them, children below the age of 5, who represent 9% of the population, bear 
40% of foodborne diseases.1 These figures starkly depict the severity of food safety issues and 
highlight the urgent need for solutions. Food shortages further exacerbate these concerns, 

1 FAO, WHO. Food standards save lives - A Guide to World Food Safety Day 2023. Available from: www.

fao.org/world-food-safety-day (accessed April 2, 2024).
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underscoring the importance of ensuring food supplies’ safety and 
availability (Zeng et al., 2023; Żurek and Rudy, 2024). Recognizing its 
intrinsic connection to agriculture is central to safeguarding food 
safety, from cultivation and production to processing and distribution 
(Davies and Garrett, 2018; Kimhi, 2024; Misra et al., 2022). Elements 
like soil quality, water access, pests, and diseases directly induce 
contaminant prevalence (Taneja et al., 2023). Addressing food safety 
necessitates a holistic approach encompassing the entire agricultural 
continuum, emphasizing sustainable and responsible practices to 
safeguard public health and well-being (Agrimonti et al., 2021).

Precision agriculture has emerged against this backdrop. It 
involves the use of advanced information technologies such as the 
Internet of Things (IoT), Artificial Intelligence (AI), and cloud 
computing to achieve timely monitoring and analysis of various 
aspects, including fields, crops, and hydrology, thereby enabling 
precise management and addressing food safety concerns by 
enhancing production efficiency and resource utilization (Molin 
et  al., 2021; Savary et  al., 2019; Sishodia et  al., 2020). However, 
employing precision agriculture to support food safety is not without 
challenges. It relies on accurate data and information, thus requiring 
substantial investment and technical support (Van Loon et al., 2020). 
Additionally, effective integration and transition from traditional 
agricultural practices to precision agriculture necessitate changes in 
habits and the promotion of operating skills among agricultural 
practitioners (Klerkx and Rose, 2020).

Recent studies have begun exploring the impact of precision 
agriculture on food safety. Existing bibliometric analyses have 
explored various technologies within the domain of precision 
agriculture. For instance, Mesías-Ruiz et al. (2023) introduce 39 
emerging technologies to solve crop protection challenges. 
Kumari et al. (2023) further review the application of Machine 
learning (ML) and AI within the agriculture supply chain. After 
that, Liu et al. (2023) determine AI technologies’ current state, 
focal points, and prospective research directions in food 
safety studies.

However, while studies have examined specific technologies 
within precision agriculture and food safety, they tend to provide 
fragmented insights, lacking a comprehensive analysis that 
integrates findings across various technologies and practices. Thus, 
although individual technologies may be  well-studied, their 
collective impact on food safety remains unclear. Moreover, even 
when some studies focus on multiple precision agriculture 
technologies, they often fail to examine their direct relationship 
with food safety, leaving a gap in understanding how these 
technologies synergistically enhance food safety outcomes. The 
study aims to address this gap by conducting a comprehensive 
analysis through bibliometrics, utilizing the 1994–2024 data from 
the Web of Science (WoS) database and visualizing the pertinent 
literature with VOSviewe. Four specific objectives guide it:

 1 Identifying Influential Works: To discern the most influential 
publications in precision agriculture and food safety through 
citation analysis.

 2 Analyzing Collaboration: To examine the collaboration 
patterns among authors, institutions, and countries via 
co-authorship analysis.

 3 Spotting Research Hotspots: To identify significant past and 
current research hotspots by co-citation analysis.

 4 Revealing Emerging Areas: To unveil emerging research areas 
within precision agriculture and food safety through 
co-occurrence of keywords.

By realizing above objectives, the study makes several 
contributions to the field. Firstly, it provides a comprehensive 
bibliometric analysis that encapsulates the current status at the 
intersection of precision agriculture and food safety. By identifying 
influential publications and collaboration patterns, this study offers a 
detailed mapping of the scholarly landscape, enhancing our 
understanding of key players and their contributions. Secondly, this 
work highlights emerging research hotspots and future directions, 
thus helping researchers identifying historical focus and guiding them 
toward critical areas that require further exploration. Thirdly, the 
findings not only enhance the theoretical understanding of precision 
agriculture in relation to food safety but also offer practical insights 
for stakeholders across various sectors. It offers actionable insights 
into how precision agriculture can be effectively leveraged to enhance 
food safety. Policymakers can leverage the findings to inform their 
strategies and funding priorities, while researchers and practitioners 
will benefit from an overview of influential works and emerging 
trends. The identification of thematic clusters will guide future 
research directions, ultimately fostering collaborations that address 
pressing agricultural and food safety challenges.

2 Literature review

2.1 Challenges to food safety

The increasing complexity of food production necessitates a robust 
response to the myriad challenges affecting food safety. Climate change 
has increased weather variability, complicating agricultural planning 
and operations. This unpredictability can result in potential crop 
failures and reduced yields, which directly threaten food availability 
and safety (Agrimonti et  al., 2021). Furthermore, the rise in pest 
populations and diseases, exacerbated by changing climatic conditions, 
poses a significant threat to food production systems, leading to 
increased reliance on pesticides and chemicals that can compromise 
food safety (He et al., 2023). Resource scarcity, particularly concerning 
water and arable land, further intensifies these challenges. As available 
agricultural land diminishes and water resources become increasingly 
limited, farmers face difficulties in maintaining consistent production 
levels (Dahane et al., 2022; Dhillon and Moncur, 2023). This scarcity 
not only affects the quantity of food produced but can also impact its 
quality, as stressed crops are more susceptible to diseases and pests, 
ultimately leading to food safety concerns (Wang and Frei, 2011).

Moreover, globalization has introduced market volatility, which can 
disrupt food supply chains. For instance, the COVID-19 pandemic has 
exposed critical weaknesses in food supply chains, leading to significant 
disruptions that have resulted in food shortages and heightened food 
safety concerns as consumers faced diminished access to fresh and safe 
food options (Sharma J. et al., 2021). These disruptions have not only 
increased food prices but also raised alarm over the safety of food 
products, as prolonged supply chain interruptions can compromise food 
quality and increase the risk of contamination, further exacerbating food 
insecurity in many regions (Rasul, 2021). This illustrates the urgent need 
for resilient food systems that can withstand such shocks.

https://doi.org/10.3389/fsufs.2024.1475602
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Addressing these challenges is crucial to safeguarding food 
security and public health in an increasingly unpredictable global 
environment. Precision agriculture can play a vital role in this 
context by optimizing resource use, enhancing crop resilience, and 
improving monitoring and management practices. By implementing 
precision farming techniques, farmers can adapt more effectively to 
climate variability, mitigate pest and disease risks, and ultimately 
enhance consumer food safety. This shift toward precision 
agriculture is not merely beneficial but necessary to ensure a stable 
and secure food supply in the face of ongoing and future challenges.

2.2 The adoption of precision agriculture

Precision agriculture has gradually become vital for countries 
worldwide to ensure food safety and promote agricultural 
modernization and sustainable development (Gebbers and 
Adamchuk, 2010). Precision agriculture technology enhances crop 
yield and quality while improving ecological conditions (Pierce and 
Nowak, 1999). From the perspective of global practice, precision 
agriculture constitutes four elements: geographic positioning, data 
collection, data analysis, and precise processing. This framework 
enables functions such as data collection, decision support, and 
variable rate control.

2.2.1 Global positioning systems and remote 
sensing

The foundation for precision agriculture relies on Global 
Positioning System (GPS), which provides accurate positioning for 
data collection and implementation. Oksanen and Backman (2013) 
utilized GPS for tractor navigation systems, reducing labor inputs. 
Tijmen Bakker et  al. (2011) developed a real-time Kinematic 
Differential Global Positioning System (RTK-DGPS) autonomous 
navigation system, which showed that autonomous robots in field 
navigation enhance farming efficiency and increase crop yields. Blok 
et al. (2019) employed a 2D laser radar scanner for robot navigation 
between rows. Llorens et al. (2011)used laser radar to scan fruit trees, 
estimating canopy volume with notable detection and navigation 
effects in orchards.

Remote sensing is also used to acquire real-time information on 
agriculture. It involves monitoring farmland with sensors mounted on 
aircraft and satellites and collecting information about crop growth 
and soil conditions (Khanal et al., 2017; Mulla, 2013). Compared to 
traditional monitoring methods, remote sensing technology offers 
advantages such as low cost, strong timeliness, minimal atmospheric 
interference, and high resolution, creating new tools for agricultural 
data collection. Bodrito et  al. (2021) showed that satellite remote 
sensing and drone technology can effectively predict crop yields and 
implement precise fertilization strategies. Moreover, the application of 
sensor technologies allows farmers to collect critical data on soil 
moisture, temperature, and nutrient levels, enhancing the granularity 
of agricultural management practices (Li et al., 2024; Teixeira et al., 
2023). Agricultural remote sensing has expanded from merely 
monitoring crop growth to include precise fertilization, irrigation, and 
other areas. According to the International Drone Association, the 
application of drones in the civil sector is expected to contribute 
$82.1 billion to the U.S. economy from 2015 to 2025, with over 80% 
coming directly from agriculture (Zhang H. et al., 2021).

2.2.2 Internet of things, geographic information 
systems

The IoT and Geographic Information Systems (GIS) analyze the 
data collected from GPS and remote sensing, enabling real-time 
monitoring of farmland and forming a spatial information database 
that supports precision management. IoT technology uses sensor 
networks to continuously collect data on soil moisture, temperature, 
light intensity, and more, providing a rich data source for farmers to 
make informed decisions based on environmental conditions (Finger 
et al., 2019; Tzounis et al., 2017; Asim et al., 2024). Big data analytics 
enhances this process by analyzing vast amounts of data to identify 
trends and patterns that can inform agricultural practices (Wolfert 
et al., 2017).

GIS technology excels in integrating and analyzing spatial data, 
allowing for detailed visualization and assessment of geographic 
patterns, relationships, and changes over time. Chelaru et al. (2011) 
used GIS technology to analyze changes in the agricultural 
environment, providing data for agrarian production forecasting and 
early warning. Ding et al. (2010) studied soil organic phosphorus 
based on GIS, predicting the spatial distribution of organic 
phosphorus in agricultural soils in southwestern Australia and 
evaluating phosphorus loss conditions.

2.2.3 Machine learning and artificial intelligence
Machine learning (ML) and AI technology enhance precision 

agriculture by applying advanced algorithms to conduct in-depth 
analyses of agricultural data. Machine Learning utilizes advanced 
algorithms to analyze vast amounts of agricultural data. ML algorithms 
can identify patterns and correlations within datasets that may not 
be  immediately apparent, allowing for more accurate predictions 
regarding crop yields, pest infestations, and disease outbreaks (Zha 
et al., 2020). By continuously learning from new data, these algorithms 
adapt to changing conditions on the farm, providing real-time insights 
that help farmers make informed decisions (Dhillon et  al., 2023; 
Kübert-Flock et al., 2023). For example, random forest regression 
models have been utilized to predict the yields of crops planted in 
rows based on multisource satellite data, demonstrating the potential 
for improved forecasting accuracy (Terra et al., 2021).

