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Introduction: Probiotics can improve immune responses and regulate the

ecosystem of microorganisms in the gastrointestinal tract.

Methods: Three primary models, including the Reparameterized Gompertz,

Huang, and Baranyi and Roberts models were evaluated and developed to

investigate the e�ects of Laetiporus sulphureus polysaccharides (LSP) on the

growth of Lactobacillus plantarum, Streptococcus thermophilus, Clostridium

tyrobutyricum, and Bifidobacterium adolescentis.

Results: The Huangmodel and Reparameterized Gompertz model were suitable

for describing the growth of C. tyrobutyricum, S. thermophilus, B. adolescentis,

and L. plantarum. LSP could increase the population of B. adolescentis in the fluid

environment of the stomach in vitro.

Discussion: These results may support the further development of LSP as

a functional food or food additive that has the ability to preserve digestive

tract health.

KEYWORDS

Laetiporus sulphureus, polysaccharides, kinetic model, gastrointestinal probiotics, in
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1 Introduction

In recent decades, the gastrointestinal tract has been regarded as the human body’s

biggest immunological organ. The gastrointestinal tract has a diverse microbiota that is

emerged as a critical target for the treatment of disease (Xu et al., 2023; Li et al., 2024).

Experimental evidence has shown that metabolic disorders including hypertension, insulin

resistance, obesity, hyperglycemia, and hyperlipidemia, etc. are closely associated with

gut microbiota (Shao et al., 2022; Zhang H. et al., 2023; Ouyang et al., 2024; Li et al.,

2024. Makki et al. (2018) found that a high fat diet could reduce microbial diversity and

change the gut microbial metabolism, leading to the development of metabolic syndrome.

According to Li et al. (2019), the gut microbiota of the high fat diet-induced rats was

modulated in order to prevent hyperlipidemia and hypercholesterolemia. It suggested

that improving gastrointestinal tract health might be a new strategy for the treatment

of diseases.

Probiotics are the dominant microbiota in the gastrointestinal tract and beneficial

to improve the digestion of food. Lactobacillus plantarum, Clostridium tyrobutyricum,

Bifidobacterium adolescentis, and Streptococcus thermophilus are important bacteria in the

gastrointestinal tract. L. plantarum is a facultative anaerobic gram-positive bacterium.

It is reported that L. plantarum can improve intestinal inflammation, preventing the

occurrence or aggravation of diseases, and it also can be used to treat mental illness and
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improve cognitive functions (Toshimitsu et al., 2016; Rudzki et al.,

2019; Hu et al., 2020; Zhang Z. et al., 2023; Zeng et al., 2023). C.

tyrobutyricum is an obligate anaerobic gram-positive bacterium.

Luo et al. (2024) suggested that C. tyrobutyricum may alleviate

obesity symptoms by improving lipid metabolism and intestinal

health, as well as regulating intestinal microbiota. B. adolescentis

is a gram-positive and non-motile bacterium, which has been

shown to alleviate anxiety/depression and treat colitis (Kim et al.,

2019; Ma et al., 2021; Sharma et al., 2023). S. thermophilus is

considered as a probiotic, which is safe and can survive in the

human gastrointestinal tract and exhibited health benefits on its

host (Uriot et al., 2017). It is widely used in the production of dairy

products (Che et al., 2019; Demirci et al., 2024).

Several studies have demonstrated that mushroom

polysaccharides are the effective components in the regulation

of gut microbiota, as they promote the growth of beneficial

microorganisms: Agaricus bisporus polysaccharides could enhance

the abundance of beneficial bacteria during the stimulating

gastrointestinal digestion and gut microbiota fermentation (Fu

et al., 2023). Lv et al. (2019) found that Ganoderma lucidum

polysaccharides had the potential to increase total short chain fatty

acids and butyric acid while regulating gut microbiota. On the

other hand, they decrease the population of pathogens: a study

performed in 2018 showed that chitosan obtained from G. lucidum

spore powder has the antimicrobial activity for E. coli and S. aureus

(Zhu et al., 2018).

