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Transforming the food system while addressing climate change requires

proactive measures based on quantitative projections of anticipated future

conditions. A key component of the food system that must be considered during

this transformation is food safety, which is the focus of this paper. Milk safety

has been selected as a case study. Future milk contamination levels in Europe,

in terms of total bacterial counts, are evaluated under various climate change

scenarios. Projections from multiple climate models are integrated into a data-

driven milk contamination model, validated using data from Malta, Spain, and

Belgium. The modeling framework accounts for variability among dairy farms

and the inherent uncertainties in climate projections. Results are presented

through geographical heatmaps, highlighting coastal and southern areas such as

Portugal, Western Spain, Southern Italy, and Western France as regions expected

to face the highest bacterial counts. The analysis underlines the significant roles

of humidity andwind speed, alongside temperature. It also examines compliance

with the regulatory threshold for raw milk, revealing an increased frequency of

summer weeks exceeding the threshold of 100,000 colony-forming units. Based

on this analysis, regions are classified into low-risk, high-risk, and emerging-risk

categories. This classification can guide the selection of farm strategies aimed

at meeting future food safety standards. By informing these decisions with the

anticipated impacts of climate change, the food system can be future-proofed.

KEYWORDS

climate change, milk contamination, predictive modeling, food safety, projections,

impact study

1 Introduction

The food sector is significantly affected by climate change, with numerous studies
highlighting the challenge of feeding a growing population (Mbow et al., 2022).
Beyond food availability, ensuring food safety for human consumption is crucial.
Increased food production to meet the demands of a growing population can lead
to a rise in unsafe food consumption, posing a complex public health challenge
(Rohr et al., 2019). Food safety is also under threat from climate change (Tirado
et al., 2010). Climate-proofing the food sector means minimizing the likelihood
of unsafe food by accounting for the effects of climate change on food safety
hazards. This must be achieved through specifically designed mitigation strategies
based on an objective quantification of expected climate shifts and their impacts.
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In this paper, the focus is on bovine milk production. Milk
and dairy products, with their high nutritional value, are a core
element of our diets. They are recognized for promoting bone
health and preventing fractures, primarily due to their high calcium
content, and are included in the EAT-Lancet diet (Willett et al.,
2019). The dairy sector also holds significant importance for
Europe, as the EU is the largest global supplier of dairy products
(European Commission, 2022).

The anticipated effects of climate change on milk production
include reduced milk yield and quality, as well as increased
susceptibility of bovine animals to microbial infections related
to heat stress (North et al., 2023; Gauly et al., 2013). Milk
contamination is also expected to rise as a result of climate
change (Feliciano et al., 2020). Furthermore, the use of antibiotics
to treat mastitis can exacerbate antimicrobial resistance (Al-
harbi et al., 2021). While modeling studies predicting reduced
milk production due to heat stress caused by climate change
are well-established (Guzmán-Luna et al., 2022; Gunn et al.,
2019; Fodor et al., 2018; Mauger et al., 2014), similar models
for predicting milk contamination under climate change
are lacking.

Milk safety is ensured at multiple stages of production.
Milk from a healthy cow does not contain pathogenic bacteria

FIGURE 1

Schematic overview of the impact modeling framework.

(Sujata et al., 2022). Initial contamination occurs within the farm
environment, with the primary sources of bacterial contamination
being the udder surface, and secondarily, the milking equipment
or the hands of the farmer, depending on the method of milking.
Manure, bedding, and the farm environment are potential sources
of udder contamination (Neculai-Valeanu and Ariton, 2022;
Priyashantha et al., 2021a; Robles et al., 2020).

Total bacterial counts (TBC) of raw milk, also known as the
standard plate count, are monitored in all dairy farms as they are
an indicator of bacterial contamination and a regulatory standard
in both the EU and the USA (Neculai-Valeanu and Ariton, 2022;
Priyashantha et al., 2021b). According to Regulation (EC) No.
853/2004, the TBC of raw milk must be below 100,000 colony-
forming units (CFU) per milliliter [or 5 log10(TBC)]. These
regulations underscore the importance of controlling bacterial
contamination at the farm level. Bacterial contamination is a critical
determinant of milk quality and safety and exhibits seasonality,
with higher counts in summer and lower counts in winter,
making it directly influenced by climate change (Toghdory et al.,
2022).