Artificial intelligence extends the capabilities of traditional 
agricultural practices by applying complex models and algorithms to 
support intelligent decision-making. AI systems are designed to 
analyze data from various sources, including IoT sensors, satellite 
imagery, and historical agricultural records (Misra et al., 2022). By 
synthesizing this information, AI assist farmers in developing 
scientific production plans tailored to their specific conditions and 
goals. For example, it can recommend optimal planting times, crop 
rotations, and pest management strategies based on predictive 
analytics (Kumari et al., 2023). Additionally, AI technologies provide 
insights into market trends and consumer preferences, enabling 
farmers to adjust their production strategies to meet demand (Liu 
et al., 2023).

2.2.4 Precision fertilization and pesticide 
application technology

Precision agriculture requires precise fertilization and irrigation 
based on the actual conditions of the farmland (Drusch et al., 2012; 
Sharma A. et  al., 2021). Traditional fertilization and irrigation 
methods often lead to waste and pollution, while precision fertilization 

https://doi.org/10.3389/fsufs.2024.1475602
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Xu et al. 10.3389/fsufs.2024.1475602

Frontiers in Sustainable Food Systems 04 frontiersin.org

and pesticide application technologies effectively address these issues. 
It selectively applies pesticides based on target presence and 
characteristics, reducing pesticide deposition in non-target areas 
(Bongiovanni and Lowenberg-Deboer, 2004; Robert, 2002). Thus, 
Precision pesticide application technology helps to achieve better 
outcomes, lower costs, and less environmental pollution while 
improving crop disease resistance and product quality (Tian, 2002). 
Back et  al. (2014) designed an image-based application rate 
measurement system to control granular fertilizer application rates. 
Reyes et  al. (2015) developed a variable rate fertilizer automatic 
control system to enhance fertilization precision. Yu (2019) studied an 
online testing system for solid fertilizer application rates in a seed 
fertilizer drill machine, achieving precise measurement of 
application rates.

2.2.5 Regenerative agriculture technology
Regenerative agriculture is a holistic approach aimed at protecting 

and restoring food and agricultural systems by promoting soil 
regeneration, increasing biodiversity, improving water cycles, and 
enhancing overall ecosystem services. This method addresses 
degradation caused by industrial and conventional agricultural 
practices through sustainable farming and grazing techniques that 
rebuild soil organic matter and foster healthy ecosystems (Muhie, 
2022). The benefits extend beyond soil health; they also lead to 
improved water infiltration and increased microbial abundance, 
which are essential for effective nutrient and moisture management 
(Basche et  al., 2016). Moreover, regenerative practices reduce 
production input costs while effectively increasing crop yields, 
achieving enhanced efficiency and cost-effectiveness (Kaye and 
Quemada, 2017). Additionally, this approach considers animal 
welfare, contributing to improved livestock yield and quality (Palm 
et al., 2014).

2.2.6 Climate-smart agriculture technology
In 2009, the Food and Agriculture Organization (FAO) 

proposed the concept of “climate-smart agriculture” (CSA), 
exploring a strategy that ensures the sustainability and stability of 
global agricultural productivity while actively promoting carbon 
fixation and emission reduction to effectively mitigate the adverse 
impacts of climate change (Food and Agriculture Organization of 
the United Nations, 2013). CSA enhances food safety through a 
multifaceted approach that improves resilience, productivity, and 
sustainability in food systems, such as knowledge-smart practices, 
water-smart techniques, soil-smart strategies, and livestock 
management. Knowledge-smart practices equip farmers with 
essential tools and information, such as crop insurance and 
weather-based advisory systems, enabling them to make informed 
decisions that safeguard their yields (Qureshi et  al., 2022). 
Multispectral and hyperspectral imaging support climate-smart 
agriculture by helping to identify plant stress and nutrient 
deficiencies early in the growing season (Lipper et al., 2014). Water-
smart techniques, including drip irrigation and rainwater 
harvesting, ensure efficient water use, minimizing the likelihood of 
waterborne diseases affecting crops and enhancing overall food 
quality (Qureshi et  al., 2022). Bai et  al. (2016) found through 
APSIM simulations that optimizing planting density, sowing dates, 
water and fertilizer management, and plant protection measures 
can significantly improve crop yields and stability.

By implementing soil-smart practices, such as crop rotation and 
bio-fertilizers, CSA fosters healthier soils that lead to robust crops, 
thereby reducing the risk of disease and pest infestations. In terms of 
livestock management, livestock-smart practices focus on improving 
animal health through better feed and disease management, ensuring 
that meat and dairy products are safe for consumption (Qureshi et al., 
2022). Together, these CSA practices bolster food production and 
create a safer and more reliable food supply, essential for addressing 
the challenges posed by climate change and urbanization.

2.3 The multifaceted impact of precision 
agriculture on food safety

Precision agriculture promotes food safety through several 
interconnected pathways.

2.3.1 Enhancing crop yields and stability of food 
supply

Precision agriculture promotes food safety by enhancing crop 
yields and improving resource efficiency. By advanced technologies 
such as satellite imagery, GPS, and IoT sensors, farmers can optimize 
the application of inputs like water, fertilizers, and pesticides (Drusch 
et  al., 2012; Pandey and Pandey, 2023; Sharma A. et  al., 2021). 
Research shows that these technologies result in higher crop 
productivity while reducing resource waste (Pesonen et al., 2014). 
Enhanced soil organic matter and microbial activity, achieved through 
precision agriculture practices, lead to healthier soils that support 
more robust crops.

In addition, precision agriculture stabilizes food supply within 
urban agriculture, thereby improving food safety. Urban agriculture 
reduces the distance food travels from farm to table, minimizing the 
risks associated with contamination during transportation. By 
producing food closer to consumers, urban farms can maintain 
freshness and quality, ensuring that safety standards are upheld 
(Rodríguez et al., 2022). Urban farmers can monitor and manage crop 
growth more effectively with precision agriculture, such as climate-
smart approaches and digital decision-support systems, ensuring 
optimal conditions for production (Ebenso et al., 2022). This localized 
approach allows for quicker responses to environmental change, 
directly contributing to more consistent yields.

Moreover, the increased productivity provided by precision 
agriculture is essential for addressing the food demands of a rapidly 
growing global population (Tilman et al., 2011). As climate change 
and urbanization threaten traditional farming methods, precision 
agriculture offers innovative solutions to increase resilience. By 
adapting to local conditions and understanding the specific needs of 
crops, farmers can ensure a stable food supply even in unpredictable 
environments (Cao et al., 2017; Lin et al., 2023). This stability is critical 
not only for food security but also for the overall economy, as 
agricultural productivity directly impacts income and employment in 
rural areas.

2.3.2 Improving food quality monitoring across 
the supply chain

Another significant impact of precision agriculture is its ability to 
enhance the monitoring of food quality throughout the supply chain. 
Technologies such as blockchain and big data analytics facilitate 
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improved traceability of food products from farm to table (Kumari 
et al., 2023). This traceability ensures that safety standards are met at 
every stage of production, processing, and distribution (Davies and 
Garrett, 2018; Kimhi, 2024; Misra et  al., 2022). For instance, 
blockchain technology allows for the secure recording of every 
transaction and movement of food items, creating an immutable 
record that can be accessed by all stakeholders (Peng et al., 2022).

In the event of a food safety incident, this level of traceability 
enables rapid identification of affected batches, making it easier to 
recall contaminated products and prevent them from reaching 
consumers (Shafi et al., 2022). Enhanced monitoring mechanisms also 
allow for real-time assessment of food quality, ensuring compliance 
with safety regulations and standards (Pesonen et  al., 2014). This 
proactive approach both protects consumers and fosters greater 
transparency in the food system, thereby enhancing consumer 
confidence in the safety and quality of their food (Pontikakos 
et al., 2010).

2.3.3 Reducing chemical inputs for healthier food 
products

Precision agriculture contributes to food safety by minimizing 
reliance on chemical fertilizers and pesticides, which have been linked 
to various health and environmental concerns. Pande and Arora 
(2019) have shown that excessive chemical use not only poses risks to 
human health but also adversely affects soil health, sustainability of 
productivity, and environmental stability. By employing targeted 
application methods based on real-time data, farmers can significantly 
lower the quantities of chemicals used, thereby reducing the risk of 
harmful residues in food products (Bongiovanni and Lowenberg-
Deboer, 2004; Robert, 2002).

Through the implementation of integrated pest management and 
crop rotation strategies enabled by precision agriculture, farmers can 
adopt more sustainable practices that prioritize natural pest control 
methods and reduce the need for chemical interventions (Zimmermann 
et al., 2021). This shift not only enhances the safety of food products 
but also contributes to environmental sustainability (Miao et al., 2010). 
Consumers are increasingly seeking products that are free from 
harmful chemicals, and precision agriculture helps meet this demand 
by producing healthier food options (Jeong and Bhattarai, 2018).

2.3.4 Early detection and management of plant 
diseases and pests

Precision agriculture enhances food safety by enabling the early 
detection and management of plant diseases and pests (Jones and 
Naidu, 2019). Utilizing advanced technologies such as machine learning 
algorithms, drones, and imaging technologies, farmers can continuously 
monitor crop health in real time. These systems can detect subtle 
changes in crop conditions that may indicate the onset of disease or pest 
infestations before they escalate into significant problems (Grünig et al., 
2021; Khanal et al., 2017; Mesías-Ruiz et al., 2023; Mulla, 2013).

This proactive approach allows for timely interventions, which are 
crucial in protecting crop yields and maintaining food safety 
(Mohanty et  al., 2016). For instance, drones equipped with 
multispectral cameras can assess plant health over large areas, 
identifying stress factors that may not be visible to the naked eye 
(Shahrooz et al., 2020). Early detection systems not only reduce the 
economic losses associated with crop failures but also mitigate the risk 
of foodborne illnesses linked to contaminated products (He et al., 

2023). By addressing these issues swiftly, farmers can ensure the 
delivery of safe, high-quality food to consumers, thereby reinforcing 
the overall integrity of the food supply chain (Kumari et al., 2023).

2.4 Stakeholders of precision agriculture 
and food safety

Different stakeholders play vital roles in the implementation and 
impact of precision agriculture. Farmers, as the primary implementers, 
utilize advanced technologies to enhance productivity and economic 
returns (Zhang et  al., 2002). However, their adoption of these 
technologies often hinges on their level of training and accessibility. 
Many farmers face challenges such as inadequate educational 
resources and insufficient technical support, limiting their ability to 
implement precision agriculture effectively (Saiz-Rubio and 
Rovira-Más, 2020; Weersink et al., 2018). Addressing these barriers 
through targeted training programs and accessible resources is 
essential for maximizing the benefits of precision farming and 
fostering sustainable agricultural practices.