Laetiporus sulphureus (L. sulphureus) is an edible andmedicinal

mushroom belonging to the phylum of Basidiomycota. It has

already been documented that L. sulphureus contains various

bioactive compounds such as lectin, polysaccharides, triterpenoids,

and phenolic compounds, etc. (Wang et al., 2018; Lu et al.,

2023; Jen et al., 2024). Polysaccharides are the vital bioactive

substances of L. sulphureus. Interestingly, a number of studies

have demonstrated the various health promoting properties of

L. sulphureus polysaccharides (LSP) including anti-inflammatory

(Lu et al., 2023), anti-cancer (Jen et al., 2024), hepatoprotective,

antioxidant activity (Zhao et al., 2019), and hypoglycemic activity

(Hwang and Yun, 2010). Many reports have shown that modeling

experimental data using kinetic models is one of the effective

ways to study the effects of prebiotic compounds on probiotics

(Altieri et al., 2016; Bernal-Castro et al., 2019; Montes et al.,

2024; Wang et al., 2023). However, there was limited investigation

into the impact of LSP on gut microbiota or application of any

mathematical model.

In general, in order to further develop the application of LSP

in promoting microbial growth, the aim of this study was (1) to

investigate the effects of LSP on the growth of C. tyrobutyricum,

S. thermophilus, B. adolescentis, and L. plantarum, (2) combining

with kinetic models to select the accurate mathematical models

for describing the growth of C. tyrobutyricum, S. thermophilus, B.

adolescentis, and L. plantarum, (3) to evaluate the efficiency of LSP

in increasing the survival of C. tyrobutyricum, S. thermophilus, B.

adolescentis, and L. plantarum at simulated gastric and intestinal

condition. These researches provide a theoretical basis for the

development of functional food, health products and other related

fields. In addition, they provided a new idea for the exploitation and

utilization of LSP.

2 Materials and methods

2.1 Materials and media

The fruiting body of L. sulphureus (dried mushroom) was

obtained from Changbaishan Co., Ltd. (Jilin, China). Reinforced

Clostridium medium (RCM) broth, RCM agar medium, tryptone

peptone yeast extract (TPY) broth, TPY agar medium, modified

Chalmers (MC) broth, MC agar medium, and De-Man Rogosa

Sharpe (MRS) broth, MRS agar medium were purchased from

Hopebio Co., Ltd. (Qingdao, China).

2.2 Preparation of LSP

The dried powder of L. sulphureus was mixed with distilled

water (1:20, w/v) at 80◦C for 3 h. The supernatant was collected

by filtration through a Buchner funnel and precipitated by two

volumes of ethanol (95%, v/v) at 4◦C for 12 h. The precipitate

was obtained by centrifugation (4,000 rpm, 20min), and then

deproteinated with Sevag reagent (n-butanol: chloroform = 1:4,

v/v). LSP was harvested after freeze-drying (FDU-2110, Eyela Co.,

Ltd., Tokyo Japan), which was used for further research.

2.3 Bacterial culture and preparation

Clostridium tyrobutyricum (ATCC25755), Bifidobacterium

adolescentis (ATCC15703), Streptococcus thermophilus

(ATCC14485), and Lactobacillus plantarum (ATCC8014) were

purchased from Guangdong Microbial Culture Collection Center.

The bacterial cultures were harvested after 3 consecutive transfers.

One day before the experiment, 100 µL of each culture (C.

tyrobutyricum, B. adolescentis, S. thermophilus, and L. plantarum)

was individually transferred to 10mL of RCM, TPY, MC, and

MRS broth and held at 37◦C in an anaerobic box (Mitsubishi Gas

Chemical Company Incorporated; Tokyo, Japan) for 24 h.

