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Millet is one of the major coarse grain crops in China. Its geographical origin 
and Fusarium fungal contamination with ergosterol and deoxynivalenol have 
a direct impact on food quality, so the rapid prediction of the geographical 
origins and fungal toxin contamination is essential for protecting market fairness 
and consumer rights. In this study, 600 millet samples were collected from 
twelve production areas in China, and traditional algorithms such as random 
forest (RF) and support vector machine (SVM) were selected to compare with 
the deep learning models for the prediction of millet geographical origin and 
toxin content. This paper firstly develops a deep learning model (wavelet 
transformation-attention mechanism long short-term memory, WT-ALSTM) 
by combining hyperspectral imaging to achieve the best prediction effect, the 
wavelet transformation algorithm effectively eliminates noise in the spectral 
data, while the attention mechanism module improves the interpretability of 
the prediction model by selecting spectral feature bands. The integrated model 
(WT-ALSTM) based on selected feature bands achieves optimal prediction 
of millet origin, with its accuracy exceeding 99% on both the training and 
prediction datasets. Meanwhile, it achieves optimal prediction of ergosterol and 
deoxynivalenol content, with the coefficient of determination values exceeding 
0.95 and residual predictive deviation values reaching 3.58 and 3.38 respectively, 
demonstrating excellent model performance. The above results suggest that 
the combination of hyperspectral imaging with a deep learning model has great 
potential for rapid quality assessment of millet. This study provides new technical 
references for developing portable and rapid hyperspectral imaging inspection 
technology for on-site assessment of agricultural product quality in the future.
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1 Introduction

Millet (Setaria italica (L.) Beauv.) is the seed of the grass species in the family of Poaceae, 
and it is considered one of the oldest cultivated crops (Yang et al., 2012). It originated in the 
Yellow River basin of China and became one of the major cereal crops in ancient China. At 
present, China is the main production area for millet, accounting for 80% of the world’s 

OPEN ACCESS

EDITED BY

Yiming Zhang,  
Zhejiang Agriculture and Forestry University, 
China

REVIEWED BY

Gengjun Chen,  
Kansas State University, United States
Kristian Pastor,  
University of Novi Sad, Serbia

*CORRESPONDENCE

Shasha Liu  
 liushasha981@126.com  

Jian Wang  
 wangjian3790@126.com

†These authors have contributed equally to 
this work and share first authorship

RECEIVED 24 June 2024
ACCEPTED 30 August 2024
PUBLISHED 12 September 2024

CITATION

Nie S, Gao W, Liu S, Li M, Li T, Ren J, 
Ren S and Wang J (2024) Hyperspectral 
imaging combined with deep learning models 
for the prediction of geographical origin and 
fungal contamination in millet.
Front. Sustain. Food Syst. 8:1454020.
doi: 10.3389/fsufs.2024.1454020

COPYRIGHT

© 2024 Nie, Gao, Liu, Li, Li, Ren, Ren and 
Wang. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 12 September 2024
DOI 10.3389/fsufs.2024.1454020

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fsufs.2024.1454020&domain=pdf&date_stamp=2024-09-12
https://www.frontiersin.org/articles/10.3389/fsufs.2024.1454020/full
https://www.frontiersin.org/articles/10.3389/fsufs.2024.1454020/full
https://www.frontiersin.org/articles/10.3389/fsufs.2024.1454020/full
https://www.frontiersin.org/articles/10.3389/fsufs.2024.1454020/full
https://www.frontiersin.org/articles/10.3389/fsufs.2024.1454020/full
mailto:liushasha981@126.com
mailto:wangjian3790@126.com
https://doi.org/10.3389/fsufs.2024.1454020
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://doi.org/10.3389/fsufs.2024.1454020


Nie et al. 10.3389/fsufs.2024.1454020

Frontiers in Sustainable Food Systems 02 frontiersin.org

production (Wu and Qu, 2018). Millet has rich nutrients and provides 
various essential amino acids, fats, vitamins, minerals, and other 
nutritional components for the human body (He et al., 2007; Dasa and 
Nguyen, 2020; Yang et al., 2021; Shi et al., 2023). Many pharmacological 
studies have indicated that millet has various health benefits, including 
lowering blood glucose levels (Balli et al., 2023), anti-tumor properties 
(Saleem et  al., 2023), reducing cholesterol levels, as well as anti-
inflammatory effects (Onipe and Ramashia, 2022). Attributed to its 
combined medicinal and nutritional value, millet is highly favored in 
several regions of China (Mahajan et al., 2021).

Millet from different regions differs in quality and price. In China, 
the five provinces of Shaanxi, Shanxi, Gansu, Ningxia, and Inner 
Mongolia account for 15.6% of the national millet production (Yang 
et al., 2019), Hebei, Shandong, and Henan provinces account for 64.3% 
of the national millet production, while the three northeastern provinces 
(Heilongjiang, Jilin, and Liaoning) account for 13.9% of the national 
millet production (Wu and Qu, 2018). The Wu’an millet (HBWA) from 
Wu’an City, Hebei Province, the Chaoyang millet (LNCY) from 
Chaoyang City, Liaoning Province, and the Qinzhou millet (SXQX) 
from Qinxian County, Shanxi Province are certified as Protected 
Geographical Indication (PGI) products in China. These three 
production areas have unique natural environments such as altitude, 
climate, and soil, along with strict and standardized planting regulations, 
so millet products in these areas have better quality and higher market 
value. However, there are often cases in the market where inferior 
products are sold as high-quality ones and non-PGI products from 
other regions are falsely labeled as PGI products, seriously disrupting 
market order. Therefore, it is of great significance to implement source 
tracing and brand protection measures for millet products.