The increasing awareness of food safety from consumers, who 
represent another critical stakeholder group, drives demand for high-
quality, pesticide-free products (Bongiovanni and Lowenberg-Deboer, 
2004; Robert, 2002). Pontikakos et al. (2010) indicate that consumers 
are more likely to choose foods produced with sustainable practices, 
viewing precision agriculture as a means to enhance food safety and 
reduce harmful residues. This shift in consumer preferences 
underscores the importance of transparency in food production.

In this circumstance, policymakers help to shape the landscape for 
precision agriculture through the development of supportive policies 
and funding mechanisms (Singh, 2018). They are tasked with creating 
a regulatory framework that not only encourages the adoption of 
innovative technologies but also ensures that food safety standards are 
upheld and that agricultural practices are sustainable (Sparrow and 
Howard, 2021). By facilitating collaboration among farmers, consumers, 
and the agricultural sector, policymakers can help create an environment 
conducive to the successful implementation of precision agriculture.

2.5 Cases in precision agriculture 
achievements

The adoption of precision agriculture technologies varies between 
developing and developed countries. Developing countries often rely 
on cost-effective methods due to limited resources, while developed 
countries leverage advanced technologies to enhance productivity and 
food safety.

2.5.1 Developing countries
In developing countries, the adoption of precision agriculture 

technologies is often constrained by limited resources, infrastructure, 
and skilled labor. These nations typically operate small-scale and 
fragmented agricultural systems, which challenge the realization of 
economies of scale. Consequently, farmers tend to adopt low-cost, 
accessible technologies that enhance food safety without imposing 
substantial financial burdens.

Countries like India, which have relatively small and dispersed 
arable land, have developed a precision agriculture model that 
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focuses on high-value crops combined with selected precision 
agriculture technologies (Alagh, 2011). For example, Indian tea 
farmers employ quick soil mapping and targeted labor allocation. 
The structured nature of tea planting allows for quick soil mapping 
once the conditions of each plot are understood. Labor can 
be  organized based on the specific characteristics of each field, 
allowing for tailored interventions that compensate for 
technological limitations (Pathak et al., 2022). This approach not 
only improves productivity without requiring substantial financial 
investment but also ensures that the crops are cultivated under 
optimal conditions, thereby enhancing food safety through better 
quality control.

Additionally, low-cost diagnostic tools, such as chlorophyll meters 
and leaf color charts, have become vital for smallholder farmers in 
countries like the Philippines and Indonesia. These tools help farmers 
monitor nitrogen levels in crops, which is crucial for producing safe 
and nutritious food (Mazloumzadeh et al., 2010). By enabling farmers 
to make informed decisions about fertilization, these technologies 
directly contribute to food safety.

In South Africa, small-scale farmers utilize mobile phone data to 
monitor soil moisture conditions, allowing them to make timely 
agricultural decisions that optimize crop health (Dlamini et al., 2023). By 
enabling farmers to make informed decisions about fertilization, these 
technologies directly contribute to food safety (Mondal and Basu, 2009).

2.5.2 Developed countries
In contrast, developed countries like the USA leverage advanced 

precision agriculture technologies to enhance food safety through large-
scale and intensive farming practices. The prevalence of larger farms 
facilitates the implementation of sophisticated precision agriculture 
techniques, leading to improved crop yields and safer food products. 
Governments in these countries prioritize the development of precision 
agriculture through policy support, funding, and infrastructure 
investments (Daberkow and McBride, 2003). The focus on data-driven 
decision-making allows farmers to optimize inputs and maximize outputs 
effectively, which underpin food safety initiatives (Basso et al., 2001).

In the USA, pilot demonstrations of precision agriculture 
technologies are conducted to assess their benefits, particularly 
concerning food safety. Researchers analyzed data from comparative 
experiments to evaluate the economic and safety impacts of new 
technologies. Universities play a crucial role in showcasing the 
advantages of precision agriculture, helping farmers understand how 
these methods can reduce the use of harmful chemicals while 
maintaining high food safety standards (Yost et al., 2017). This direct 
approach to showcasing the benefits of precision agriculture has 
proven to be an effective method for technology dissemination. For 
instance, soybean farmers in the USA utilize remote sensing 
technologies such as satellite imagery and drones to monitor crop 
health. This enables them to significantly reduce chemical usage while 
enhancing food safety and yield quality (Arjoune et al., 2022).

In Denmark, experts from the National Agricultural Advisory 
Center provide guidance on precision agriculture technologies, 
ensuring that local agricultural advisory agencies receive the latest 
knowledge. This close connection between specialists and farmers 
fosters the adoption of best practices, thereby improving food safety 
standards in the region (Pedersen et al., 2004).

Japan’s focus on developing portable precision agriculture devices 
reflects the need for accessible solutions in smaller farmland areas. 

Innovations like sensitive soil moisture sensors and precise fertilization 
machines are tailored for small-scale farms, promoting food safety by 
enhancing management practices and reducing the risk of over-
fertilization (Shibusawa, 2001).

3 Research design and 
methodological approaches

3.1 Bibliometric approach

This study employed bibliometric analysis to examine keywords, 
sources, countries, and references from existing publications, 
providing an evaluation of the developmental trajectory, current 
status, and future directions within precision agriculture and food 
safety. This method was instrumental in organizing scientific literature 
into a structured format (Almas et al., 2022; Fauzi, 2023; Yan et al., 
2022), enhancing its accessibility and comprehensibility (Fauzi et al., 
2023; Yao et al., 2022), and making it popular in multiple research 
fields (Wider et al., 2023; Zakaria et al., 2023).

The research employed citation analysis, along with co-authorship, 
co-citation, and co-word analyses, which enriches the examination of 
structural aspects and aids in charting future directions (Fauzi et al., 
2022b). Citation analysis was used to evaluate the impact of articles by 
citations a publication receives. It is crucial for mapping and 
identifying impacting works in a specific field (Weerakoon, 2021). 
Co-authorship analysis investigated the collaborations and 
interconnections among authors, their affiliations, and the publishing 
locations they represent (Tamala et al., 2022). Co-citation analysis 
compiled instances of concurrent citations made to various documents 
and employs these counts to assess the degree of similarity or 
relatedness among those documents (Fauzi, 2023). Co-word analysis 
measured the co-occurrence frequency of keywords from titles, author 
keywords, and abstracts, thereby exploring inherent connections and 
directing potential topics (Su and Lee, 2010; Verma et  al., 2023). 
Theme analysis entails organizing scholarly literature to reveal 
coherence and evolving patterns (Fauzi et  al., 2022a; White and 
McCain, 1998). The significance of prominent publications is derived 
from frequencies and linkage strength (Bashar et al., 2021).

3.2 Study design and data processing

This paper begins with a meticulous selection of relevant literature, 
followed by an approach encompassing both quantitative and qualitative 
analyses. This dual-pronged methodology aims to uncover significant 
findings and subsequently formulate pertinent conclusions.

3.2.1 Literature search methodology
To minimize the risk of missed or misdirected searches, the 

study implemented the search strategy in Table 1. This process 
started with a selection of relevant literature, utilizing the Web of 
Science (WoS) database, which is recognized for its quality and 
extensive coverage of scholarly content (Yadav and Banerji, 
2023). This database was widely recognized as the most esteemed 
and extensively used data sources on publications and citations, 
providing comprehensive access to worldwide prestigious 
research (Birkle et  al., 2020; Martín-Martín et  al., 2021). The 
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choice of a single database such as WoS reduces the complexity 
and potential human error associated with consolidating data 
from multiple sources (Donthu et al., 2021).

The “Search Keywords” column employed combinations including 
(“precision agricultur*” or “precision farming*” AND “food safety*” 
or “food security*” or “food hygiene*” or “food quality assurance*”), 
ensuring a wide range of relevant literature was captured. This search 
string consists of two sets of representative terms related to the 
thematic field of investigation.

3.2.2 Inclusion and exclusion criteria
To ensure the quality of the selected literature, this study 

established specific inclusion criteria. The time frame included works 
published until March 24, 2024, and the search was confined to the 
“TOPIC” retrieval area, encompassing titles, abstracts, and keywords 
(Latino and Menegoli, 2022). The study adopted a broad scope, 
encompassing all meso-level topics linked to the keywords identified 
in the “Citation Topics Meso” section, aiming to capture 
interdisciplinary research that intersects with precision agriculture 
and food safety (Wider et al., 2023). As for “Document Type,” all types 
(e.g., articles, reviews, conference proceedings) were included to 
ensure a broad collection of relevant research outputs. The selection 
process was restricted to articles published in English to enhance 
accessibility and comprehension among the academic community, 

given the predominance of English in scholarly communication 
(Kotobiodjo et al., 2024; Lukambagire, 2024).

The study employed the PRISMA (2020) guidelines to analyze and 
exclude articles from the dataset (Kotobiodjo et al., 2024; Kraus et al., 
2020; Latino and Menegoli, 2022), as shown in Figure 1. Duplicate 
records were merged to ensure that each article was unique in the 
sample (Kotobiodjo et al., 2024). Then, articles were screened based 
on their titles and abstracts to eliminate those that were not relevant 
to the topic (Latino and Menegoli, 2022; Suchek et al., 2021). This 
procedure finally resulted in the identification of 416 articles.

3.2.3 Analytical techniques by VOSviewer
Bibliometric analysis can be conducted using a variety of tools, 

such as CiteSpace and VOSviewer, which offer user-friendly interfaces; 
the Bibliometrix package in R, which relies on code commands; and 
Pajek and Gephi, which focus on constructing complex network 
analyses. Among them, VOSviewer has become an increasingly 
popular software. It highlights essential similarities and connections 
across various research domains (Yao et  al., 2022), including 
technology, geography, agriculture, economy, and education. By 
clustering dispersed knowledge, the software reveals similarities and 
relevancies across diverse themes, allowing scholars to analyze the 
relationships between different areas of research (Eck and 
Waltman, 2010).

Due to its outstanding visualization capabilities and user-friendly 
interface (Wang and Frei, 2011), VOSviewer 1.6.18 software was 
chosen as the tool in the current study. This research identified 
significant publications, research collaborations, hotspots, and 
academic trends through density, overlay, and network analysis. 
Density analysis created maps for both publication citation analysis 
and sources citation analysis, visually representing the concentration 
of research. Overlay analysis was used to identify authorship patterns. 
It visualized the temporal dynamics of collaboration among authors, 
highlighting shifts in research partnerships over time. Network 
analysis generated maps for multiple dimensions, including 
organizations co-authorship analysis, countries co-authorship 
analysis, co-citation analysis, and co-word analysis. Network diagrams 
illustrated the relationships between authors, institutions, and 

TABLE 1 Search string.

WOS database ALL

Time period Up to March 24, 2024

Search field TOPIC

Search keywords “Precision agricultur*” or “precision farming*” AND 

“food safety*” or “food security*” or “food hygiene*” 

or “food quality assurance*”

Citation topics meso ALL

Document type ALL

Languages English

FIGURE 1

Review protocol according to PRISMA (2020) guidelines.
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countries, and the connections between keywords and cited works. 
These graphs provided a detailed overview of the research landscape, 
allowing researchers to gain a deeper understanding of precision 
agriculture and food safety.