2.4 Bacterial growth

The 100 µL of each overnight culture (C. tyrobutyricum, B.

adolescentis, S. thermophilus, and L. plantarum) was separately

added into 10mL of RCM, TPY, MC, and MRS broth containing

0% (Control), or 2% of LSP in sterile centrifuge tubes. Each tube

wasmixed evenly and anaerobically kept for 24 h at 37◦C. Each tube

was serially diluted and enumerated. Additionally, the bacteria’s

concentrations were transformed to the natural base, or logarithm

of base 10, and stated as Ln CFU/mL or lg CFU/mL.

2.5 Primary models

To select the most suitable kinetic model to describe the

growth of C. tyrobutyricum, B. adolescentis, S. thermophilus,

and L. plantarum, three primary models were chosen. Huang

model (Equations 1, 2, Huang, 2013), Baranyi and Roberts model
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(Equations 3, 4, Baranyi and Roberts, 1995), and Reparameterized

Gompertz model (Equation 5, Zwietering et al., 1990) were used in

this research. The Huang model is expressed as

Y (t) = Y0 + Ymax − ln
{

eY0 +
[

eYmax − eY0
]

e−µmaxB(t)
}

(1)

B (t) = t +
1

α
ln

1+ e−α(t−λ)

1+ eαλ
(2)

The variables in this equation are: t presents the time point

(h), Y(t) presents the natural logarithm of microorganism count

(ln CFU/g), λ presents the lag phase duration (h), Ymax presents

the bacterial count (ln CFU/g) at the stationary phase, Y0 presents

the initial microorganisms count (ln CFU/g), µmax presents the

maximum specific growth rate (h−1), B(t) is the transfer function

and α is a constant (α = 4) that defines the transition from the lag

phase to the exponential phase of a growth curve (Huang, 2013).

The Baranyi and Roberts model is expressed as

Y (t) = Y0 + µmaxA (t) − ln

[

1+
eµmaxA(t) − 1

eYmax−Y0

]

(3)

A (t) = t +
1

µmax
ln(e−µmaxt+e−h0 − e−µmaxt−h0 ) (4)

The physiological state of the microorganism, h0, is equals to

λ×µmax. Ymax, Y0, Y(t), and µmax, are specified as in the Huang

model. Establishing the h0 averaged value. A(t) is the transfer

function. Next, use a fixed h0 value to estimate Y0, µmax, and Ymax.

The Reparameterized Gompertz model is expressed as

Y (t) = Y0 + (Ymax − Y0) exp
{

−exp

[

µmaxe

Ymax − Y0
(λ − t) + 1

]}

(5)

t, λ, Y(t), Ymax, µmax, and Y0 are specified as in the

Huang model.

2.6 Simulated gastrointestinal condition

2.6.1 E�ect of LSP on simulated gastric fluids in
vitro

Simulated gastric fluids were prepared as described by Kenari

and Razavi (2022) with slight modification. Briefly, the phosphate

buffered saline (0.1 mol/L, pH = 7.4) was used as solvent to obtain

RCM broth. The pH values of the RCM broth were adjusted to

3 using hydrochloric acid (8 mol/L). After sterilization, 0.5 g of

pepsin (Solarbio Life Sciences Co., Ltd. Bejing, China) was added

into 100mL of RCM broth to obtained the simulated gastric fluid

of RCM broth. The simulated gastric fluids of TPY, MC and MRS

broths were obtained by using the method as described as the

simulated gastric fluid of RCM broth. The 100µL of each overnight

culture (C. tyrobutyricum, B. adolescentis, S. thermophilus, and L.

plantarum) was separately added into 10mL of simulated gastric

fluids containing 0% (Control) or 2% of LSP. Each tube was

collected at 0 and 3 h of digestion. After digestion, the samples

FIGURE 1

E�ects of polysaccharides from Laetiporus sulphureus on the growth of Lactobacillus plantarum, Streptococcus thermophilus, Clostridium

tyrobutyricum, and Bifidobacterium adolescentis. Values marked by di�erent letters are significantly di�erent at p < 0.05; values marked by the same

letter are not significantly di�erent at p > 0.05.
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FIGURE 2