Pathogenic fungi of the Fusarium genus are common in the 
production of grains such as millet (Femenias et al., 2021; Teixido-Orries 
et al., 2023). Infection by Fusarium species usually leads to a sharp 
decrease in crop yield, and the fungal toxin residues caused by Fusarium 
microbial contamination have a serious impact on the quality of millet, 
ultimately leading to agricultural economic losses (Dowell et al., 1999). 
The number of microorganisms of the Fusarium genus attached to the 
surface of grains is linearly related to the content of ergosterol (C28H44O, 
ZC), a metabolite produced by these microorganisms. The ZC content 
in grains is widely adopted as an important criterion for evaluating the 
degree of fungal contamination and grain quality (He et  al., 2007). 
Meanwhile, deoxynivalenol (C15H20O6, DON), also known as vomitoxin, 
is a mycotoxin secreted by microorganisms of Fusarium species. DON 
is widely present in millet grains and has high toxicity. It can cause 
vomiting, diarrhea, miscarriage, and other damage to humans and 
animals. The World Health Organization has identified DON as one of 

the high-risk food contaminants (Yao and Long, 2020; Zhao et al., 2020). 
Therefore, efficient and rapid detection of ZC and DON content in millet 
grains has great significance for determining the degree of Fusarium 
fungal contamination and ensuring millet quality and food safety.

Traditional methods for determining the origin of agricultural 
products mainly rely on the mineral element content of the target, 
stable isotope ratios with regional variations (Wang et al., 2022b), 
chemical fingerprinting of the target substance (Yan et al., 2023), etc. 
The conventional quantitative detection methods for the content 
prediction of low-concentration toxins of DON and ZC mainly 
include high-performance liquid chromatography (HPLC), high-
performance liquid chromatography-mass spectrometry tandem 
(HPLC-MS) (Antonios et al., 2010), enzyme-linked immunosorbent 
assay (ELISA), thin layer chromatography (TLC) (Rocha et al., 2017), 
etc. Though these evaluation methods have advantages such as high 
accuracy and sensitivity, they have some defects, including sample 
destruction, high detection costs, low time efficiency (inability to 
conduct batch testing in a single run), and environmental 
contamination due to the use of organic reagents (Wang et al., 2024a; 
Wang et al., 2024b). These issues should not be ignored.

The external environmental factors of millet planting include soil 
and climate in the production area, which lead to differences in crop 
chemical fingerprint spectra (Lu et  al., 2014). Meanwhile, fungal 
contamination causes the denaturation of chemical nutrients, resulting 
in significant differences in hyperspectral characteristics (Teixido-
Orries et al., 2023). Hyperspectral imaging (HSI) technology could 
produce chemical reflectance data across hundreds of bands to reflect 
the physical and chemical information of the measured samples (An 
et al., 2023). In recent years, HSI technology has gained increasing 
popularity as a rapid inspection technique that can meet the demands 
of today’s market for fast and batch testing. HSI has great advantages 
such as non-destructive sample detection, high throughput, fast 
detection speed, and environmental friendliness in experimental 
techniques (Wang et  al., 2024a; Wang et  al., 2024b). At present, 
combining HSI technology with classic machine learning algorithms 
is a common method for the rapid prediction of geographical origins 
and chemical compositions of various agricultural products. 
Traditional machine learning algorithms, such as PLSDA (partial least 
squares discriminant analysis), random forest (RF) and support vector 
machine (SVM) have achieved generally satisfactory results in 
previous hyperspectral research, and they have obvious advantages 
such as short training time, simple computation, and strong 
generalization ability. HSI combined with models such as RF and 
SVM has been successfully applied to the identification of origins for 
cereal of Coix seeds (Wang et al., 2023) as well as to the quality or 
variety identification of small grains such as wheat (Safdar et al., 2023), 
oats (Teixido-Orries et al., 2023), and sorghum (Bu et al., 2023). The 
combination of HSI with chemometric models like partial least 
squares regression (PLSR) has been applied to the prediction of DON 
and ZC content in corn and wheat (Femenias et al., 2021; Borras-
Vallverdu et al., 2024), various saponin content in ginseng (Wang 
et al., 2024a; Wang et al., 2024b), as well as starch and protein content 
in Coix seeds (Wang et al., 2023). However, it is worth noting that 
traditional model parameter optimization involves a certain degree of 
human subjectivity, and model optimization often cannot take into 
account data feature extraction to improve model performance (Wang 
et  al., 2023; Zhang et  al., 2020). Deep learning based on neural 
networks can address the above concerns.