Additionally, this study employed a qualitative thematic approach 
to extract critical insights from the reviewed publications. This process 
began by grouping the publications into categories based on shared 
themes and ideas. By doing so, researchers were able to identify 
common patterns and trends across the different studies. Next, it 
organized the information from each category in tables and narrative 
summaries. This allowed for a clear presentation of the feature of each 
theme. Finally, descriptive labels were assigned to each category, 
providing a concise way to refer to the different groups of publications. 
These labels helped to clarify the distinctions between the categories 
and facilitated further discussion and analysis of the findings (Mashari 
et al., 2023).

4 Results

4.1 Publication trends

The WoS search yielded 10,098 citations for the selected 
publications (N = 418), with 9,867 citations excluding self-citations. 
The H-index, indicating the impact and productivity of the research, 
stood at 47, showcasing the significance of the contributions. Each 
article received 24.16 citations on average, highlighting the attention 
and recognition garnered by precision agriculture and food safety 
research. This compilation of 418 articles reflects a growing demand 
for studies within this domain, under-scoring research’s increasing 
importance and relevance in precision agriculture and food safety. 
While the area commenced in 1994, major progress was not realized 
until 2019. Since then, there has been a remarkable increase in the 
volume of relevant publications, reaching 116 in 2023. Citations have 

also been documented since 1994, with a consistent upward trend 
observed from 2007 onwards. Since 2020, each subsequent year has 
seen citations increase approximately 1.5 times compared to the 
preceding year. By 2023, the aggregate count of citations had surged 
to 3,008. Figure  2 illustrates the progression of publications and 
citations spanning from 1994 up until March 24, 2024, further 
emphasizing the growing influence of precision agriculture and food 
safety research.

4.2 Citation analysis

This section employs density visualization techniques to unravel 
document and source citation analyses. Document citation analysis 
focuses on the flow of citations among individual publications, while 
source citation analysis examines the citation behavior of specific 
sources (Figure 3).

4.2.1 Most impactful documents
Utilizing a citation threshold of 15 or more, a refined subset of 137 

documents was extracted from the original pool of 418 studies for 
further analysis. Among these, 81 were published in 2020 or later. The 
top three cited publications were Gebbers and Adamchuk (2010) (658 
citations), Atzberger (2013) (597 citations), and Maimaitijiang et al. 
(2020b) (385 citations). Table 2 showcases the top 10 papers ranked 
by citation count. These highly cited publications underscore their 
significant influence on precision agriculture and food safety. Future 
research should build upon these influential works to advance 
knowledge and practice in precision agriculture and food safety.

Figure 3 presents a density analysis visualization that maps out the 
web of document links. This figure intuitively reveals the links and 
influence of documents through the size and color of the nodes. 
Notably, “Gebbers and Adamchuk (2010)” was in the red zone, 
indicating a high link, suggesting that it played a central role in the 

FIGURE 2

The number of publications and citations.
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field. Gebbers and Adamchuk (2010) claimed the top position with 15 
links when the studies were arranged based on their connectivity. 
Following closely were Robert (2002), Cao et al. (2017), and Kendall 
et  al. (2022), each with five links, indicating their significant 
contributions as well. Furthermore, an analysis of publication years 
shows that earlier research continued to be highly linked, while more 
recent publications were gradually gaining attention. This trend 
suggests that while established works remain influential, newer 
research is beginning to carve out its place in the academic discourse, 
potentially driving future innovations and developments in precision 
agriculture and food safety.

4.2.2 Sources of publications
By applying a rigorous threshold criterion, which necessitates each 

source to have at least one contributing document and a minimum of 
10 citations, 125 journals out of the 261 sources were identified. 
Table 3 underscores the top 10 sources garnered distinction through 
their towering averages of citation counts. Science from AAAS led the 
list, boasting an average of 658 citations. Agronomy for Sustainable 
Development from INRA and Computers & Operations Research 
from Elsevier followed closely, with 358 and 254 average citations, 
respectively. These high citation averages indicate that these sources 
are key platforms for advancing knowledge and fostering collaboration 
in the field of precision agriculture and food safety.

The graphical presentation in Figure 4 offers a visual breakdown 
of source density analysis, arranged based on their cumulative link 
strength. Prominent sources such as “science,” “remote sensing,” and 
“agronomy-basel” were located in the red zones, underscoring their 
important impact in the field of precision agriculture and food safety. 
At the forefront stands Science, published by AAAS, which leads the 
pack with a formidable total link strength of 24. Following closely in 
second and third positions are Remote Sensing and Agronomy-Basel, 
both from MDPI, showcasing total link strengths of 22 and 19, 
respectively. The analysis also reveals a diverse array of topics covered 
by these sources, including precision agriculture, food science, and 
environmental sustainability. The clustering of journals reflects the 
multidisciplinary character of current research trends, emphasizing 
the importance of cross-disciplinary collaboration. The role of these 

influential journals in disseminating diverse research perspectives is 
critical for advancing knowledge and fostering innovation in precision 
agriculture and food safety.

4.3 Co-authorship analysis

4.3.1 Authors of publications
Among the pool of 2,101 authors under consideration, a selective 

cohort of 86 authors was identified based on having contributed at 
least two documents and garnered at least one citation. Table  4 
highlights the foremost 10 authors who have excelled based on their 
exceptional average number of citations. Fritschi, Maimaitijiang, 
Sagan, and Sidike occupy the top spots, each demonstrating a 
remarkable average of 252 citations per author, underscoring their 
significant contributions and influence within precision agriculture 
and food security. These authors play pivotal roles in advancing 
research and innovation in this area. Their work not only contributes 
to the academy but also has practical implications for improving 
agricultural practices and food security.

Figure  5 presents a visual representation of the web of 
co-authorship, constructed based on the authors’ names. Each node 
represents an author, and the connections between them indicate 
co-authorship on shared publications. The color gradient—from blue 
to yellow—represents the publication timeline, with blue indicating 
earlier years (2018 or before) and yellow signifying more recent years 
(2024). The visualization reveals distinct clusters of authors who 
collaborated, indicating a strong network of co-authorship. A foremost 
example of clusters in the map encompasses seven authors who were 
particularly prevalent during the year 2023. In another cluster of seven 
authors, the average year of publication for these seven authors was 
2010.33, 2019.5, 2020.5, 2017, 2013.67, 2018, and 2023, respectively. 
The second-largest cluster, comprising six authors, prominently stood 
out in 2021. Concurrently, the third-largest cluster, boasting five 
authors, appeared notably in 2023.5, further underlining the dynamic 
nature of co-authorship networks and their evolution over time. These 
patterns underscore the dynamic nature of co-authorship networks and 
their evolution, suggesting that collaborative research is increasingly 

TABLE 2 Top 10 articles ranked by citation.

No. Year Author Title Citation Links

1 2010 Gebbers and Adamchuk (2010) Precision Agriculture and Food Security 658 15

2 2013 Atzberger (2013) Advances in Remote Sensing of Agriculture: Context Description, Existing 

Operational Monitoring Systems and Major Information Needs

597 4

3 2020 Maimaitijiang et al. (2020b) Soybean yield prediction from UAV using multimodal data fusion and deep learning 385 2

4 2010 Miao et al. (2010) Long-term experiments for sustainable nutrient management in China. A review 358 4

5 2020 Sharma et al. (2020) A systematic literature review on machine learning applications for sustainable 

agriculture supply chain performance

254 2

6 2012 Tey and Brindal (2012) Factors influencing the adoption of precision agricultural technologies: a review for 

policy implications

237 2

7 2003 Jarecki and Lal (2003) Crop Management for Soil Carbon Sequestration 227 0

8 2014 Sabaté and Soret (2014) Sustainability of plant-based diets: back to the future 204 0

9 2016 Brevik et al. (2016) Soil mapping, classification, and pedologic modeling: History and future directions 194 1

10 2022 Misra et al. (2022) IoT, Big Data, and Artificial Intelligence in Agriculture and Food Industry 192 0
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FIGURE 3

The density visualization of documents citation analysis.

TABLE 3 Top 10 sources ranked by average citation.

No. Source Publisher Publication Citation Total link 
strength

Average 
citation

1 Science AAAS 1 658 24 658

2 Agronomy for Sustainable Development INRA 1 358 4 358

3 Computers & Operations Research Elsevier 1 254 4 254

4 Critical Reviews in Plant Sciences Taylor & Francis 1 227 0 227

5 American Journal of Clinical Nutrition American Society for Nutrition 1 204 0 204

6 IEEE Internet of Things Journal IEEE 1 192 3 192

7 Proceedings of the National Academy of Sciences 

of the United States of America

National Academy of Sciences 1 184 2 184

8 Journal of the Science of Food and Agriculture Wiley 1 157 3 157

9 Journal of Plant Nutrition and Soil Science Wiley 1 136 1 136

10 Ecosystem Services Elsevier 1 126 5 126

important in addressing complex issues in precision agriculture and 
food security. Additionally, it highlights emerging connections among 
authors like “ismaili, maryem” and “hittiou, abdelaziz,” suggesting new 
collaborative efforts in recent years. This trend emphasizes the 
importance of fostering collaboration as a means to enhance knowledge 
sharing and advance the field.

The figure illustrates how collaboration can lead to the formation 
of research teams that focus on certain topics. For example, the 
collaboration in one of the largest clusters involving Yuxin Miao 
focused on optimizing fertilizer use in precision farming (Cao et al., 
2017; Miao et al., 2010; Zhao et al., 2013). Their research addressed 

the critical need for sustainable practices that enhance crop yields 
while minimizing environmental impact, reflecting a major trend in 
agricultural research. This consistency with previous study of Tian 
(2002) suggests a growing recognition of the need for environmentally 
friendly agricultural methods.

The other seven-author cluster containing Maninder Singh Dhillon 
facilitated the topic on precision agriculture and agricultural decision-
making (Dhillon et al., 2023; Kübert-Flock et al., 2023). They focused on 
remote vegetation monitoring techniques and machine learning in 
agricultural decision-making, which helps in enhancing crop yield 
predictions and promoting sustainable agricultural practices. Their work 
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exemplifies the integration of technology in agriculture, highlighting the 
importance of data-driven approaches to improve outcomes.

Moreover, the joint research conducted by the four most cited 
authors—Maitiniyazi Maimaitijiang, Vasit Sagan, Paheding Sidike, 
and Felix B. Fritschi—on using Unmanned Aerial Vehicles (UAVs) 
and data fusion technologies for crop monitoring had also significantly 
advanced the understanding of remote sensing methodologies in 
agriculture (Maimaitijiang et al., 2020a; Maimaitijiang et al., 2020b). 
Their work also emphasized that technological innovations facilitate 
improved decision-making processes and enhance operational 

efficiency in farming. The emergence of these topics highlights a 
significant trend toward integrating advanced technologies into 
agricultural practices, which is corroborated by findings from Pierce 
and Nowak (1999) and Chelaru et al. (2011).