The impact modeling framework is a widely used methodology
for quantifying future risks resulting from climate change
(Wagener et al., 2022). This framework is essential for designing
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FIGURE 2

Distributions of milk contamination projections for the first and last 30 years per scenario in Europe. The values correspond to the weekly sample for

the months June, July, and August.

proactive mitigation and adaptation strategies to create a climate-
resilient food system. While food security models are well-
established, the impact modeling framework has been beneficial in
several cases (Mbow et al., 2022; Janssens et al., 2020). However,
there are a limited number of applications related to food safety
(Katsini et al., 2021). For example, Battilani et al. (2016) andVan der
Fels-Klerx et al. (2019) quantified aflatoxin contamination in maize
and milk, respectively, and Ndraha and Hsiao (2019) assessed
the risk of Vibrio parahaemolyticus in oysters under climate
change. Additionally, Liu et al. (2015) presented an illustrative
example of utilizing the impact modeling methodology to quantify
Lactoplantibacillus plantarum levels under climate change.

This research quantifies future milk contamination levels
(in terms of TBC) under anticipated climate change scenarios
in Europe. These milk contamination levels are computed by
integrating projections from multiple climate models into a
milk contamination model, which is trained and validated using
long-term, extensive data sets from farms in Malta, Spain, and
Belgium. To the authors’ knowledge, this is the first study to
consider both the uncertainty of climate models and inter-farm
variability. Themilk contamination projections cover the European
region and are presented as heatmaps with a resolution of ∼100
km. Results are further analyzed in relation to the regulatory
TBC threshold, revealing alarmingly frequent violations in some

regions. Additionally, European regions are classified based on the
anticipated risk of regulatory violations.

2 Methodology

In this section, the impact modeling framework and its
constituent elements are introduced. First, an overview of the
framework is provided. Second, the strategy used to obtain the
climate projections is presented. Third, the method applied for
the development of the data-driven impact model is discussed.
In the final subsection, the necessary steps for coupling the
climate change projections with the data-driven impact model are
summarized. Data pre-treatment and impact model development
were implemented in MATLAB, while the multi-model mean
ensemble of climate models, coupling, and visualization of the
results were implemented in Python.

2.1 Impact modeling framework

Following the impact modeling framework, climate models
were coupled with impact models to evaluate risks under different
climate change scenarios (Figure 1). These scenarios correspond
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FIGURE 3

Distributions of milk contamination projections for the first and last 30 years per scenario in North Europe. The values correspond to the weekly

sample for the months June, July, and August.

to different emission pathways associated with various levels of
adaptation and mitigation strategies and are used to initialize the
climate models. The most recent emission scenarios, the Shared
Socioeconomic Pathways (SSPs), were utilized. These represent
narratives of the future that span a range of mitigation and
adaptation strategies through to the year 2100 (Meinshausen et al.,
2020).

Climate models serve as digital representations of the Earth’s
climate system. These highly complex models are based on the
principles of physics and chemistry, simulating the processes
and interactions between different components of the climate
system (Eyring et al., 2016). Although they were initially
developed to enhance our understanding of the climate system,
they have become increasingly accurate over recent decades
(Anderson et al., 2016). Consequently, their application has
expanded, positioning them at the center of climate change-
related policy-making (Edwards, 2010). The outputs of climate
models are known as climate projections (O’Neill et al.,
2016).

Climate projections represent plausible future trajectories of
climate variables for timeframes ranging from decades (short-term;
Boer et al., 2016) to centuries (long-term;Meinshausen et al., 2020).
In the context of the impact modeling framework, these climate
projections were fed into the impact model, which in turn provided

estimates of the risk of interest, factoring in the scenario used to
initialize the climate models (Katsini et al., 2021).

2.2 Multi-model mean ensemble of climate
models

Climate models are continuously developed and refined,
with the most recent models belonging to the Coupled
Model Intercomparison Project Phase 6 (CMIP6) (Eyring
et al., 2016). However, there is no single best-performing
climate model. Therefore, a multi-model mean ensemble
was computed from CMIP6 climate models (Raju and
Kumar, 2020). Based on daily data availability and land
coverage of the Mediterranean region, nine climate models
were selected: ACCESS-CM2 (Australia), CESM2 (USA),
CESM2-WACCM (USA), CanESM5 (Canada), CMCC-
CM2-SR5 (Italy), GFDL-ESM4 (USA), CMCC-ESM2 (Italy),
MIROC6 (Japan), and MRI-ESM2-0 (Japan). The model
simulations covering the European region (latitude from 34
to 72 and longitude from -17 to 41) were accessed through
the Copernicus Climate Change Service, Climate Data Store
(2021). For each model, the average, minimum, and maximum
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FIGURE 4

Distributions of milk contamination projections for the first and last 30 years per scenario in South Europe. The values correspond to the weekly

sample for the months June, July, and August.