Abbreviations: AM, attention mechanism; R, coefficient of determination; CNN, 

convolutional neural networks; DON, deoxynivalenol; ZC, ergosterol; HSI, 

hyperspectral imaging; HPLC-MS, high-performance liquid chromatography-mass 

spectrometry tandem; LSTM, long short-term memory; MAE, mean absolute 

error; MSC, multiplicative scatter correction; ORI, original data without denoising 

processing; PGI, protected geographical indication; PLSDA, partial least squares 

discriminant analysis; PLSR, partial least squares regression; RF, random forest; 

RNNs, recurrent neural networks; RMSE, root mean square error; RPD, residual 

predictive deviation; SNV, standard normal variate; SVM, support vector machine; 

WT, wavelet transformation; WT-ALSTM, wavelet transformation-attention 

mechanism long short-term memory.
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Currently, combining HSI with artificial intelligence deep learning 
models to predict the quality of agricultural products has been a 
prominent research focus. Compared to traditional machine learning 
algorithms (including RF and SVM), deep learning models, like 
recurrent neural networks (RNNs) and long short-term memory 
(LSTM), have more evident advantages such as self-learning, self-
reasoning, and no need for subjective parameter selection. As a result, 
these models can make more objective and reliable predictions than 
traditional algorithms (Li et al., 2021). Existing research has shown 
that using feature data extracted from HSI to reduce the dimensionality 
of hyperspectral data can simplify model calculations and improve 
prediction efficiency (Wang et  al., 2022d; Wang et  al., 2024a). 
Meanwhile, by assigning variable weights to HSI bands, the application 
of deep learning attention mechanism (AM) modules allows for the 
selection of important feature wavelengths. This enhances not only the 
prediction performance of the model but also the interpretability of 
deep learning (Wang et al., 2023). Additionally, denoising complex 
and redundant hyperspectral data across multiple bands provides an 
important means for improving model prediction effectiveness (Wang 
et al., 2022c; Wang et al., 2022d). However, there is a lack of research 
both domestically and internationally on the application of HSI 
technology combined with deep learning models, including data 
denoising, to the prediction of millet origin, fungal microbial 
contamination, and toxin content.

Considering this, this study aims to: (1) establish a large-scale 
hyperspectral database for millet from multiple origins; (2) compare 
the effectiveness of LSTM with traditional machine learning models 
such as RF, SVM, and partial least squares discriminant analysis 
(PLSDA or PLSR) in predicting the origin of millet and the content of 
fungal toxins, to determine the optimal prediction model; (3) reveal 
the effects of combining different denoising methods, including 
multiplicative scatter correction (MSC), wavelet transformation (WT), 
and standard normal variate (SNV), with prediction models, and 
determine the optimal combination; (4) evaluate the effectiveness of 
the deep learning AM algorithm in selecting feature bands, to provide 
more options for reducing the dimensionality of HSI data and 
improving the interpretability of prediction models in the future. This 
study attempts to achieve rapid quality inspection of millet by 
combining HSI with deep learning models, thereby providing 
references for the further development of portable, intelligent 
agricultural product inspection equipment in the future.

2 Materials and methods

2.1 Sample collection and preparation

Millet samples were collected from 12 major production areas in 
9 provinces of China from October 2022 to January 2023, including 
three high-quality samples from regions designated with PGI status 
(Table 1). In the sample collection, uniformly sized and clean millet 
seeds were selected and naturally air-dried. All the samples were 
collected from 10 plots in each production area, and 5 parallel samples 
(500 g each) were selected from each plot. Finally, 50 samples (10 × 5) 
were collected from each production area, and 600 sets of HSI data 
(10 × 5 × 12) were acquired from all 12 production areas. In terms of 
origin prediction, to ensure the stability of the samples, the test 
samples are stored at a low temperature of 4°C for a long time. 

Regarding fungal toxin contamination, millet samples were processed 
in a controlled environment with a temperature of 20°C and a 
humidity of 70% for 30 days, resulting in toxin enrichment. After data 
collection, all samples were processed into 50-mesh powder (stored at 
a low temperature of 4°C) for subsequent chemical content analysis 
(600 sets) to benchmark and correct the prediction effect of the 
established model.

2.2 Acquisition of hyperspectral data

Hyperspectral data was collected using a visible and shortwave/
longwave near-infrared imaging spectrometer (VIS-NIR-HSI, 
HySpex VNIR-1800/HySpex SWIR 384, Norsk ElektroOptikk, Oslo, 
Norway). The VIS-NIR-HSI spectrometer has a wavelength range of 
350–1000 nm covering visible light and short wave near-infrared 
parts. The SWIR spectrometer has a wavelength range of 
900–2550 nm covering short and middle short-wave near-infrared 
parts, showing higher sensitivity to organic compounds. The 
spectrometer mainly consists of two tungsten halogen lamps (150 
W/12 V, H-LAM, Norsk ElektroOptikk, Oslo, Norway), two lenses 
(VNIR and SWIR), a conveyor belt, and a data analysis computer. The 
two tungsten halogen lamps were used as light sources, angled at 45 
degrees. The two lenses, VNIR and SWIR, were set up with exposure 
times of 3.5 ms and 4.5 ms, respectively. The spectral resolution was 
approximately 5 nm, and the samples were positioned 22 cm from the 
lenses. The conveyor belt moved at a speed of 2.5 mm/s. To avoid 
noise fluctuations at the edges of the wavelength range, the effective 
spectral information collected from 410 to 950 nm and 950 to 
2500 nm, covering 396 bands in total, was manually merged. After 
the collection of the HSI data, black and white board correction was 
performed on the original hyperspectral images to eliminate the 
influence of external factors such as instrument and current on the 
sample data (Wang et al., 2023). Finally, ENVI 5.3 software (Research 
Systems Inc., Boulder, CO, United States) was employed to extract the 

TABLE 1 The distribution of twelve production areas of millet.