4.3.2 Affiliation of publications
By implementing a criterion requiring a minimum of three 

publications and five citations per organization, 56 institutions were 
identified out of the 834 organizations. Table 5 presents an overview 
of the leading 10 institutions, ranked according to their impressive 

FIGURE 4

The density visualization of sources citation analysis.

TABLE 4 Top 10 authors ranked by average citation.

No. Author Publication Citation Total link strength Average citation

1 Fritschi, Felix B. 2 504 6 252

2 Maimaitijiang, Maitiniyazi 2 504 6 252

3 Sagan, Vasit 2 504 6 252

4 Sidike, Paheding 2 504 6 252

5 Zhang, Fusuo 3 457 4 152.33

6 Wei, Qingshan 2 249 0 124.5

7 Miao, Yuxin 6 629 11 104.83

8 Brevik, Eric C. 2 201 4 100.5

9 Miller, Bradley A. 2 201 4 100.5

10 Pereira, Paulo 2 201 4 100.5
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TABLE 5 Top 10 institutions ranked by average citation.

No. Institution Country Publication Citation Total link 
strength

Average 
citation

1 University of Missouri USA 3 504 0 168

2 University of Minnesota USA 6 580 10 96.67

3 The Ohio State University USA 4 325 5 81.25

4 The University of Adelaide Australia 4 275 3 68.75

5 Leibniz Centre for Agricultural Landscape Research Germany 3 202 1 67.33

6 University of Cambridge England 3 186 5 62

7 Wageningen University & Research Netherlands 6 367 6 61.17

8 Mississippi State University USA 3 174 1 58

9 Norwegian Institute of Bioeconomy Research Norway 3 172 6 57.33

10 Universiti Putra Malaysia Malaysia 5 278 1 55.6

average citation count. All the first three institutions were originated 
from the USA. The University of Missouri was ranked top with an 
amazing average of 168 citations per publication. The University of 
Minnesota and the Ohio State University followed, boasting 96.67 and 
81.25 average citations, respectively. The results suggest that these 
institutions are prolific in their research output and produce work that 
is highly regarded and frequently cited by peers, indicating their 
influence in shaping the research area.

Out of the 56 institutions selected, some were not interconnected, 
leaving 38 groups clustered into six clusters within the organizational 
network (Figure 6). Each node represents an organization in the 
network analysis of these organizations, and the connections 
between them indicate shared authorship on publications. The color-
coded nodes reflect different clusters of collaboration, highlighting 
interaction among institutions. Chinese institutions stand out as 
being particularly active in their collaborative endeavors, showcasing 
a commitment to advancing research in precision agriculture and 
food safety. Prominent nodes such as “China Agricultural University” 
and “Chinese Academy of Sciences” were located in central clusters. 
China Agricultural University and the Chinese Academy of 
Agricultural Sciences were at the forefront of collaboration, tied for 
the top spot with each having collaborated extensively, co-authoring 
projects alongside 11 distinct institutions. Ranked further down the 
list, the Chinese Academy of Sciences engaged in collaborative 
efforts with seven diverse organizations. The strong connections 
among these institutions suggest a robust network of partnerships, 
which is essential for advancing research initiatives. As the 
agricultural landscape continues to evolve, such collaborative 
networks will be crucial for addressing emerging issues related to 
food security.

Collaborative efforts among various institutions were advancing 
agricultural practices and forming various research areas. For instance, 
the partnership between China Agricultural University and University 
of Minnesota focused on improving nitrogen management in rice 
cultivation by utilizing UAV remote sensing and machine learning, 
thereby enhancing precision cultivation and yield predictions (Zha 
et al., 2020). This aligned with another collaboration between the same 
institutions, which seeks to optimize nitrogen use in wheat-maize 
cropping systems while minimizing environmental risks, thereby 
promoting sustainable agricultural practices that protect natural 
resources (Cao et al., 2017). Furthermore, the joint research of China 

Agricultural University and Norwegian Institute of Bioeconomy 
Research leveraged UAV technology to monitor nitrogen status in 
winter wheat fields, enhancing remote vegetation monitoring 
techniques and facilitating effective decision-making in smallholder 
farming (Chen et al., 2019). This trend toward integrating technology 
in agriculture reflects a broader movement within the field, as 
highlighted by Qureshi et al. (2022) and Bai et al. (2016), who noted 
the increasing reliance on precision agriculture technologies to 
improve efficiency and sustainability.

Real-time monitoring not only helped in managing inputs more 
effectively but also equipped farmers with the information needed to 
adapt to changing environmental conditions. Additionally, a 
partnership between University of Putra Malaysia and University of 
Adelaide reviewed the factors influencing the adoption of precision 
agricultural technologies, providing valuable insights for policymakers 
to increase technology uptake in agriculture (Tey and Brindal, 2012).

Another significant collaboration between China Agricultural 
University and Chinese Academy of Agricultural Sciences investigated 
the impacts of fertilizer intensification in China’s HHH Plains, 
promoting resource-efficient practices while ensuring sustainable 
development (Kong et  al., 2014). These collaborations not only 
fostered the development of innovative agricultural solutions but also 
tackled pressing issues related to food security and environmental 
stewardship. The increasing number of partnerships signifies a trend 
toward more holistic approaches to agricultural research, which 
underscore the importance of collaboration in tackling complex 
challenges in agriculture.

4.3.3 National origins of publications
All 86 countries published on precision agriculture and food 

safety were included in the analysis. They were ranked by average 
citations, shown in Table 6. Peru and Austria ranked top two (184 and 
166.4 average citations), while New Zealand ranked third (109 average 
citations). The high citation averages suggest that these nations are 
leaders in addressing challenges related to agriculture and food 
security. As the field continues to evolve, the contributions from these 
nations will be essential for advancing knowledge and practices that 
promote precision agriculture on a global scale.

Given the disconnected nature of certain countries in precision 
agriculture and food safety, the resulting national co-authorship 
network comprises 74 nations, organized into six clusters. Each node 
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represents a country, while the connections between them indicate 
co-authored papers. The color coding helps identify clusters of 
collaboration, with different colors representing distinct groups of 
countries. This arrangement reflects the varying levels of collaboration 
and interconnectivity among these countries within these specialized 
fields. Figure 7 presents the network analysis visualization of countries. 
The USA emerged as a clear leader by a wide margin, co-authoring 
with 43 countries. India and Germany ranked second with 28 
collaborations. Then, England followed with 27 links. This 
visualization underscores these countries’ essential contributions and 
influence in the precision agriculture and food safety domain. The 
connections among these countries suggest robust research networks 
that facilitate knowledge exchange and joint initiatives, which are 
critical for tackling food security issues by precision 
agriculture practices.

The visualization reveals a diverse array of countries involved in 
research, including both developed and developing nations. For 
instance, China was prominently highlighted in red. Its connections 
with various countries, especially the USA, India, and several 
European nations, underscored China’s role as a central hub for 
research partnerships. This suggests that China was not only 
advancing scientific research domestically but was also actively 
participating in international collaborations. Another large 
agricultural country, Brazil, represented in green, signified its growing 
involvement in international research cooperation. The connections 
with countries like India and Australia indicated that while Brazil’s 

research influence might be smaller relative to larger nations, its trend 
of engaging in international collaboration was on the rise.

International collaborations among countries were important in 
advancing innovative topics and addressing agricultural challenges. 
For instance, a partnership between Germany emphasized how 
integrating advanced technologies can optimize resource use and 
enhance food security (Gebbers and Adamchuk, 2010). Similarly, a 
collaboration between China and England highlighted the significant 
role of AI in improving food safety and quality while reducing waste, 
showcasing the benefits of technological innovations across borders 
(Liu et al., 2023). Additionally, joint efforts among the USA, Germany, 
and China showcased the global effort to develop innovative tools for 
real-time plant health monitoring, contributing to precision 
agriculture (Wu et al., 2020). Furthermore, a work by researchers 
from the USA and Australia illustrated how big data can enhance 
food safety management across international food supply chains 
(Donaghy et al., 2021). In a review led by India and England (Sharma 
et al., 2020) explored how machine learning improve agricultural 
sustainability on a global scale. Meanwhile, a paper co-authored by 
researchers from Australia and the USA addressed the challenges 
posed by viral diseases in agriculture and emphasized the need for 
integrated strategies, illustrating the collaborative effort to enhance 
global food security (Jones and Naidu, 2019). The economic impacts 
of UAV technology in agriculture, studied by Germany and China, 
revealed how these innovations improve efficiency and profitability 
for farmers (Quan et al., 2023).

FIGURE 5

The overlay visualization of authors co-authorship analysis.
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FIGURE 6

The network visualization of organizations co-authorship analysis.

These international collaborations illustrate how cross-border 
partnerships are essential in developing innovative solutions to enhance 
agricultural productivity and improve food security in an increasingly 
interconnected world. The rising trend of such collaborations reflects 
the importance of shared knowledge and resources in addressing 
complex agricultural challenges, supporting findings from (Lubag et al., 
2023), which underscore the necessity of global cooperation in research.

4.4 Co-citation analysis

The paper opts for document co-citation to map the intellectual 
framework. It justified this preference over author co-citation based 
on concerns Hota et  al. (2020) raised regarding potential 
misinterpretations stemming from authors’ participation in other 
research areas. Employing a threshold of nine, the co-citation analysis 
yielded 65 items from 28,645 cited references. Table 7 highlights the 
top  10 co-cited references. Notably, the top three references were 
Godfray et al. (2010), Gebbers and Adamchuk (2010), and Wolfert 

et al. (2017), with 41, 33, and 26 citations, respectively. The prominence 
of these references underscores their role in shaping the discourse and 
guiding the development of this domain.

Figure  8 visualized the network analysis on the relationships 
among publications based on how frequently they were cited together. 
Each node represents a publication, and the connections between 
nodes indicate co-citation relationships, with different colors 
highlighting various thematic clusters.

The co-citation approach uncovered four thematic clusters, each 
distinguishable by identically colored nodes. Table 8 summarizes this 
analysis, detailing cluster labels, publication count, and critical works 
within each cluster.

Cluster 1 (Red), titled “Remote Vegetation Monitoring 
Techniques,” encompasses 20 publications showcasing advancements 
in this field. Early methods relied on spectral indices like Normalized 
Difference Vegetation Index (NDVI), alongside algorithms to quantify 
biophysical properties such as the leaf area index (LAI), chlorophyll 
content, and biomass (Tucker, 1979; Yang et al., 2017; Zhou et al., 
2017). Besides, Soil-Adjusted Vegetation Indices (SAVIs) were 

TABLE 6 Top 10 countries ranked by average citation.