FIGURE 5

European geographical heatmaps of milk contamination levels for the first 30 years (A) and the relative increase per scenario for the last 30 years (B).

The values correspond to the weekly sample for the months June, July, and August.
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FIGURE 6

European geographical heatmaps of the number of weeks per year, for which the regulatory threshold is exceeded, for the first (A) and the last (B) 30

years. The values correspond to the weekly sample for the months June, July, and August.

temperature, precipitation, wind speed, and specific humidity
for each scenario were downloaded and used to compute the
multi-model ensemble.

Four scenarios were considered: SSP1-2.6, SSP2-4.5, SSP3-
7.0, and SSP5-8.5 (hereafter referred to as SSP1, SSP2, SSP3,
and SSP5, respectively). SSP1 (Sustainability) corresponds to low
challenges for mitigation and adaptation, with an associated
global temperature increase of around 1.5◦C. SSP2 (Middle of
the Road) corresponds to intermediate challenges for mitigation
and adaptation, with an expected global temperature increase of
∼2.5◦C. SSP3 (Regional Rivalry) corresponds to high challenges
for both mitigation and adaptation, with a global temperature rise
of around 3.5◦C. SSP5 (Fossil-fueled Development) corresponds to
high challenges for mitigation and low challenges for adaptation,
with an expected temperature increase of around 4.5◦C. A detailed
explanation of these scenarios can be found in Meinshausen et al.
(2020), Riahi et al. (2017), and O’Neill et al. (2017). The selected
timeframe for all scenarios extends until the year 2100.

Spatial alignment of the individual models was achieved by
re-gridding the climate projections to a universal grid scheme
using the nearest-neighbor method (Valcke et al., 2022). A
major advantage of the multi-model mean ensemble is that
the range of models provides a metric of uncertainty for the
climate projections. In this work, both the multi-model mean
and the 95th percentile of the spread were used to account
for uncertainty in the climate projections. Additionally, as milk
contamination does not occur at sea, grid values covering sea areas
were excluded.

The climate projections contain inherent errors, as certain
elements of the climate system are parameterized in the models
(Cannon et al., 2020). Bias correction aimed to eliminate
these errors by analyzing observations alongside model
simulations for the same time period (Maraun, 2016). The

quantile mapping method was used to bias-correct the models
by comparing projections with observations from 2015 to
2019. This method assumes that the error remains constant
over time (Thrasher et al., 2012), matching the distribution
function of simulated data to that of the observations
through a delta-type transfer function (Maraun, 2016). The
necessary observations were obtained from the AGRI4CAST
resources portal of the Joint Research Center (accessed on
14-07-2023) of the European Commission, as well as from
the Copernicus Climate Change Service, Climate Data Store
(2022).

2.3 Impact model for milk contamination

The impact model developed in this study aimed to quantify
the influence of climate on the TBC levels of raw milk. Milk
contamination data collected from 123 farms in Malta (2015–2020)
were used to build a regression model, while data from 53 farms
in Galicia, Spain (2014–2017), and 80 farms in Limburg, Belgium
(2016–2022) were utilized for validation.

The dataset from Malta was chosen for model training,
as it included the largest number of farms, enabling the
calculation of inter-farm variability via standard deviation.
Following Katsini et al. (2022), temperature (average,
minimum, and maximum), relative humidity, precipitation,
wind speed, and the temperature-humidity index were used
as predictors. The first response variable of the developed
model was the average log10(TBC), while the second was
the standard deviation of log10(TBC) across all farms.
This allowed the model to predict both the farm average
and the inter-farm variability. The climatic data used for
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FIGURE 7

Occurrences, for which the regulatory threshold is exceeded, for the first and last 30 Years in North, South, and whole Europe (A) and the relative

change between the first and last 30 years (B). The values correspond to the weekly sample for the months June, July, and August.

model development and validation were obtained from the
AGRI4CAST resources portal of the Joint Research Centre
of the European Commission (accessed on 03-03-2023). The
supervised learning method, Partial Least Squares (PLS), was
employed for model development, and k-fold cross-validation
was applied to prevent overfitting (Katsini et al., 2022, 2024).
The impact model performance details can be found in the
Supplementary Figures 1–3.