Production areas
Longitude and 

latitude

Mizhi County, Shaanxi Province (SXMZ) 37°48′32″N/110°22′35″E

Longjiang County, Heilongjiang Province (HLJLJ) 47°15′55″N/123°12′51″E

Yi’nan County, Shandong Province (SDYN) 35°31′31″N/118°20′31″E

Daning County, Shanxi Province (SXDN) 36°28′10″N/110°45′27″E

Shouyang County, Shanxi Province (SXSY) 36°42′23″N/ 112°50′1″E

Wu’an City, Hebei Province (HBWA) 36°41′48″N/114°17′13″E

Yu County, Hebei Province (HBYX) 40°4′2″N/115°0′52″E

Chaoyang City, Liaoning Province (LNCY) 41°37′51″N/120°31′39″E

Qingyang City, Gansu Province (GSQY) 35°42′23″N/107°42′31″E

Fuxin City, Liaoning Province (LNFX) 42°3′28″N/121°6′53″E

Chifeng City, Inner Mongolia Autonomous 

Region (NMGCF)
42°16′5″N/ 118°57′58″E

Qin County, Shanxi Province (SXQX) 36°42′23″N/112°50′1″E

The areas marked in bold are regions designated with PGI status.
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regions of interest and calculate the relative reflectance of the regions 
of interest.

2.3 Measurement of ZC and DON content 
in millet samples

2.3.1 Extraction and HPLC quantification of ZC 
and DON in millet samples

As previously documented in literature, the main organic 
nutritional components of millet include protein (10–15%), amylose 
(10–28%), and fat (3–5%), leading to the frequent contamination with 
Fusarium fungal and high levels of ergosterol and deoxynivalenol 
content (He et al., 2007; Dasa and Nguyen, 2020; Yang et al., 2021; Shi 
et al., 2023). According to the operating procedures listed in GBT 
25221-2010 (General Administration of Quality Supervision, 2011), 
ZC was extracted from millet samples followed by quantification. 
First, 5 g of the above-mentioned sample powder was taken, and 
through processes such as cold condensation reflux extraction, rotary 
evaporation concentration, and nitrogen blow drying, ZC extraction 
solution dissolved in n-hexane was obtained. Then, quantitative 
detection was performed using HPLC (1290, Agilent, United States) 
with an Inertsil ODS-3 silica column (length: 250 mm, inner diameter: 
4.6 mm, particle size: 5 μm). The detection conditions were as follows: 
the mobile phase consisted of n-hexane: isopropanol = 99:1 (v/v), with 
an elution time of 18 min. The flow rate was set to 2 mL/min, the 
column temperature was 40°C, the detection wavelength was 282 nm, 
and the injection volume was 10 μL.

Following the method described in GB5009.111-2016 (General 
Administration of Quality Supervision, 2017) (2016), DON was 
extracted from the millet samples, and its content was determined. 
First, 2 g of the millet sample powder was placed in a 50 mL centrifuge 
tube, and 20 mL of acetonitrile-water solution (84% acetonitrile, v/v) 
was added. Then, the mixture was subjected to ultrasonic extraction 
for 20 min, followed by centrifugation at 10,000 r/min for 5 min to 
obtain the supernatant, which was reserved for detection. Next, the 
solution to be tested was purified using an immunoaffinity column 
(IAC-030-3, PriboLab, China). The column was eluted with methanol, 
and the eluate was subjected to nitrogen blow drying to obtain the 
DON extract. Subsequently, quantitative detection was performed 
using HPLC (1290, Agilent, United States) with a Waters ACQUITY 
UPLC HSS T3 column (2.1 mm × 100 mm, 1.8 μm, Waters, 
United States). The detection conditions were as follows: the mobile 
phase consisted of 80% methanol solution (methanol: water = 80:20, 
v/v), with an elution time of 20 min. The flow rate was set to 0.8 mL/
min, the column temperature was 35°C, the detection wavelength was 
218 nm, and the injection volume was 10 μL.

2.3.2 Preparation of standard solutions for ZC 
and DON

First, 20 mg of ZC standard (57-87-4, Sigma-Aldrich, 
United States) was dissolved in 100 mL of n-hexane to prepare the 
stock solution (200 μg/mL). Then, by using the purchased 200 μg/mL 
DON standard solution (CRM46911, Sigma-Aldrich, United States) 
and based on the test results of the mixed sample (20 samples were 
randomly selected from different origins), working solutions in the 
concentration range of 0.01–100 μg/mL were prepared using 
acetonitrile solvent to establish the standard quantitative curve. The 

detection limit and quantification limit of the method were 
determined based on a signal-to-noise ratio of 3:1 
(Supplementary Table S1). Finally, the chemical indicator content of 
millet samples was determined based on the standard content curve.

2.4 Model data analysis

2.4.1 Spectral data preprocessing
In the modeling process, appropriate preprocessing methods are 

usually employed to mitigate noise interference during data collection, 
thereby improving model prediction effectiveness and stability. This 
study compared three spectral preprocessing methods: SNV, MSC, 
and WT. Among them, SNV and MSC are commonly utilized to 
eliminate scattering effects in spectral data, and they are widely used 
to perform scattering correction (Wu et al., 2019). WT, characterized 
by its high resolution and good time-frequency properties, performs 
a multiscale detailed analysis of signals through scaling and shifting 
operations, thus greatly reducing random noise to smooth the 
spectrum (He et al., 2018).

2.4.2 Prediction models for millet origin and 
chemical indicators

Four models, PLSDA, SVM, RF, and LSTM, were utilized in this 
study for origin prediction. Meanwhile, the prediction of the two 
chemical indicators was achieved using four regression models: PLSR, 
SVM, RF, and LSTM.