Population of Lactobacillus plantarum, Streptococcus thermophilus, Clostridium tyrobutyricum, and Bifidobacterium adolescentis. Control: 0% of

Laetiporus sulphureus polysaccharides, LSP: 2% of Laetiporus sulphureus polysaccharides. *Significant di�erence at p < 0.05.

were serially diluted and enumerated on RCM, TPY, MC and

MRS agar media to enumerate C. tyrobutyricum, B. adolescentis, S.

thermophilus, and L. plantarum. The bacterial concentrations were

also converted to the logarithm of base 10 or natural base, recorded

as Log10 CFU/mL or Ln CFU/mL.

2.6.2 E�ect of LSP on simulated intestinal fluids
in vitro

Simulated intestinal fluids were prepared by the method of

Razavi et al. (2020). For the intestinal digestion, the phosphate

buffered saline (0.1 mol/L, pH = 7.4) was used as a solvent

to obtain RCM broth. The pH values of the RCM broth were

adjusted to 7 using hydrochloric acid (8 mol/L). After sterilization,

1 g of trypsin (Solarbio Life Sciences Co., Ltd. Bejing, China)

was added into 100mL of RCM broth to obtained the simulated

intestinal fluid of RCM broth. The simulated intestinal fluids of

TPY, MC and MRS broths were obtained by using the method as

described as the simulated intestinal fluid of RCM broth. The 100

µL of each overnight culture (C. tyrobutyricum, B. adolescentis, S.

thermophilus, and L. plantarum) was separately added into 10mL of

simulated intestinal fluids containing 0% (Control) or 2% of LSP.

Each tube was collected at 0 and 3 h of digestion. After digestion,

the samples were serially diluted and enumerated on RCM, TPY,

MC, and MRS agar media to enumerate C. tyrobutyricum, B.

adolescentis, S. thermophilus, and L. plantarum. The bacterial

concentrations were also converted to the logarithm of base 10 or

natural base, recorded as Log10 CFU/mL or Ln CFU/mL.

2.7 Statistical analysis

The growth curves of C. tyrobutyricum, B. adolescentis,

S. thermophilus, and L. plantarum were investigated by the

Integrated Pathogen Modeling Program (IPMP) established by

the United States Department of Agriculture (USDA, Huang,

2013). The specific growth rates, maximum bacterial concentration,

confidence intervals, lag phase duration, and data analysis

were acquired from IPMP analysis. Three replication of each

experiments were conducted. One-way ANOVA was used to

examine the acquired data. Graphpad Prism 9 was used for the

statistical analyses.

3 Results and discussion

3.1 E�ects of LSP on the growth of
microbial

Recent research has demonstrated that polysaccharides have

the capacity to modulate gut microbiota and the balance of
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FIGURE 3

Growth curves of Lactobacillus plantarum, Streptococcus thermophilus, Clostridium tyrobutyricum, and Bifidobacterium adolescentis. Solid black

line: Huang model, solid red line: Baranyi and Roberts model, solid blue line: Reparameterized Gompertz model, triangle: observed growth data.

FIGURE 4

Growth curves of Lactobacillus plantarum, Streptococcus thermophilus, Clostridium tyrobutyricum, and Bifidobacterium adolescentis treated with

polysaccharides of Laetiporus sulphureus. Solid black line: Huang model, solid red line: Baranyi and Roberts model, solid blue line: Reparameterized