2.4 Integration into the impact modeling
framework

The integration of the multi-model ensemble (described in
Section 2.2) with the impact model (described in Section 2.3) was
facilitated through the use of climate projections. These climate
projections, derived from the multi-model ensemble, served as
inputs for the impact model. To enable this, the following steps
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FIGURE 8

Weeks, for which the regulatory threshold is exceeded, for the region of Galicia (Spain) per scenario. The values correspond to the weekly sample for

the months June, July, and August.

were taken: (1) unit alignment (e.g., converting precipitation from
kg per square meter per second to mm per day), (2) temporal
alignment (e.g., converting from daily to weekly frequency), and
(3) variable transformations (e.g., converting specific humidity to
relative humidity).

Two sources of uncertainty were quantified: (1) inter-farm
variability, expressed as the standard deviation of log10(TBC),
which was the second response variable of the impact model, and
(2) uncertainty in the climate projections, as reflected by the spread
of the multi-model ensemble. The influence of these uncertainties
on future milk contamination projections was examined both
independently and in combination. For the worst-case scenario, the
95th percentile of the spread was used for the climate projections.
Similarly, for farm variability, the 95th percentile (mean plus two
times the standard deviation) of log10(TBC) levels was applied.

Milk contamination projections were divided into two regions
based on latitude, with a threshold of 45◦ North. For simplicity,
these regions are referred to as North Europe (above or equal
to the threshold) and South Europe (below the threshold) in the
remainder of this manuscript.

Since this paper focuses on milk production, it was
essential to focus on the top milk-producing regions in
Europe. These regions were selected based on datasets
“Animal populations by NUTS 2 regions” and “Production
of cow’s milk on farms by NUTS 2 regions,” published

by Eurostat (2022) (accessed on 15-5-2024). The selected
regions, in order of increasing production (2019–2022), are:
South Ireland, Brittany (France), Lombardy (Italy), Pays
de la Loire (France), Weser-Ems (Germany), Mazowiecki
(Poland), Normandy (France), Poldaskie (Poland), Schleswig-
Holstein (Germany), Galicia (Spain), Lüneburg (Germany), and
Friesland (Netherlands).

3 Results

This section is divided into two subsections. In Section 3.1,
the milk contamination projections for Europe are presented.
In Section 3.2, an analysis focusing on the frequency of TBC
exceeding the regulatory threshold is included. In both cases,
the results refer to the summer months of June, July, and
August, as TBC peaks during this period. Additionally, to
facilitate comparison between scenarios, only the first 30
years (2020–2049) and the last 30 years (2071–2100) are
visualized. The figures in this section correspond to the
case where both sources of uncertainty – climate model
uncertainty and inter-farm variability – are considered.
Results where either no sources of uncertainty or only
one source (separately) is considered can be found in the
Supplementary Figures 4–12.
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FIGURE 9

Weeks, for which the regulatory threshold is exceeded, for the region of South Ireland per scenario. The values correspond to the weekly sample for

the months June, July, and August.

3.1 Milk contamination projections

Based on the distributions of milk contamination projections
in Europe (Figure 2), there is no clear difference in the mean
of the distribution between the first 30 years and the last 30
years. However, an increase in the frequencies in the tail of the
distribution is observed during the last 30 years for SSP2, SSP3,
and SSP5. This is more evident when focusing on the distribution
values above the regulatory threshold of 5 log10(TBC). For the first
30 years, the counts at the value of 5 are around 1,500 across all
scenarios, while for the last 30 years, the counts increase to ∼1,600
for SSP1, 1,700 for SSP2, 1,750 for SSP3, and 1,800 for SSP5.

Comparing North and South Europe shows that the mean of
the distribution is higher in the South compared to the North.
The distribution in the Northern region (Figure 3) shows a low
count of around 400 for the bin at the value of 5 during the first
30 years. In contrast, the Southern region’s distribution (Figure 4)
has around 1,500 counts for the same bin. Additionally, values
above 5 represent a significantly smaller portion of the tail of the
distribution in North Europe compared to South Europe under all
scenarios. The first four moments of all distributions, along with
the median and the value-at-risk (95% confidence interval), are
included in the Supplementary Table 1.

When plotting the average of the first 30 years for all scenarios
in a single geographical heatmap, further spatial insights are
revealed, as illustrated in Figure 5A. Coastal and southern areas of

Europe show the highest TBC levels. However, the average relative
change for the last 30 years (Figure 5B) is not significantly high,
with maximum values around 1% under SSP5. By comparing the
scenarios, SSP1 shows the lowest increase overall, while SSP5 shows
the highest.