The PLSDA model explores the linear relationship between spectral 
data (X) and the predicted region (Y) based on the correlation between 
variables X and Y (Wang et al., 2023). In this study, leave-one-out cross-
validation was employed to determine the optimal number of latent 
variables (between 5–10) for the PLSDA model based on the minimum 
root mean square error (RMSE) obtained through cross-validation. SVM 
is a classic machine learning method that constructs a hyperplane to 
achieve better separation of observations (Liang et al., 2020). It can well 
handle complex spectral data, including linear and nonlinear patterns (Yu 
et al., 2019). This study used the radial basis kernel function for SVM 
modeling. Optimization was conducted for both the penalty factor (C) 
and the kernel parameter (γ), with reference ranges defined as 100 to 
2500 for C and 2−8 to 28 for γ. The RF model integrates the predictions of 
multiple decision trees through a majority voting scheme. It introduces 
two random factors, namely the number of trees (n-tree) and the number 
of variables to consider at each split (mtry), to enhance prediction 
accuracy and avoid overfitting. In this study, through leave-one-out cross-
validation, it was determined that n-tree of 500 and mtry of 2 are suitable 
for balancing model accuracy and efficiency (Liu et al., 2020; Jia et al., 
2021). The PLSR model, unlike PLSDA, is used to solve regression 
prediction problems. In the PLSR model, latent variables measure the 
covariance between the independent variables and the target variable to 
achieve higher prediction accuracy. In this study, leave-one-out cross-
validation was employed, and based on the minimum RMSE value 
obtained through cross-validation, the optimal number of latent variables 
for the model was determined to range between 6 and 10.

The LSTM model is a classic deep-learning neural network 
that can capture long-term dependencies in information. It 
addresses the common issue of gradient vanishing or explosion in 
large amounts of spectral data by introducing gate mechanisms. 
In this study, an LSTM model with 64 hidden units was 
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constructed, and its detailed architecture is illustrated in Figure 1. 
In the LSTM layer, two types of states were constructed: the 
output state (at time step t denoted as ht) and the cell state (at 
time step t denoted as ct). These states are controlled by input 
gates (it), forget gates (ft), cell candidate gates (gt), and output 
gates (ot). These gates enable the network to determine whether 
to discard or add information, thus forgetting and remembering 
the corresponding information. In the model training process, the 
LSTM model combines input weights, recurrent weights, and bias 
parameters with a dropout strategy to ensure a balance between 
performance and computational complexity, thus preventing 
overfitting (Mou et al., 2021). In the LSTM layer initializer, the 
parameter settings include “Orthogonal” and “Dropout rate = 0.2.” 
In the fully connected initializer, the parameter settings include 
“Kaiming” and “Bach size = 40.” The parameter settings of the 
optimizer are “Adam,” “Loss = MSE (content prediction),” and 
“Loss = Cross Entropy (origin prediction).”

The AM  originated from research on human vision and can 
be employed to extract the important features for variable selection. 
The screening process of AM involves two steps: (1) calculating the 
attention distribution on all input information, and (2) computing the 
weighted average of input information based on the attention 
distribution (Fan et al., 2022) (Figure 2). AM can help the LSTM 
model eliminate redundant information based on the information 
content and importance of the target value, thereby enhancing the 
model’s generalization performance.

2.4.3 Model data splitting and performance 
evaluation

In the model analysis, the SPXY algorithm (based on joint x–y 
distance) (Galvao et al., 2005) was utilized to randomly split the 600 
samples (10 plots × 5 replicates × 12 origins) into a training set (420 
samples) and a prediction set (180 samples) at a ratio of 7:3. The 
main advantage of the SPXY algorithm lies in its consideration of 
the variability of multidimensional spatial data, including both x and 
y dimensions. The model parameters were selected and optimized 

through 5-fold cross-validation. All models were implemented with 
Python 3.9 software in the Spyder environment. The performance of 
the models in predicting the origin of millet was evaluated in terms 
of the accuracy on the prediction set. For content prediction, metrics 
such as mean absolute error (MAE), coefficient of determination 
(R), RMSE, and residual predictive deviation (RPD) were employed 
to evaluate the performance of the regression models (Wang 
et al., 2023).

3 Results

3.1 Explicable wavelengths selected via 
attention mechanism in origin 
discrimination and chemical content 
prediction

By using the AM algorithm to assign weights to all bands, the 
top 15 variables with higher weights were selected for predicting 
the origin and the content of the two chemical indicators in millet 
(as shown in Figure 3). As for origin prediction, the feature bands 
are related to the differences in the main organic compound 
content of millet from different production areas. Specifically, the 
wavelengths at 998 nm are related to the third overtone region of 
–CH (CH/CH2/CH3) and the third overtone region of –OH from 
oil nutrients (Weinstock et  al., 2006; Balbino et  al., 2022); the 
wavelengths at 1156 nm and 1521 nm are, respectively, related to 
the second overtone regions of –OH and –CH (CH/CH2/CH3) 
and the first overtone region of –NH from protein in the protein 
compound (Wang et al., 2013; Lv et al., 2016); the wavelength at 
1254, 1276, 1314, and 1467 nm are closely related to the starch 
compounds and reflect the –CH second overtone and combination 
(Workman and Weyer, 2007; Ma et al., 2017). Additionally, the 
wavelengths at 486, 546, and 562 nm in the visible light range 
represent potential color differences in millet samples due to 
environmental factors in different production areas.