Gompertz model, diamond: observed growth data.
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microbial metabolites (Yin et al., 2020; Xue et al., 2020). Certain

species of gut microbiota might acquire energy and carbon sources

via the breakdown of polysaccharides for their own proliferation

(Ze et al., 2012). Tong et al. (2020) reported that Ganoderma

lucidum polysaccharides could increase the relative abundances of

beneficial bacteria (Ruminococcus, Oscillibacter, Bifidobacterium,

Prevotella, Alloprevotella, Paraprevotella, and Alistipes). The effects

of LSP on the population of C. tyrobutyricum, B. adolescentis,

S. thermophilus, and L. plantarum were shown in Figure 1.

The LSP at 0, 0.5, 1, and 2% concentrations exhibited the

population of C. tyrobutyricum of 8.41 ± 0.05, 8.55 ± 0.10,

8.68 ± 0.01, and 8.66 ± 0.06 lg CFU/mL, respectively. The

LSP showed a higher population of C. tyrobutyricum than 0%

of LSP. Moreover, there was no significant difference in the

population of C. tyrobutyricum among 0.5, 1, and 2% of LSP (p

> 0.05). The LSP at 0, 0.5, 1, and 2% concentrations exhibited

the population of B. adolescentis of 7.49 ± 0.02, 7.70 ± 0.03,

8.26 ± 0.06, and 8.28 ± 0.03 lg CFU/mL, respectively. The

LSP exhibited an increasing population of B. adolescentis at

higher concentrations. Compared to 0% of LSP, 1% of LSP could

significantly increase the population of B. adolescentis and reach

the maximum population of B. adolescentis (p < 0.05). There

was no significant difference between 1% of LSP and 2% of

LSP with regard to their population of B. adolescentis (p >

0.05). Simultaneously, the population of S. thermophilus, and L.

plantarum was not increased by LSP (p > 0.05). The results

suggested that 1% of LSP could increase the population of C.

tyrobutyricum and B. adolescentis. Therefore, 1% of LSP was

selected for further research.

The effects of LSP on the growth of C. tyrobutyricum,

B. adolescentis, S. thermophilus, and L. plantarum were

displayed in Figure 2. The population of C. tyrobutyricum,

B. adolescentis, S. thermophilus, and L. plantarum increased

with increasing incubation time. Compared to the control

group, LSP could increase the population of B. adolescentis at

11–24 h, while increasing the population of C. tyrobutyricum

at 5–24 h. The result suggested that LSP exhibited an impact

on increasing the population of C. tyrobutyricum and B.

adolescentis in vitro. A similar phenomenon was found by Li

et al. (2019) in which Ganoderma lucidum polysaccharides

could increase the relative abundance of Bifidobacterium in

rats. Furthermore, the population of S. thermophilus and

L. plantarum in the control group and LSP group showed

no significant difference. It suggests that LSP could not

increase the population of S. thermophilus and L. plantarum

in vitro.

3.2 Mathematical modeling

The Huang, Reparameterized Gompertz, and Baranyi and

Roberts models were used to evaluate microbial inactivation,

survival, and growth in reaction to surrounding environment

(Akkermans et al., 2018; Tashiro and Yoshimura, 2019).

The commonly reported primary models include the Huang

model, Reparameterized Gompertz model, logistic model, and

Baranyi and Roberts model (Jia et al., 2020). The growth data

of C. tyrobutyricum, B. adolescentis, S. thermophilus, and L.

plantarum were analyzed by Huang, Reparameterized Gompertz,

and Baranyi and Roberts models. The growth curves of C.

tyrobutyricum, B. adolescentis, S. thermophilus, and L. plantarum

all presented lag phase, exponential phase, and stationary phase

(Figures 3, 4).

The mean square error (MSE), root mean square error (RMSE),

and akaike information criterion (AIC) are important to evaluate

the accuracy of the primary models. The smaller value of MSE,

RMSE, and AIC, indicated the higher accuracy of the model.