No. Country Publication Citation Total link strength Average citation

1 Peru 1 184 2 184

2 Austria 5 832 22 166.4

3 New Zealand 2 218 11 109

4 Lithuania 2 201 12 100.5

5 Norway 8 475 35 59.375

6 Poland 8 463 20 57.875

7 Cyprus 2 106 4 53

8 USA 90 4,744 249 52.71

9 Singapore 3 136 8 45.33

10 Germany 30 1,336 72 44.53
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introduced to mitigate soil background interference in remote sensing 
data (Huete, 1988). Subsequently, random forest algorithms efficiently 
processed spectral data for vegetation monitoring (Breiman, 2001). 
Later, the MERIS terrestrial chlorophyll index enhanced chlorophyll 
estimation capabilities (Dash and Curran, 2004). Evaluation studies 

using satellites’ NDVI and Enhanced Vegetation Index (EVI) captured 
seasonal changes and vegetation differences across biomes (Huete 
et  al., 2002). Hyperspectral imaging and data fusion techniques 
improve the accuracy of vegetation monitoring, advancing novel 
algorithms for predicting green LAI and biochemical parameters 

TABLE 7 Top 10 documents ranked by co-citation.

No. Year Author Title Citation Total link strength

1 2010 Godfray et al. (2010) Food Security: The Challenge of Feeding 9 Billion People 41 112

2 2010 Gebbers and Adamchuk (2010) Precision Agriculture and Food Security 33 80

3 2017 Wolfert et al. (2017) Big Data in Smart Farming – A Review 26 108

4 2018 Liakos et al. (2018) Machine Learning in Agriculture: A Review 21 115

5 2018 Chlingaryan et al. (2018) Machine Learning Approaches for Crop Yield Prediction and 

Nitrogen Status Estimation in Precision Agriculture: A Review

19 84

6 2018 Kamilaris and Prenafeta-Boldú 

(2018)

Deep Learning in Agriculture: A Survey 19 81

7 2011 Foley et al. (2011) Solutions for a Cultivated Planet 18 58

8 1979 Tucker (1979) Red and Photographic Infrared Linear Combinations for Monitoring 

Vegetation

18 93

9 2017 Kamilaris et al. (2017) A Review on the Practice of Big Data Analysis in Agriculture 17 79

10 2011 Tilman et al. (2011) Global Food Demand and the Sustainable Intensification of 

Agriculture

17 51

FIGURE 7

The network visualization of countries co-authorship analysis.
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(Haboudane et  al., 2004). As time progresses, UAV technology 
advancements make remote sensing platforms more accessible, 
enabling rapid, non-destructive phenotyping of crops across different 
environments (Bendig et al., 2015; Xue and Su, 2017). Multi-sensor 
Unmanned Aerial Systems (UASs) data offers cost-effective high-
throughput phenotyping, enabling precise plant trait and biomass 
estimation (Maimaitijiang et al., 2017). Field-based high-throughput 
phenotyping platforms revolutionized monitoring strategies with 
detailed insights into growth and stress tolerance (Araus and Cairns, 
2014). These remote techniques facilitate a better understanding of 
vegetation response without physical disturbance, providing crucial 
information on health, growth, and environmental response.

Cluster 2 (Green), titled “Technological innovations and 
agricultural decision-making,” contains 19 publications and discusses 
the significance of remote sensing, IoT, wireless sensor networks, 
machine learning, and big data analytics in modern agriculture. 
Firstly, remote sensing is vital in vegetation monitoring, as mentioned 
in Cluster 1, by providing high-resolution spatial and temporal data 
on crop health, soil conditions, and the surrounding environment 
(Sishodia et al., 2020). Satellites, drones, and other remote sensing 
platforms enable farmers to monitor their fields with unprecedented 
detail and make informed decisions (Khanal et al., 2017; Mulla, 2013). 
Furthermore, integrating IoT devices and networks further enhances 
agriculture by enabling real-time control of agricultural processes 
(Balafoutis et  al., 2017). IoT sensors gather data on soil moisture 
content, meteorological conditions, and equipment performance, 
allowing farmers to make timely adjustments to resource allocation 
(Finger et  al., 2019; Tzounis et  al., 2017). Thirdly, wireless sensor 
networks offer detailed field data on soil properties, crop growth, and 
environmental conditions, enabling precise decision-making wireless 
sensor networks deployed across fields provide valuable data (Jawad 
et  al., 2017; Kamilaris et  al., 2017). After that, machine learning 
algorithms predict crop yields, diseases, and pest infestations, guiding 
resource-efficient and environmentally friendly practices (Liakos 
et  al., 2018). This reduces usage and environmental impact and 
ensures crop health and quality (Chlingaryan et al., 2018). Big data 
analytics processes this information, extracting actionable insights for 
optimal efficiency and sustainability (Wolfert et al., 2017). However, 
addressing cost, complexity, and education challenges is crucial to 
harnessing these innovations’ full potential (Saiz-Rubio and 
Rovira-Más, 2020; Weersink et al., 2018). This cluster reflects a trend 
toward the digitalization of agriculture. As these technologies continue 
to evolve, their integration into farming practices will be crucial for 

addressing the increasing demands on agricultural systems in a 
rapidly changing world.

Cluster 3 (Blue), titled “Precision agriculture and sustainable 
development,” contains 17 publications and focuses on integrating 
advanced technologies to enhance agricultural productivity while 
minimizing environmental degradation. Multi-dimensional global 
strategies must be formulated to achieve sustainable development, 
including improving agrarian production efficiency, reducing 
environmental impact and ensuring fair food distribution (Godfray 
et al., 2010). Under such a background, precision agriculture emerges 
as a transformative approach bridging agrarian productivity while 
minimizing environmental degradation (Zhang et  al., 2002). It 
revolutionizes traditional farming practices by leveraging advanced 
technologies such as sensors, information systems, and enhanced 
machinery (Gebbers and Adamchuk, 2010; Mahlein, 2016). Precision 
agriculture optimizes resource utilization while minimizing 
environmental impacts by managing inputs like fertilizers, seeds, and 
pesticides based on site-specific data (Bongiovanni and Lowenberg-
Deboer, 2004; Robert, 2002). This targeted approach mitigates issues 
like pesticide resistance and nutrient imbalances, fostering long-term 
sustainability in agriculture and presenting a viable solution to global 
food security challenges (Bongiovanni and Lowenberg-Deboer, 2004; 
Gebbers and Adamchuk, 2010; Tilman et al., 2011). Furthermore, 
precision agriculture enhances the quality of agricultural produce 
(Gebbers and Adamchuk, 2010; Robert, 2002). Implementing decision 
support systems empowers farmers to monitor and manage the entire 
crop production chain, contributing to a more sustainable supply 
chain (Gebbers and Adamchuk, 2010; Jones et  al., 2003). The 
publications in this cluster indicate that technological advancements 
in agriculture are essential for achieving sustainability goals while 
meeting the demands of a growing population.

Cluster 4 (Yellow), titled “Deep learning in agriculture,” contains 
nine publications. Deep learning is a subfield of machine learning 
mentioned in Cluster 2, and its significance in agriculture has made it 
a distinct cluster. It revolutionizes traditional farming practices 
(Sharma A. et al., 2021). Deep-learning models like convolutional 
neural networks (CNNs) analyze vast datasets of plant images to 
identify subtle patterns indicative of diseases, empowering farmers 
with timely insights into crop health (Mohanty et al., 2016). Deep 
learning algorithms are also pivotal in predicting crop yields, 
optimizing planting strategies, and maximizing productivity while 
mitigating environmental risks by leveraging diverse data sources like 
meteorology, records, and soil characteristics (van Klompenburg et al., 

TABLE 8 Co-citation clusters.

Cluster Label Number Representative publications

1 (Red) Remote vegetation 

monitoring techniques

20 Huete et al. (2002), Haboudane et al. (2004), Xue and Su (2017), Maimaitijiang et al. (2017), Araus and Cairns 

(2014), Khanal et al. (2017), Mulla (2013), Balafoutis et al. (2017), Tzounis et al. (2017), Finger et al. (2019), 

Jawad et al. (2017)

2 (Green) Technological innovations 

and agricultural decision-

making

19 Kamilaris et al. (2017), Liakos et al. (2018), Chlingaryan et al. (2018), Weersink et al. (2018), Saiz-Rubio and 

Rovira-Más (2020), Zhang et al. (2002), Mahlein (2016), Bongiovanni and Lowenberg-Deboer (2004), Tilman 

et al. (2011), Jones et al. (2003), Dash and Curran (2004), Sharma J. et al. (2021), Mohanty et al. (2016)

3 (Blue) Precision agriculture and 

sustainable development

17 van Klompenburg et al. (2020), Drusch et al. (2012), Kamilaris and Prenafeta-Boldú (2018), Hota et al. (2020), 

Musanase et al. (2023), Pandey and Pandey (2023), Yang et al. (2017), Zhang Y. et al. (2021), Breiman (2001)

4 (Yellow) Deep learning in agriculture 9 Kpienbaareh et al. (2019), Cudjoe et al. (2023), Longmire et al. (2023), Masrur Ahmed et al. (2022), Ed-Daoudi 

et al. (2023)
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2020). Moreover, integrating deep learning with IoT technologies and 
satellite imagery enhances precision agriculture practices. Satellite 
imagery and IoT sensors offer real-time data on environmental 
conditions, crop health, and growth patterns, which deep learning 
algorithms analyze to tailor irrigation and fertilization schedules for 
optimal crop growth (Drusch et al., 2012; Sharma A. et al., 2021). By 
leveraging advanced deep learning techniques, farmers can optimize 
production processes, minimize environmental impact, and ensure a 
more resilient food supply chain for future generations (Kamilaris and 
Prenafeta-Boldú, 2018). As research in this area continues to expand, 
the implications for agricultural practices and policy will be profound, 
emphasizing the need for ongoing investment in technology and 
training to harness the full potential of machine learning.

4.5 Co-word analysis

Each identified keyword appeared at least nine times, with a final 
selection of 68 keywords from the total of 2,524 for co-word analysis. 
“Precision agriculture” emerged as the most prevalent keyword, 
appearing 194 times in the analyzed corpus. Following closely, “Food 
security” and “Agriculture” ranked second and third (90 and 55 
occurrences, respectively). Table 9 showcases the top 10 keywords 
with the highest co-occurrence. The high frequency of these keywords 
indicates their relevance and the collaborative discourse surrounding 
them, suggesting that research in precision agriculture is increasingly 
integrated with broader discussions on food safety.

Figure 9 illustrates the result of the co-word analysis, providing 
insights into the relationships among key concepts in research, 
illustrating how frequently certain terms were associated with one 
another. Each node represents a keyword or concept, and the 
connections between them indicate co-occurrence. The largest node 
centered around “Precision Agriculture,” which was prominently 
displayed in the middle, indicating its significance in contemporary 
research. Other key nodes included “Food Security” and various terms 
related to remote sensing and machine learning, highlighting the 
interdisciplinary nature of current agricultural research. The figure 
depicted four distinct yet seemingly interconnected clusters of 
keywords. By examining these clusters, researchers can discern 
emerging themes, identify potential gaps in the literature, and explore 
the relationships between various concepts and subfields within their 
study area. Afterward, Table 10 summarizes the co-word analysis for 
precision agriculture and food safety literature. The table includes 
labels, numbers, and typical words.