FIGURE 1

The structure of the LSTM model. The LSTM layers have 64 hidden units; two states, namely the output state (time step t as ht) and the cell state (time 
step t as ct), are constructed in the LSTM layer, and both states are controlled by the input gate (it), the forget gate (ft), the cell candidate (gt), and the 
output gate (ot).
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In the prediction of DON and ZC content, the main feature 
wavelengths indicate that the contamination by fungi of the 
Fusarium genus mainly leads to changes in the organic properties 
of millet and potential discoloration. Regarding DON, wavelengths 
in the visible light range of 486, 546, and 562 nm represent 
potential color differences in millet caused by various 
environmental factors in different production areas. Meanwhile, 
the wavelengths at 1396 and 1412 nm are associated with the 
moisture content of millet (Femenias et al., 2021). The wavelengths 
at 1123, 1145, and 1167 nm correspond to the second overtone 
regions of –OH and –CH (CH/CH2/CH3) in the protein 
compound (Wang et al., 2013; Lv et al., 2016); additionally, the 
wavelengths at 1592 and 1614 nm bands are related to the –NH 
stretch first overtone and –CH first overtone in the protein 
compound (Eldin and Akyar, 2011).

As for the ZC group, the wavelengths at 638, 660, 676, and 714 nm 
represent potential color differences in millet caused by environmental 
factors in different production areas. The wavelengths at 909 and 
968 nm are, respectively, related to the third overtone region of –CH 

(CH/CH2/CH3) and the third overtone region of –OH from oil 
nutrient (Weinstock et al., 2006; Balbino et al., 2022). The effective 
spectra of 1118 nm and 1150 nm correspond to the second overtone 
regions of –OH and –CH (CH/CH2/CH3) in the protein compound 
(Wang et al., 2013; Lv et al., 2016); additionally, the wavelength at 
1423 nm is associated to the moisture content of millet (Femenias 
et al., 2021).

3.2 Results of geographical origin 
discrimination of XM

3.2.1 Results of geographical origin 
discrimination based on full wavelengths

Based on the full spectrum of HSI, the results of millet origin 
discrimination using PLSDA, SVM, RF, and LSTM prediction models 
combined with three preprocessing methods (SNV, MSC, and WT) 
are presented in Table 2. The results showed that compared to the 
group of using original data without denoising processing (ORI), the 

FIGURE 2

The workflow of the proposed method. It mainly includes spectral data acquisition, chemical composition analysis, model prediction (including data 
denoising, origin discrimination, and content regression prediction), and feature wavelength selection by the AM algorithm (AM focuses on the 
important part of the target while ignoring the rest by calculating the attention distribution and weighting the average value based on all input 
information).
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three preprocessing groups exhibited higher origin prediction 
accuracy, reflecting the effectiveness of denoising methods. Among 
them, the WT preprocessing group obtained the best results, with the 
accuracy of prediction exceeding 85% for all models. The WT-LSTM 
model achieved the highest prediction performance for millet origin 
discrimination, with the highest accuracy reaching 94.4% on the 
prediction set.

3.2.2 Improved effect of geographical origin 
discrimination based on the selected 
wavelengths

After using the selected feature wavelengths, PLSDA, SVM, RF, 
and LSTM models showed higher overall accuracy on both the 
training and prediction sets (Table 3), with their prediction accuracy 
all exceeding 85%, demonstrating the effectiveness of the 
AM algorithm in selecting feature wavelengths. Overall, the WT data 
denoising preprocessing method showed the best results, with 
improvements in prediction accuracy across all models. In terms of 
regression models, the LSTM model combined with different data 
preprocessing methods achieved a prediction accuracy of over 98% on 
the prediction set. Overall, the WT-LSTM model achieved the best 
performance, with training and testing accuracy of 99.5 and 99.4%, 
respectively.

3.3 Results of DON and ZC content 
prediction

3.3.1 Results of DON and ZC content prediction 
based on full wavelengths

The results of ZC and DON content prediction based on the full 
wavelength are presented in Table 4. In the content prediction of both 
chemical indicators, after WT preprocessing, all models exhibited 
higher R values, lower MAE and RMSE values, and higher RPD values 
(all above 2.50) compared to other preprocessing groups, indicating 
good model performance and the outstanding denoising effect of the 
WT method. From the perspective of content regression models, the 
LSTM model obtained higher R values than the traditional PLSR, 
SVM, and RF models, reflecting a better linear relationship; 
meanwhile, the LSTM model obtained significantly lower MAE and 
RMSE values than other models, indicating that the LSTM model had 
smaller prediction errors. Additionally, the RPD values of the LSTM 
model are generally the highest, demonstrating the excellent predictive 
performance of the model. Overall, the WT-LSTM model is the best 
model for ZC and DON content prediction, with the highest R values 
(all above 0.90), lowest MAE and RMSE values, and RPD values all 
above 3.30, demonstrating the excellent predictive performance of 
these models (Table 4).

FIGURE 3

Feature wavelengths obtained by the AM module. In the context, “Origin,” “ZC,” and “DON” represent the feature wavelengths for millet origin 
discrimination, ZC prediction, and DON content prediction, respectively, where each group was labeled with the 15 most important feature 
wavelengths.

TABLE 2 Models for muti-regions discrimination based on full wavelengths.