For Huang, Baranyi and Roberts, and Reparameterized Gompertz

models, the MSE of C. tyrobutyricum in control group were

0.969, 1.309, and 0.977 Ln CFU/mL, respectively, while LSP

showed the MSE of C. tyrobutyricum of 1.292, 1.904, and 1.048

Ln CFU/mL, respectively (Table 1). There were no significant

differences in the values of MSE, RSME, and AIC among Huang,

Baranyi and Roberts, and Reparameterized Gompertz models,

indicating that Huang, Baranyi and Roberts, and Reparameterized

Gompertz models were suitable for describing the growth of

C. tyrobutyricum.

For Huang, Baranyi and Roberts, and Reparameterized

Gompertz models, the AIC of S. thermophilus in the control

group were −12.358, −1.994, and −17.508, respectively, and

MSE were 0.040, 0.236, and 0.024 Ln CFU/mL, respectively.

Simultaneously, LSP showed the AIC of −5.590, −0.920, and

−5.555, respectively, while MSE of 0.078, 0.236, and 0.078 Ln

CFU/mL, respectively. Compared to Baranyi and Roberts model,

Huangmodel and Reparameterized Gompertz model had the lower

MSE, RMSE, and AIC values in B. adolescentis, S. thermophilus, and

L. plantarum, indicating that Huang model and Reparameterized

Gompertz model were more suitable for describing the growth of

B. adolescentis, S. thermophilus, and L. plantarum than Baranyi

and Roberts model. This was consistent with the results of

Wei et al. (2021), in which the Reparameterized Gompertz

model was suitable for describing the growth of Lactococcus

lactis in Flammulina velutipes fruiting bodies. Therefore, the

Reparameterized Gompertz model was suitable for describing the

growth of lactic acid bacteria.

Compared to control group, the lag time of microbial (C.

tyrobutyricum, B. adolescentis, S. thermophilus, and L. plantarum)

decreased while LSP added. The maximum population of B.

adolescentis obtained from the Huang model, Baranyi and Roberts

model, and Reparameterized Gompertz model of 18.479, 18.252,

and 18.940 Ln CFU/mL, respectively, while control exhibited the

maximum population of B. adolescentis of 16.530, 16.318, and

16.746 Ln CFU/mL, respectively. The results suggested that LSP

exhibited a higher maximum population of B. adolescentis than the

control group.

3.3 E�ects of LSP on microbial in simulated
gastric fluid

Simulated gastrointestinal conditions can be used to study

the composition of intestinal microorganisms and understand the

relationship between intestinal health and disease. Experimental

evidence has shown that prebiotics have health-promoting
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Y0 (Ln CFU/g) 7.612 7.891 7.292 7.610 8.041 7.040 7.736 7.477 7.733 7.695 7.427 7.703 7.702 7.826 7.648 7.780 8.125 7.688 6.778 6.944 6.710 6.544 6.717 6.422

L95CI 5.915 6.449 5.249 5.544 6.220 4.126 7.452 6.790 7.515 7.300 6.698 7.306 7.204 7.174 7.132 7.354 7.421 7.314 6.511 6.495 6.073 6.132 6.205 5.991

U95CI 9.309 9.333 9.335 9.676 9.863 9.954 8.016 8.165 7.951 8.091 8.156 8.099 8.201 8.479 8.163 8.206 8.828 8.061 7.045 7.393 7.347 6.957 7.230 6.853

Ymax (Ln CFU/g) 19.669 19.220 20.048 19.799 19.009 20.094 17.297 17.363 17.384 17.579 17.639 17.661 16.530 16.318 16.746 18.479 18.252 18.940 19.213 19.084 20.016 18.952 18.795 19.806

L95CI 17.815 17.467 17.462 17.748 17.212 17.539 17.078 16.817 17.201 17.272 17.064 17.329 16.131 15.779 16.240 18.083 17.518 18.507 18.854 18.442 18.927 18.421 18.082 19.096

U95CI 21.523 20.973 22.634 21.851 20.805 22.650 17.515 17.909 17.567 17.885 18.214 17.994 16.930 16.856 17.251 18.875 18.987 19.373 19.571 19.726 21.105 19.484 19.508 20.516