Cluster 1 (Red), titled “Precision cultivation and yield prediction,” 
contains 25 keywords. The integration of cutting-edge technologies 

TABLE 9 Top 10 keywords ranked by co-occurrence.

No. Keyword Occurrences Total link 
strength

1 Precision agriculture 194 591

2 Food security 90 268

3 Agriculture 55 178

4 Deep learning 34 114

5 Management 33 118

6 Machine learning 31 141

7 Climate-change 30 104

8 Big data 28 124

9 Precision farming 28 69

10 Remote sensing 28 128

FIGURE 8

The network visualization of co-citation analysis and hotspot themes.
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has paved the way for yield prediction in agricultural cultivation 
(Musanase et al., 2023). The fusion of AI with remote sensing and 
UAV technology has revolutionized the monitoring and prediction of 
vital parameters such as soil conditions and nitrogen levels. This 
synergy enables farmers to assess crop health and environmental 
conditions promptly, predict future trends, and perform appropriate 
cultivation behaviors (Kpienbaareh et al., 2019; Pandey and Pandey, 
2023; Zhang Y. et al., 2021). Furthermore, large-scale data analysis has 
empowered agricultural stakeholders to analyze diverse plant 
characteristics. From aboveground biomass to leaf-area index and 
chlorophyll content, these datasets profoundly understand the growth 
dynamics of major crops like corn and wheat. Leveraging the 
predictive capabilities inherent in these datasets, farmers can refine 
their cultivation to optimize both yield and quality (Cudjoe et al., 
2023; Longmire et al., 2023; Maimaitijiang et al., 2020a; Maimaitijiang 
et al., 2020b). Furthermore, precision cultivation and prediction are 
significantly bolstered by the strategic deployment of machine 
learning models and neural networks, which have proven instrumental 
in enhancing productivity levels across agricultural landscapes 
(Masrur Ahmed et al., 2022; Taneja et al., 2023). Optimizing yield 
prediction by cutting-edge technologies contributes to precision 
cultivation and the security of food supplies (Ed-Daoudi et al., 2023; 
Zeng et al., 2023). The findings in this cluster highlight the importance 
of technological integration in modern agriculture. As these 
technologies continue to evolve, they offer promising solutions for 
enhancing agricultural productivity and sustainability, ultimately 
contributing to more resilient food systems.

Cluster 2 (Green), titled “Smart agricultural technology and food 
management,” has 22 keywords and focuses on using smart 
agricultural technologies to optimize food production and 
management processes. Implementing AI and big data analytics 
allows real-time tracking of crop conditions and environmental 
parameters, enabling growers to optimize resources, promptly address 
potential risks and ensure effective food management (Ahmed et al., 
2023; Ayalew et al., 2013; Bojtor et al., 2021). Besides, IoT allows real-
time monitoring of environmental conditions, crop health, and supply 
chain logistics, enhancing traceability and transparency throughout 
the food production and management cycle (Shafi et  al., 2022). 

Sophisticated algorithms and sensor technology also allow for precise 
input of water, fertilizers, and pesticides, thereby minimizing 
environmental impact and maximizing yield and quality (Mabele and 
Mutegi, 2019; Srinivasu, 2018). Quality assurance measures, supported 
by these smart agriculture solutions, ensure compliance with food 
management standards and regulations. These smart technologies 
enhance transparency and accountability throughout the food supply 
chain by automating processes like food traceability and quality 
control, thus further bolstering consumer trust in the food system’s 
efficiency and reliability (Pontikakos et  al., 2010). By embracing 
sustainable practices and leveraging smart technologies, the 
agriculture industry can meet the growing demand for safe, nutritious, 
and sustainable food, ensuring a more resilient and efficiently 
managed food supply (Davies and Garrett, 2018). Ongoing research 
and investment will be vital in refining smart agricultural technologies 
and addressing the challenges they present.

Cluster 3 (Blue), named “Precision information for climate change 
adaptation,” contains 12 keywords and focuses on analyzing 
information related to climate change, aiming to enhance agricultural 
resource efficiency and crop resilience to environmental stresses. 
Facing escalating climate change challenges, precise agricultural 
information becomes increasingly vital for informed decision-making 
and effective adaptation strategies (Cao et al., 2017; Lin et al., 2023). 
For example, deep learning algorithms enable the accurate 
classification and analysis of complex datasets, providing information 
about the intricate relationships between climate variables, pests, and 
crop responses (Grünig et al., 2021; Mesías-Ruiz et al., 2023). Satellite 
remote sensing offers a wide-scale and non-invasive means of 
monitoring environmental conditions, allowing for real-time 
information acquisition and assessment of climate-induced stressors 
such as drought and temperature extremes (Gobin et al., 2023; Vidican 
et al., 2023). Such precision information enables real-time monitoring 
and adaptation to climate change in agriculture. Furthermore, by 
integrating precision agriculture information, farmers can help food 
systems to adapt to climate change. This is achieved through improved 
resource efficiency, reduced waste, and enhanced traceability and 
quality of agricultural products (Pesonen et al., 2014). Ultimately, by 
investing in precision agriculture information and adopting proactive 

TABLE 10 Co-word clusters.

Cluster Label Number Representative keywords Top three keywords in 
occurrence

1 (Red) Precision cultivation 

and yield prediction

25 Biomass, Iomass, Chlorophyll content, Corn, Grain-yield, Leaf-area 

index, Machine learning, Maize, Neural-networks, Nitrogen, 

Prediction, Productivity, Reflectance, Remote sensing, Rice, Soil, 

UAV, Vegetation indexes, Water, Wheat, Yield, Yield prediction.

Machine learning (31 Times), Remote 

sensing (28 Times), Yield (28 Times).

2 (Green) Smart agricultural 

technology and food 

management

24 Adoption, Agriculture, Artificial intelligence, Big data, Challenges, 

Computer vision, Crop, Food safety, Internet of things, Precision 

farming, Quality, Wecurity, Smart agriculture, Sustainable 

agriculture, technology.

Agriculture (55 Times), Management (33 

Times), Big data (28 Times), Precision 

farming (28 Times).

3 (Blue) Precision information 

for climate change 

adaptation

13 Classification, Climate-change, Crops, Deep learning, Information, 

Random Forest, Satellite, Sensors, Stress, Time-series, Vegetation.

Deep learning (34 Times), Climate-

change (30 Times), Classification (26 

Times).

4 (Yellow) Precision agriculture 

and food security

6 Climate change, Ecosystem services, Food security, Precision 

agriculture, Sustainable intensification, Use efficiency.

Precision agriculture (194 Times), Food 

security (90 Times), Use efficiency (10 

Times).
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adaptation strategies, societies can build more resilient and adaptive 
agricultural systems better equipped to cope with the uncertainties 
and challenges of a changing climate (Cao et al., 2017; Kamyab et al., 
2024). Therefore, as the agricultural sector confronts climate-related 
pressures, a commitment to leveraging advanced technologies and 
data-driven approaches will be essential in ensuring food security for 
future generations.

Cluster 4 (Yellow), titled “Precision agriculture and food security,” 
contains six keywords. This cluster focuses on leveraging precision 
agriculture techniques to enhance food security by optimizing 
resource utilization efficiency and promoting sustainable agricultural 
development. By exploring precision agriculture, stakeholders aim to 
optimize resource allocation and minimize environmental impact 
while maximizing agricultural productivity, thereby ensuring a 
reliable food supply (Garbach et  al., 2017). Precision agriculture 
techniques enable farmers to manage fertilizer inputs precisely, 
improving resource use efficiencies and yield (Zhao et al., 2013). These 
techniques, coupled with sustainable intensification practices like crop 
rotation and integrated pest management, not only boost agricultural 
productivity but also mitigate adverse environmental effects such as 
soil erosion and water pollution (Zimmermann et  al., 2021). 
Furthermore, the adoption of precision agriculture involves 
integrating agroecological principles and utilizing technologies that 
foster resource conservation and resilience within agricultural 

systems. By implementing these strategies, stakeholders can improve 
food security and facilitate natural resource conservation and agrarian 
system resilience (Çakmakçı et  al., 2023; Zaks et  al., 2011). By 
investing in infrastructures, training, and governance that support 
precision agriculture, stakeholders can foster a culture of continuous 
improvement and innovation within the agricultural sector, ensuring 
its long-term viability and adaptability in the face of evolving 
environmental and socio-economic challenges while safeguarding 
food security (Aliloo et  al., 2024). The insights from this cluster 
emphasize that precision agriculture is not merely a set of tools but an 
approach that, when effectively implemented, has the potential to 
transform food systems.

5 Discussion

5.1 The evolution of hotspot topics

The evolution of hotspot topics has benefited from the 
collaboration among authors, institutions, and countries. Author 
collaborations from diverse fields, including environmental science, 
computer science, geography, and agriculture, enhanced remote 
vegetation monitoring techniques (Abrahams et  al., 2023). This 
collaborative approach also improved technological innovations and 

FIGURE 9

The network visualization of co-word analysis and emerging trends.
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agricultural decision-making. The collaborative work by Peguero 
et al. (2023), applied UAV remote sensing and data analytics to create 
predictive models for crop performance, improving agricultural 
decision-making and sustainability. Similarly, collaborative efforts by 
Cao et  al. (2017) in precision agriculture focused on optimizing 
fertilizer use to boost crop yields while minimizing environmental 
impacts. Author collaborations by Shafi et al. (2022) also advanced 
deep learning models that analyze large datasets to identify patterns 
in plant health and disease.

Institutional collaborations have further strengthened these 
developments. Partnerships among institutions like the Ministry of 
Agriculture & Rural Affairs, the Chinese Academy of Agricultural 
Sciences, and the University of Tokyo have created frameworks for 
integrating satellite, aerial, and ground-based data for remote sensing 
(Shi et al., 2014). This resource-sharing enhanced the accuracy and 
effectiveness of monitoring technologies. Additionally, these 
collaborations fostered the development of real-time monitoring 
systems that empower farmers to make informed crop management 
decisions (Chen et al., 2019). Research between China Agricultural 
University and the Chinese Academy of Agricultural Sciences 
promoted resource-efficient practices through fertilizer 
intensification (Kong et  al., 2014). In deep learning, institutional 
partnerships advanced research on computer vision techniques that 
improve pest and disease detection, thereby enhancing food safety 
and productivity (Akbar et al., 2024).