Pretreatments
PLSDA (%) SVM (%) RF (%) LSTM (%)

Train Test Train Test Train Test Train Test

ORI 80.7 77.3 100.0 65.0 95.2 60.6 100 82.2

SNV 81.8 80.1 100.0 50.6 95.2 60.6 98.8 80.6

MSC 93.0 83.5 100.0 55.0 96.0 57.8 98.6 85.6

WT 94.8 92.6 100.0 87.8 99.3 85.6 99.0 94.4

ORI represents the original data without denoising processing; SNV, MSC, and WT represent three preprocessing groups, respectively.
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3.3.2 Improved effect of ZC and DON content 
prediction based on the selected wavelengths

As shown in the above prediction results using the full spectrum, 
the WT preprocessing method exhibited the best denoising effect. 
Meanwhile, redundant spectral data can lead to issues such as high 
model complexity, long data processing times, and poor predictive 
performance. However, these issues can be addressed by selecting 
effective wavelengths. In this section, feature wavelengths are extracted 
using the AM algorithm, and four regression models (PLSR, SVM, RF, 
and LSTM) were combined with the WT preprocessing method to 
predict the content of two chemical indicators. The results are 
presented in Table 5. In the content prediction of the two chemical 
indicators, the four models using selected wavelengths all obtained 
better results than those using the full spectrum group (higher R and 
RPD values, lower RMSE values), demonstrating the effectiveness of 
feature wavelength selection. Moreover, compared to the ORI group, 
the WT data denoising group demonstrated better prediction results 
(higher R and RPD values, lower RMSE values), highlighting the 
outstanding denoising effect of the WT method.

For the content prediction of the two chemical indicators, the 
WT-LSTM model demonstrated the best performance. Its R values 

both exceeded 0.95, and the RPD values were higher than 3.50, 
indicating outstanding predictive capabilities of the model (Table 5). 
In the prediction of ZC content, compared to the full wavelength 
group (WT-LSTM), the R value of the selected full wavelength group 
was increased by 5.52%, the MAE and RMSE values were significantly 
decreased by about 47.97 and 41.78%, respectively, and the RPD value 
was increased by 5.9%. In the prediction of DON content, compared 
to the full wavelength group (WT-LSTM), the R value of the selected 
full wavelength group was increased by 0.41%, while the MAE and 
RMSE values were, respectively, decreased by approximately 6.93 and 
4.62%, and the RPD value is increased by 1.1%, remaining at a similar 
level (Table 5).

4 Discussion

The quality attributes of millet determine its commercial value, 
and there is high variability in the quality and price of millet on the 
market. Due to differences in growing regions and environmental 
factors, millet from different origins has significant differences in 
appearance and nutritional content, leading to notable price disparities 

TABLE 3 Models for muti-regions discrimination based on effective wavelengths.

Pretreatments
PLSDA (%) SVM (%) RF (%) LSTM (%)

Train Test Train Test Train Test Train Test

ORI 93.1 87.2 100.0 86.1 97.8 85.6 98.6 96.1

SNV 93.8 87.8 100.0 88.3 98.6 89.4 97.9 97.2

MSC 95.7 91.7 100.0 89.4 100 91.7 99.3 97.8

WT 97.9 95.6 100.0 96.7 99.0 92.8 99.5 99.4

TABLE 4 The content prediction results of two chemical indicators by full wavelengths.

Models Pretreatments
Test (ZC) Test (DON)

R MAE RMSE RPD R MAE RMSE RPD

PLSR

ORI 0.735 0.0624 0.0937 2.41 0.731 0.0346 0.0452 2.39

MSC 0.765 0.0612 0.0889 2.53 0.796 0.0297 0.0356 2.69

SNV 0.777 0.0611 0.0869 2.60 0.803 0.0212 0.0320 2.74

WT 0.789 0.0610 0.0855 2.67 0.842 0.0179 0.0287 2.86

SVM

ORI 0.765 0.0600 0.0880 2.58 0.765 0.0325 0.0423 2.57

MSC 0.742 0.0598 0.0901 2.50 0.778 0.0318 0.0431 2.63

SNV 0.780 0.0609 0.0865 2.71 0.831 0.0188 0.0286 2.88

WT 0.849 0.0512 0.0832 2.93 0.854 0.0165 0.0269 2.91

RF

ORI 0.759 0.0615 0.0899 2.49 0.702 0.0387 0.0467 2.22

MSC 0.798 0.0547 0.0831 2.66 0.839 0.0170 0.0266 2.80

SNV 0.854 0.0516 0.0824 2.99 0.854 0.0163 0.0254 2.91

WT 0.880 0.0477 0.0730 3.17 0.867 0.0154 0.0239 2.93

LSTM

ORI 0.847 0.0501 0.0798 2.90 0.849 0.0166 0.0248 2.89

MSC 0.866 0.0486 0.0768 3.06 0.874 0.0142 0.0228 3.11

SNV 0.887 0.0469 0.0734 3.18 0.860 0.0151 0.0297 2.98

WT 0.905 0.0454 0.0708 3.38 0.970 0.0101 0.0173 3.65

Evaluation metrics for model performance include R, MAE, RMSE, and RPD; three methods for noise reduction are MSC, WT, and SNV; four prediction models are PLSR, SVM, RF, and 
LSTM.

https://doi.org/10.3389/fsufs.2024.1454020
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Nie et al. 10.3389/fsufs.2024.1454020

Frontiers in Sustainable Food Systems 09 frontiersin.org

(Wang et  al., 2022a). The frequent occurrence of counterfeit 
geographical indications undermines market fairness and brand value. 
Meanwhile, during storage or processing, grains such as millet are 
susceptible to mycotoxin contamination (Zhao et al., 2020; Femenias 
et al., 2021; Teixido-Orries et al., 2023), posing serious issues of food 
safety and quality (Bai et al., 2024). Therefore, developing a rapid and 
accurate method to predict the geographical origin and fungal 
contamination of millet is crucial for preventing fraud and protecting 
consumer rights. HSI emerges as a promising non-destructive 
detection technique, and it is widely used in the assessment of 
agricultural product quality (Wang et al., 2021).