µmax (h
−1) 0.897 1.145 1.092 0.878 1.291 1.110 2.299 1.452 2.446 2.301 1.484 2.513 0.943 1.303 1.160 0.924 1.189 1.114 0.940 1.074 1.103 0.945 1.091 1.100

L95CI 0.623 0.927 0.608 0.561 0.947 0.593 1.895 1.275 2.110 1.753 1.297 1.910 0.791 1.131 0.904 0.839 1.060 0.998 0.883 1.016 0.928 0.859 1.023 0.987

U95CI 1.171 1.363 1.576 1.194 1.635 1.626 2.703 1.629 2.781 2.848 1.671 3.116 1.094 1.474 1.415 1.010 1.318 1.229 0.996 1.133 1.277 1.032 1.159 1.213

λ (h) 2.603 4.367 2.942 1.557 3.873 1.763 4.559 3.444 4.670 4.485 3.369 4.637 2.571 3.837 3.109 2.434 4.205 3.018 3.470 4.655 4.185 3.361 4.583 3.954

MSE (Ln CFU/g) 0.969 1.309 0.977 1.292 1.904 1.048 0.040 0.236 0.024 0.078 0.263 0.078 0.083 0.223 0.087 0.061 0.296 0.038 0.033 0.134 0.138 0.075 0.173 0.059

RMSE [(Ln CFU/g)2] 0.984 1.144 0.989 1.137 1.380 1.024 0.199 0.486 0.154 0.280 0.513 0.280 0.288 0.472 0.295 0.246 0.544 0.196 0.181 0.366 0.372 0.274 0.416 0.243

AIC 19.573 15.126 19.661 22.453 18.871 20.356 −12.358 −1.994 −17.508 −5.590 −0.920 −5.555 −4.974 −2.569 −4.545 −8.147 0.254 −12.699 −14.348 −7.661 0.094 −6.034 −5.114 −8.403
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TABLE 2 Survival of Lactobacillus plantarum, Streptococcus thermophilus, Clostridium tyrobutyricum, and Bifidobacterium adolescentis in simulated

gastric fluid treated with polysaccharides of Laetiporus sulphureus.

Groups Time (h) Bifidobacterium
adolescentis (lg

CFU/mL)

Lactobacillus
plantarum (lg

CFU/mL)

Streptococcus
thermophilus (lg

CFU/mL)

Clostridium
tyrobutyricum (lg

CFU/mL)

Control 0 5.34± 0.04a 5.81± 0.34a 5.25± 0.05a 5.18± 0.09a

3 4.70± 0.25b 5.86± 0.24a - 4.39± 0.17c

LSP 0 5.29± 0.03a 5.73± 0.1a 5.21± 0.15a 5.23± 0.21a

3 5.24± 0.04a 5.69± 0.07a - 4.77± 0.10b

-: no bacterium was observed. Values marked by different letters are significantly different at p < 0.05; values marked by the same letter are not significantly different at p > 0.05.

TABLE 3 Survival of Lactobacillus plantarum, Streptococcus thermophilus, Clostridium tyrobutyricum, and Bifidobacterium adolescentis in simulated

intestinal fluid treated with polysaccharides of Laetiporus sulphureus.

Groups Time (h) Bifidobacterium
adolescentis (lg

CFU/mL)

Lactobacillus
plantarum (lg

CFU/mL)

Streptococcus
thermophilus (lg

CFU/mL)

Clostridium
tyrobutyricum (lg

CFU/mL)

Control 0 5.30± 0.05a 5.69± 0.07a 5.11± 0.10a 4.99± 0.06a

3 5.01± 0.09b 5.77± 0.17a 4.98± 0.05a 4.95± 0.17a

LSP 0 5.27± 0.05a 5.73± 0.05a 5.01± 0.05a 4.96± 0.08a

3 5.24± 0.06a 5.69± 0.08a 4.97± 0.13a 5.02± 0.16a

Values marked by different letters are significantly different at p < 0.05; values marked by the same letter are not significantly different at p > 0.05.

properties by increasing the survivability of bacteria traveling

through the gastrointestinal tract (Chow, 2002; Khalf et al.,

2010). It has been suggested that prebiotics contribute to

improving probiotic proliferation in the intestine and modulate the

composition of gut microbiota community structure (Zhao et al.,

2019; Xue et al., 2020). It is a vital characteristic for probiotics

to have the gastrointestinal tolerance, which is related to the

type and the fermentation ability of probiotics (Shi et al., 2019).