3.2 Projections exceeding the regulatory
threshold

As an additional indicator of climate change impact, the annual
frequency of non-compliance with the regulatory threshold is
examined. Figure 6 presents geographical heatmaps showing the
average of all scenarios for the first 30 years, as well as the last 30
years for each scenario.

When dividing the regions into North and South Europe,
as mentioned earlier, the differences in occurrences where
the regulatory threshold is exceeded between the two regions
and across scenarios become apparent (Figure 7). In South
Europe, all scenarios show a higher number of occurrences
exceeding the regulatory threshold for both the first and
last 30 years (Figure 7A). However, when comparing the first
30 years with the last 30 years, North Europe shows the
highest relative increase in non-compliance for all scenarios
(Figure 7B).
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FIGURE 10

Weeks, for which the regulatory threshold is exceeded, for the region of Brittany (France) per scenario. The values correspond to the weekly sample

for the months June, July, and August.

Figures 8–11 display the annual frequencies of non-compliance
for four representative top milk-producing regions across
scenarios. The corresponding results for the remaining
regions are provided in the Supplementary Figures 13–19
and Supplementary Table 2. The region of Lombardy (Italy)
consistently shows TBC levels that comply with the regulation, so
it was excluded from the results. The data, including fitted linear
trends and 95% confidence intervals, are illustrated. As seen in
Figures 8–11, there was an upward trend in all areas for SSP3 and
SSP5, while for SSP1 and SSP2, the trend was either stable or only
slightly increasing.

4 Discussion

Overall, when comparing the scenarios, SSP1, as the best-
case scenario in terms of climate change mitigation, yields the
lowest milk contamination projections, while SSP5, the worst-case
scenario, results in the highest projections. Furthermore, when
analyzing the influence of inter-farm variability compared to the
uncertainty of the climate models (corresponding figures can be
found in the Supplementary material), the former has a much
greater impact. This can be attributed to the fact that TBC is
a key indicator of farm hygiene and is significantly affected by
farm management practices (Kelly et al., 2009). Consequently, the
development of climate change adaptation strategies should be

farm-oriented, focusing on improving on-farm practices, such as
implementing stricter milking protocols, more frequent cleaning of
barns, and regular renewal of bedding materials.

4.1 Milk contamination projections

The results indicate that, while the difference in the means of
the distributions is not substantial, the divergence in the upper
tail of the distributions is notably significant. This suggests that
when aiming to quantify the effect of climate change, attention
should be given not only to the mean but also to the tails of the
distributions. Similarly, non-Gaussian tails are often reported in
temperature distributions, and analyzing these tails is crucial for
both quantifying the impact of climate change and determining the
probabilities of extreme events, such as heatwaves (Bekris et al.,
2023; Ruff and Neelin, 2012). In this study, while the mean of
milk contamination may not increase significantly, the upper tail
of the distribution will become thicker due to climate change,
implying that raw milk is expected to be more frequently heavily
contaminated. Additionally, comparing the distributions between
North and South Europe reveals a shift in the mean, which aligns
with the spatial temperature patterns of Europe (Figure 12C).

The spatial pattern illustrated in Figure 5A is considered a
combination of the spatial patterns of wind speed, precipitation,
and specific humidity, with less influence from temperature
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FIGURE 11

Weeks, for which the regulatory threshold is exceeded, for the region of Friesland (Netherlands) per scenario. The values correspond to the weekly

sample for the months June, July, and August.

(Figure 12). This finding is consistent with Katsini et al. (2024), who
reported that relative humidity, precipitation, and wind speed are
more important predictors than temperature for predicting TBC.
Qiu et al. (2022) also emphasized the role of humidity in bacterial
growth. Furthermore, Bekris et al. (2023) concluded that humidity
distribution plays a larger role than temperature distribution in the
context of heat stress. Unlike the first 30 years, no clear spatial
pattern is observed for the relative increase during the last 30 years.

4.2 Threshold analysis

As illustrated in Figure 6A, even during the first 30 years, the
regulatory threshold is exceeded in several areas. It is important
to note that the annual frequency of non-compliance results
correspond to the months of June, July, and August, meaning that
the maximum number of weeks per year is 14. The pattern of
higher values in coastal and southern areas, as seen in Figure 6A,
re-emerges here. In themaps depicting the last 30 years (Figure 6B),
this pattern dominates across all scenarios. While there are slight
differences between the scenarios, the distinction between them is
not particularly clear.