Currently, HSI research has achieved good results in predicting 
the content of low-concentration compounds, such as toxins (DON 
and ZC) in maize and wheat (Femenias et al., 2021; Borras-Vallverdu 
et al., 2024), and ginsenosides in Panax ginseng (Wang et al., 2024a; 
Wang et al., 2024b), overcoming the challenges of trace compound 
prediction. In this study, HSI combined with a deep learning model 
(WT-ALSTM) also obtained satisfactory results in millet origin 
classification, with training and testing accuracy of 99.5 and 99.4%, 
respectively. In the prediction of low-concentration compounds, such 
as ZC and DON, the WT-ALSTM model’s RPD values exceeded 3.0, 
and the R values were greater than 0.9, demonstrating the excellent 
predictive performance and the immense potential of HSI technology 
for low-concentration compound prediction. Furthermore, the 
WT-ALSTM model made satisfactory regression predictions, 
outperforming traditional and individual deep learning models. The 
AM model’s characteristic bands provided reasonable explanatory and 
satisfactory prediction outcomes. Generally, the combination of the 
WT-ALSTM model with HSI technology provides a promising 
approach for developing portable equipment for rapid and effective 
quality prediction of millet in the future.

Hyperspectral data involve diverse noise sources, which may 
originate from instruments or samples. Preprocessing methods are 
commonly used to improve the prediction performance of models. 
The WT denoising method used in this study is typically sensitive to 
various sources of noise such as environmental conditions, instrument 
errors, and sample variations (He et al., 2018; Wang et al., 2022c). 
Existing studies, including predictions of total polysaccharides and 
total flavonoid content in Chrysanthemum (He et  al., 2018), and 
assessments of total alkylamide content (TALC) and volatile oil 
content (VOC) in Sichuan pepper (Wang et al., 2022c), all validated 
the applicability of the WT denoising method to HSI data. Similarly, 

in this study, the AM  module was used as a feature wavelength 
selection method, which significantly reduced the computational 
burden caused by redundant data, contributing to higher model 
performance. Consistent with this study, the combination of the 
AM module with deep learning models in the field of HSI research has 
also yielded some encouraging results. For example, the CLSTM 
model successfully used the AM module to screen feature bands for 
predicting starch and protein content in Coix seed (Wang et al., 2023); 
the fusion of the AM module and the SCNN model can successfully 
predict wheat’s susceptibility to herbicide stress (Chu et al., 2022); 
additionally, the AM module was combined with CNN models to 
predict single particle oil content in maize seeds (Zhang et al., 2022).

The deep learning model LSTM used in this study demonstrated 
higher prediction performance than traditional machine learning 
models. The LSTM module, integrated with multi-layer neural 
networks, shows a strong capability to handle complex and nonlinear 
spectral data (Fan et al., 2022). Furthermore, compared to traditional 
machine learning models, the LSTM model enhances compatibility 
with spectral time-series sequences through gated recurrent units and 
improves generalization and stability through dropout strategies to 
address overfitting issues (Wang et al., 2023). Similar studies in the 
literature, such as the prediction of amino acid content in beef (Dong 
et al., 2024) and corn variety identification (Wang et al., 2018), have 
confirmed the outstanding prediction performance of LSTM models 
and the advantages of deep learning models in terms of self-inference, 
avoidance of subjective parameter tuning, and more objective and 
reliable model output, indicating that they can be successfully used in 
food research in the future (Wang et al., 2023).

In future research, considering the great challenges posed by 
external environmental factors, simultaneously normalizing and 
denoising both spectral and chemical content data can suppress the 
impact of individual differences. Meanwhile, collecting more 
representative samples from various geographical origins can further 
improve the applicability and reliability of prediction models. 
Compared to traditional spectral techniques, HSI has the advantage 
of acquiring both spectral and image information from samples. With 
the prominent advantages of deep learning techniques in processing 
image information, it is necessary to integrate image and spectral 
information to further develop prediction models for millet samples, 
thereby broadening the application scope of HSI technology. 
Moreover, based on the effective wavelengths selected by the 
AM  module in HSI, further efforts should be  made to develop 

TABLE 5 The content prediction results of two chemical indicators by effective wavelengths.

Models Pretreatments
Test (ZC) Test (DON)

R MAE RMSE RPD R MAE RMSE RPD

PLSR
ORI 0.897 0.0469 0.0721 3.28 0.876 0.0140 0.0231 3.13

WT 0.922 0.0395 0.0613 3.40 0.924 0.0123 0.0195 3.38

SVM
ORI 0.884 0.0470 0.0720 3.19 0.910 0.0230 0.0202 3.29

WT 0.916 0.0414 0.0652 3.33 0.954 0.0111 0.0185 3.55

RF
ORI 0.869 0.0482 0.0772 3.04 0.899 0.0228 0.0217 3.30

WT 0.925 0.0396 0.0602 3.47 0.922 0.0120 0.0190 3.41

LSTM
ORI 0.934 0.0365 0.0554 3.51 0.946 0.0114 0.0188 3.47

WT 0.955 0.0236 0.0412 3.58 0.974 0.0094 0.0165 3.69
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specialized, portable, and miniaturized hyperspectral systems to meet 
the demand for on-site rapid testing in future markets.
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