Table 2 presented the survival of C. tyrobutyricum, B. adolescentis,

S. thermophilus, and L. plantarum in simulated gastric fluid. In the

present study, the decreasing population of C. tyrobutyricum was

observed in control and LSP groups under simulated gastric fluid

condition for 3 h. The population of C. tyrobutyricum in control

group was 4.39 ± 0.17 lg CFU/mL while that of LSP group was

4.77 ± 0.10 lg CFU/mL under simulated gastric fluid conditions

for 3 h. S. thermophilus was not found after 3 h of digestion

in simulated gastric fluid. It suggested that the S. thermophilus

might not survive in simulated gastric fluid. Meanwhile, there was

no significant difference between control and LSP at the same

condition concerning to their population of L. plantarum.Over 3 h

gastric digestion, the population of B. adolescentis in the LSP group

(5.24 ± 0.04 lg CFU/mL) was significantly higher than the control

group (4.70± 0.25 lg CFU/mL, p < 0.05). There was no significant

difference between 0 and 3 h concerning to the population of B.

adolescentis in the LSP group (p > 0.05). The results indicated that

LSP could prevent the decrease of the population of B. adolescentis

in simulated intestinal fluid. It can also be seen from the different

performances of L. plantarum and B. adolescentis in simulated

gastric fluid that the effects of LSP on probiotics may be strain

specific rather than species or genera based, as suggested by Nobre

et al. (2018). Therefore, the results showed evidence that LSP could

enhance the population of B. adolescentis and C. tyrobutyricum in

simulated gastric fluid conditions.

3.4 E�ects of LSP on microbial in simulated
intestinal fluid

Survival of C. tyrobutyricum, B. adolescentis, S. thermophilus,

and L. plantarum in simulated intestinal fluid was illustrated in

Table 3. The population of B. adolescentis in the LSP group was

5.24 ± 0.06 lg CFU/mL, which was significantly higher than the

control group (5.01 ± 0.09 lg CFU/mL) under simulated intestinal

fluid condition for 3 h (p < 0.05). Compared to 0 h, the population

of B. adolescentis in the control group significantly decreased after

3 h digestion in simulated intestinal fluid condition (p < 0.05).

Consequently, there was no significant difference between 0 and 3 h

with regard the population of B. adolescentis in the LSP group (p >

0.05). In the meantime, there was no significant difference in the

population of C. tyrobutyricum, S. thermophilus, and L. plantarum

between the control group and the LSP group. The results suggested

that LSP had a protective effect on B. adolescentis.However, the LSP

did not affect on the population of L. plantarum, S. thermophilus

and C. tyrobutyricum in simulated intestinal fluid conditions.

4 Conclusions

In summary, the obtained results demonstrated that LSP could

increase the population of C. tyrobutyricum, S. thermophilus, B.

adolescentis, and L. plantarum in vitro. The developed Huang

model and Reparameterized Gompertz model could be suitable

for describing the growth of C. tyrobutyricum, S. thermophilus,

B. adolescentis, and L. plantarum with or without LSP treatment,

respectively. Additionally, LSP could improve the population of

B. adolescentis and C. tyrobutyricum in simulated gastric fluid

conditions. Therefore, this study can provide some theoretical bases

and ideas for the investigation of the biological activity of LSP.
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Future research can explore the effect of LSP on pathogens or

combine with other prebiotics to evaluate the characteristics of LSP

as natural prebiotic supplements in food products.
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