International collaborations are also crucial. They facilitated the 
testing and validation of remote sensing technologies across diverse 
ecosystems, ensuring adaptability (Kilwenge et  al., 2021). Cross-
border collaborations, such as those between Ecuador and Peru, 
promoted the sharing of best practices that benefit farmers 
(Rodríguez et  al., 2022). Global partnerships contributed to 
establishing international best practices, as demonstrated by a review 
led by researchers from India and England on how machine learning 
can enhance agricultural sustainability (Sharma et al., 2020). Lastly, 
international collaborations enabled the cross-validation of 
algorithms for pest and disease forecasting, as seen in studies 
involving researchers from Scotland, England, and China (Grünig 
et al., 2021).

Collaborations are important for enhancing food security 
through precision agriculture. By leveraging diverse expertise, these 
collaborations fostered innovation and enhanced the effectiveness of 
agricultural practices. Moreover, the integration of knowledge across 
borders not only accelerated technological advancements but also 
promoted resilience in agricultural systems. The evolution of hotspot 
topics through collaboration highlighted the need for a global 
approach to tackle the challenges of food security, ensuring that the 
sector could thrive amid ongoing global pressures.

5.2 The development of emerging trends

Author collaborations drive emerging trends in precision 
agriculture and food safety. In precision cultivation and yield 
prediction, researchers like Dhillon et al. (2023) refined algorithms 
that analyze historical yield data alongside current environmental 
conditions, essential for developing informed cultivation strategies. 
This groundwork supported advancements in smart agricultural 
technology and food management, where Kpienbaareh et al. (2019) 

optimized algorithms for precise resource allocation, maximizing 
yield while minimizing environmental impact. Furthermore, 
collaborations in precision information for climate change adaptation, 
including Agrimonti et al. (2021) and Jamil et al. (2022), have clarified 
the relationships between climate variables and crop responses, 
informing adaptive practices. Additionally, partnerships have led to 
models that optimize fertilizer application rates, improving nutrient 
use efficiency and crop yields (Cao et al., 2017; Miao et al., 2010; Zhao 
et al., 2013).

Institutional collaborations enhance these trends by facilitating 
practical applications. For example, partnerships between the 
University Putra Malaysia and University Sains Malaysia developed 
advanced yield prediction models using multi-source data and 
machine learning, promoting data-driven decision-making in 
precision agriculture (Ang et al., 2022). These efforts also improve 
food safety by integrating advanced technologies into risk 
management systems (Taneja et al., 2023). Moreover, institutional 
collaborations are crucial for establishing frameworks that promote 
precision information for climate change adaptation, as seen in the 
development of smart irrigation tools designed by the University of 
Castilla-La Mancha and the University of Córdoba to address water 
scarcity, which showcases a proactive approach to future agricultural 
challenges (Perea et  al., 2019). In precision agriculture and food 
security, institutions are fostering a culture of knowledge sharing 
through training programs for farmers, indicating a trend toward 
community engagement in sustainable agricultural practices (Lee 
et al., 2017).

International collaborations further stimulate these trends by 
facilitating knowledge exchange. Projects between Iran and Germany 
develop models to predict crop yields across diverse environments, 
reflecting a trend in cross-border research initiatives (Fathi et al., 
2023). Such global cooperation enables the implementation of 
innovative solutions across various contexts, such as in India, South 
America, Malaysia, China, and Europe (Lubag et  al., 2023). In 
precision information for climate change adaptation, partnerships 
from Ethiopia and South Korea share best practices to help 
agricultural systems adapt to climate challenges (Sishodia et  al., 
2020). For food security, collaborations between Australia and the 
USA address agricultural diseases and enhance food safety through 
shared strategies (Jones and Naidu, 2019).

These collaborative efforts highlight the role of interdisciplinary 
cooperation in developing research trends. By integrating expertise 
from various fields, researchers can create effective, adaptable 
solutions that respond to local needs. Furthermore, institutional and 
international partnerships foster knowledge sharing and capacity 
building, essential for empowering farmers and enhancing 
food security.

5.3 Future research agenda

Despite advancements in precision agriculture and food safety, 
several gaps remain in the literature. First, while individual 
technologies have shown promise in improving agricultural 
practices, their combined effects remain underexplored. 
Investigating how these technologies work together in real-world 
agricultural settings could yield valuable insights into optimizing 
crop management, resource allocation, and environmental 
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monitoring (Qazi et al., 2022). Second, insufficient longitudinal 
research exists on the long-term impacts of precision agriculture. 
As climate change continues to pose significant challenges to 
agricultural productivity, it is crucial to understand how adaptive 
strategies evolve (Adamides, 2020). Third, the socio-economic 
barriers to adopting precision agricultural technologies need 
further investigation. Farmers face various barriers, such as cost, 
access to technology, access to the market, and educational 
resources, which hinder the implementation of precision agriculture 
practices (Latino et  al., 2022). Furthermore, the relationship 
between sustainability metrics and food safety requires further 
examination. Finally, research on policy frameworks and 
governance structures that facilitate the adoption of precision 
agriculture is needed. Understanding how policies support 
innovation while ensuring environmental protection and food 
security is essential for creating conducive environments for 
technology adoption (Sparrow and Howard, 2021).

This study proposes a research agenda based on the identified 
gaps. First, future research should explore the synergistic 
integration of advanced technologies such as GPS, remote 
sensing, IoT, GIS, machine learning, and AI. Second, there is a 
need for longitudinal studies that assess the long-term effects of 
precision agriculture. Multi-year studies should monitor the 
effectiveness of precision practices, tracking their impacts on 
crop health, soil quality, and water usage. Additionally, research 
should examine the socio-economic implications of technology 
adoption, facilitating technology adoption and assessing broader 
impacts on rural economies, labor dynamics, and food equity. 
Moreover, future research should create indicators that quantify 
agricultural productivity, environmental sustainability, and 
socio-economic benefits, enabling stakeholders to make informed 
decisions aligned with sustainability goals. Finally, future studies 
should evaluate existing policies for their effectiveness in 
fostering innovation while ensuring environmental protection 
and food security.

5.4 Implications

The findings offer theoretical perspectives on precision 
agriculture and food safety. Firstly, the identification of influential 
publications provides an overview of the scholarly landscape, 
facilitating a deeper understanding of key concepts and developments 
in precision agriculture and food safety. By citation analysis, 
researchers can trace the evolution of ideas and identify seminal 
works that have shaped the theoretical foundations of the field. 
Secondly, by elucidating clusters from co-citation analysis, the study 
contributes to past and current theoretical discussions surrounding 
integrating advanced technologies into agricultural practices to 
enhance productivity, sustainability, and food safety. Thirdly, the 
co-word analysis reveals emerging trends and common keyword 
searches for future research directions, thus laying a foundation for 
subsequent studies.

The practical implications of this research offer guidance for 
policymakers, researchers, practitioners, consumers, and industry 
stakeholders involved in precision agriculture and food safety. 
Policymakers benefit from these insights to inform their policy-
making endeavors, such as prioritizing funding for research initiatives 

that address pressing challenges like climate change adaptation and 
food safety regulations. Moreover, researchers stay updated on the 
latest developments by referencing influential scholarly works and 
journals, ensuring their efforts align with current advancements. The 
identification of thematic clusters and common keywords provides 
valuable insights for shaping future research directions. Additionally, 
agricultural practitioners leverage these insights to adopt precision 
agriculture techniques, enhancing operational efficiency and 
promoting environmental stewardship. Implementing decision 
support systems based on research findings optimizes resource use 
and improves yield. Moreover, the findings support consumer 
education initiatives, highlighting the benefits of precision agriculture 
in ensuring food security and sustainable practices. Heightened 
consumer awareness drives demand for sustainably produced food. 
Industry stakeholders could also utilize the findings inform 
investment decisions and strategic planning, fostering collaborations 
and partnerships that advance research efforts. Identifying emerging 
trends guides innovation and solution development, aiding industry 
stakeholders in addressing challenges related to agriculture and 
food safety.

6 Conclusion

The research conducts a bibliometric analysis of precision 
agriculture and food safety to cluster past, present, and future trends. 
The literature emerged in 1994 and has notably increased since 2019. 
The analysis of document citations pinpointed the top-cited 
documents. In addition, Science was the most influential journal, 
while Fritschi, Maimaitijiang, Sagan, and Sidike were the top authors 
by average citations. China Agricultural University and the Chinese 
Academy of Agricultural Sciences had the most co-authorships. Still, 
based on collaboration, the USA was the most influential country on 
precision agriculture and food safety.

Co-citation analysis classified four past and present areas of 
intense focus: remote vegetation monitoring techniques, 
technological innovations and agricultural decision-making, 
precision agriculture and sustainable development, and deep learning 
in agriculture. Past research has primarily focused on technologies in 
vegetation monitoring and precision agriculture, including remote 
sensing, IoT, wireless sensor networks, machine learning and big data 
analytics. However, there has been relatively limited research on the 
connection between precision agriculture and food safety in the past, 
focusing only on how precision agriculture bridges agricultural 
productivity with environmental sustainability.

Clusters from the co-word analysis showed emerging trends 
covering precision cultivation and yield prediction, smart agricultural 
technology and food management, precision information for climate 
change adaptation, and precision agriculture and food security. As 
suggested by the results, future research could utilize advanced 
technologies to predict crop yield. It also needs to investigate the 
application of smart agricultural technologies further to make 
informed cultivation decisions. Another two future trends in the 
agriculture sector are utilizing precision techniques to gather data for 
adapting to climate change and promoting food security.

This study acknowledges several limitations that warrant 
consideration. Firstly, citation metrics may not fully reflect the 
relevance of newer studies, as recent publications have not garnered a 
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considerable amount of citations yet, which may lead to an 
underestimation of their current influence in comparison with 
previous works (Xu et al., 2024). Secondly, the citation impact analysis 
predominantly centers around the first authors, potentially leading to 
neglecting the significant contributions made by co-authors (Zhao, 
2006). This narrow focus may not provide a comprehensive view of 
the collaborative nature of research in precision agriculture and food 
safety. Thirdly, the process of identifying and interpreting clusters may 
be subject to personal biases, as it depends heavily on the discretion 
of authors (Wider et al., 2023). Fourthly, this study focuses on English-
language publications, which may exclude important research 
published in non-English journals.

To address these limitations, future research endeavors could 
implement several strategies. Future research could employ meta-
analyses to synthesize findings from multiple studies, thereby 
providing a more robust understanding of the field and capturing 
the impact of newer studies. Furthermore, future studies should 
consider a more inclusive approach that evaluates the contributions 
of all authors. This could involve employing qualitative analyses, 
such as interviews or surveys with researchers, to gain insights into 
the roles of co-authors and their contributions, thus providing a 
more nuanced understanding of collaboration in research. In 
addition, regarding the process of cluster identification and 
interpretation, future research should continue to have multiple 
researchers independently analyze the same dataset and reach a 
consensus, ensuring that the identification and interpretation of 
clusters are more objective and credible. Reference checks and a 
training phase for coders could also be used to reduce subjectivity 
and enhance the objectivity of the results. Lastly, analyses could 
include non-English literature by collaborating with multilingual 
researchers to provide a more comprehensive view of the field.
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