The difference between scenarios becomes more evident in
Figure 7, where most violations correspond to South Europe
and SSP5. However, North Europe exhibits the highest relative
increase in non-compliance across almost all scenarios. In

most cases, the regulatory threshold is exceeded for up to
three consecutive weeks. This is particularly concerning
as it indicates that regions currently unaffected by heavily
contaminated milk will face this challenge in the future due to
climate change.

Further regional analysis reveals different temporal trends
of annual non-compliance for each region (Figures 8–11). Three
distinct patterns can be identified: (i) regions with an increasing
number of violations, which are expected to continue rising
depending on the scenario (e.g., Galicia, Spain—Figure 8), (ii)
regions with a low number of violations, expected to remain low or
slightly increase under all scenarios (e.g., South Ireland—Figure 9),
and (iii) regions with a low number of violations, which could either
significantly increase or stay low, depending on the scenario (e.g.,
Brittany, Friesland—Figures 10, 11). Based on these patterns, three
regional categories can be identified: high-risk regions requiring
extra caution, low-risk regions, and emerging-risk regions that
need close monitoring. Even under current climatic conditions,
some areas exceed the regulatory threshold, and these insights
are valuable for developing adaptation and mitigation strategies.
Lessons can be drawn from current practices implemented during
extreme conditions, such as using fans at farms, more frequent
cleaning, lowering the temperature of bulk tanks, and ensuring
stricter hygiene during milking. These practices could be extended
beyond heatwaves to cover all summer months or even the
entire year.
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FIGURE 12

European geographical heatmaps of precipitation (A), specific humidity (B), average temperature (C), and wind speed (D) for the first 30 years based

on scenario SSP5. The values correspond to the weekly sample for the months June, July, and August.

To ensure that the findings of this study are as realistic as
possible, themajority of future anticipated climate change scenarios
(four out of five developed SSPs) are considered. From a scenario
likelihood perspective, SSP5 is regarded as the most probable.
Schwalm et al. (2020) found close agreement between the emissions
observed from 2005 to 2020 and those considered in SSP5, further
noting that SSP5 best aligns with current and planned policies.

5 Conclusions

This study aimed to evaluate raw bovine milk contamination
levels under anticipated climate change scenarios, with a particular
focus on addressing sources of uncertainty. One limitation of the
study is that the climate models used are not downscaled, resulting
in a coarser resolution compared to what would be obtained from
regional models (Sørland et al., 2021). Additionally, the average
of the multi-model ensemble was computed instead of assigning
weights to each climate model based on its performance (Eyring
et al., 2019). Another limitation is that TBC (Total Bacterial Count)
was used as a proxy for food safety instead of performing an analysis
for a specific pathogen. While TBC is an indicator of hygiene

rather than a direct measure of food safety, past research has shown
a correlation between poor hygiene and the presence of specific
bacteria, such as Staphylococcus aureus, in raw milk (Deddefo et al.,
2023). Furthermore, standard practice involves enumerating TBC
rather than specific pathogens (Murphy et al., 2016). As a result,
the data available for this study were only in terms of TBC and not
specific hazards.

The main conclusion of this study is that, regardless of the
scenario considered, the climate change impact is primarily found
in the change in the upper tail of the distribution, not the mean.
It is crucial to avoid neglecting the changes in the tail of a milk
production trait with an upper regulatory threshold.

The findings also highlighted that coastal and southern
areas are expected to face the greatest challenges related
to climate change. However, some non-coastal areas,
which do not currently experience heavily contaminated
milk, may encounter such issues in the future due to
climate change.

Interestingly, the study underlined the effect of humidity on
milk contamination, with humidity becoming even more impactful
as temperatures rises. This provides new insight into the underlying
phenomena and suggests the need to reconsider the use of
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sprinklers as a mitigation strategy for heat stress in cows, given its
potential impact on milk contamination.

Lastly, this study underscores the importance of high-
resolution results. When examining the results for Europe as a
whole, or even by dividing it into North and South Europe,
temporal patterns that emerge at the regional level are hidden. Only
at a finer grid level do more insights become evident, leading to
the identification of three risk categories for regions: low, high,
and emerging. This granularity is valuable, as it allows for the
design and implementation of region-specific adaptation strategies
tailored to the needs of each region. Overall, this study contributes
to the evidence-based development of strategies that support
the transformation of the food system, offering an objective,
quantitative approach to assessing the impact of climate change on
food hygiene and safety.
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