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Alcoholic beverages have been a significant industry. However, they present food 
safety risks, necessitating heightened regulation and monitoring. The safety risk 
assessment of alcoholic beverages encompasses a variety of factors, including 
microorganisms, excessive methanol content, chemical adulteration, and food 
additives. The data used in this paper is sourced from the National Food Safety 
Sampling Inspection Results Query System in China. The primary conclusions are 
as follows: (1) A deviation reconstruction-based multi-weight decision model is 
proposed, which incorporates three distinct weight acquisition methods to perform 
optimization calculations. (2) The comparative investigations serve as evidence of 
the risk assessment model’s effectiveness. (3) The multi-weight decision model 
based on deviation reconstruction and the NSGA-II (non-dominated sorting genetic 
algorithm-II) exhibit excellent adaptability. The results of the risk assessment are 
analyzed, and recommendations are offered based on the categories of alcoholic 
beverages and the detection indicators. This paper investigates the regulation 
of food safety and the identification of risks in intoxicating beverages. It also 
transitions the response to food safety risks from a passive to an active protection 
strategy. This method has the potential to improve the public’s perception of safety 
and satisfaction with food-related concerns, as well as to provide the industry 
with practical solutions for sustainable growth. Simultaneously, this document 
establishes new risk assessment regulations for alcoholic beverages, offering 
recommendations for enhancing regulatory efficiency.
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1 Introduction

As the socio-economic level continues to advance, alcoholic beverages have gained 
growing significance in people’s daily lives. This paper focuses on the study of alcoholic 
beverages, using the following aspects as the basis: First and foremost, the magnitude of 
alcoholic beverages is immense. In 2022, the National Bureau of Statistics (2023) reported that 
China’s production of alcoholic beverages exceeded 40 million kiloliters. This comprised 
6.712 million kiloliters of Chinese Baijiu and 35.687 million kiloliters of beer. The production 
and sales rates of Chinese Baijiu and beer have exceeded 95%, leading to a total market value 
of the brewing business reaching an astonishing 4.5 trillion RMB. Moreover, there is still 
substantial untapped potential for expansion in the alcoholic beverages market. The World 
Health Organization (2018) estimated in 2016 that China’s per capita annual alcohol 
consumption would increase to 8.1 liters by 2025. In comparison, the predicted per capita 
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annual alcohol consumption for the same period in the United States, 
the United Kingdom, Germany, and Russia were 10.3, 11.8, 12.6, and 
12.4 liters, respectively. These figures suggest that there is still 
significant potential for growth in the Chinese alcoholic beverage 
market. Finally, alcoholic beverages have a distinct economic worth as 
a unique investment commodity. High-quality Chinese Baijiu 
products possess exceptional longevity, resistance to deterioration, 
and elimination, while also being subject to stringent control by 
producers in terms of sourcing, resulting in their remarkable scarcity 
and stability. The market price and the manufacturer’s suggested price 
exhibit a substantial disparity, rendering it an investment product that 
speculators actively chase due to interest rate differentials.

China plays a significant role in both the manufacturing and 
consumption of alcoholic beverages. The alcohol industry in China 
places great importance on ensuring high standards of quality and 
safety. This is crucial for the sector’s growth and the well-being of the 
population. Nevertheless, as alcoholic beverages gain popularity and 
the market expands, there has been a steady emergence of food safety 
concerns. For instance, in 2021, there was a reported issue of sodium 
cyclamate in Tanghua Liquor Industry in Maotai Town (Foodhappy 
2021), as well as a persistent recurrence of counterfeit alcohol 
instances. To effectively regulate and prevent the reoccurrence of food 
safety incidents in alcoholic drinks, it is crucial to prioritize the 
assessment of identified or probable hazards. This requires the 
development of innovative approaches and techniques for evaluating 
food safety risks (Li et al., 2020; Song et al., 2022).

Alcoholic beverages pose quality and safety issues throughout the 
whole industry chain. Min and Yue (2023) categorized these risks as 
endogenous risks, exogenous risks, and quality risks, offering precise 
explanations for each category. Wang (2021) conducted a 
comprehensive investigation on different stages of alcohol production, 
including grain steaming, koji making, fermentation, and distillation. 
Their aim was to assess the effects of these processes on the quality and 
safety of alcohol. The study provides valuable insights and references 
that can be used for the advancement and quality management of the 
Chinese alcohol industry. Chen et al. (2019) examined the possible 
concerns with the quality and safety of Huangjiu manufacturing, 
specifically addressing the control of dangerous compounds 
throughout the entire process, including raw material selection, koji 
manufacture, fermentation, and aging. By effectively integrating 
existing knowledge and empirical evidence, precise and consistent risk 
assessment outcomes may be generated for alcoholic beverages. These 
outcomes can then be  utilized to enhance the monitoring and 
examination of alcoholic beverages, foster industry growth, and 
advance food safety assurance technologies.

In order to effectively oversee and avoid the reoccurrence of food 
safety incidents related to alcoholic beverages, it is crucial to use 
innovative approaches and techniques for assessing food safety risks. 
Food safety risk assessment entails the systematic observation, 
surveillance, and numerical examination of food safety hazards to 
describe and analyze potential food safety concerns (Song et al., 2020). 
To avoid the impracticality of sampling every alcoholic beverage 
individually, it is advisable to prioritize known and possibly 
problematic samples for targeted supervision. This approach can 
effectively prevent food safety issues. An important focus of food 
safety supervision is the utilization of inspection data, including pass 
rates and indicator information, to extract and analyze information to 
assess the status of food safety.

The novel contributions of this study are outlined as follows: (1) 
this study aims to examine the quality and safety of food during the 
production process. It involves examining and evaluating the risks 
associated with food safety to quantify them and offer specific 
suggestions to food production companies. (2) The current research 
utilizes the NSGA-2 algorithm to provide a quantitative risk 
assessment approach that considers several factors. This method 
overcomes the limits of existing risk assessment strategies that only 
rely on sampling. It also addresses concerns of bias, subjectivity, and 
data imbalance to some extent. (3) This study enhances the safety risk 
assessment of alcoholic beverages by incorporating a multi-criteria 
decision-making model. The model is optimized using algorithmic 
iteration to analyze potential risks and offer appropriate 
recommendations and strategies. Consequently, this research 
contributes to the enhancement of the food safety management system.

The current research integrates detection data on alcoholic 
beverages and specifically examines six categories of harmful elements 
in alcohol detection, including metal pollutants, pesticide pollutants, 
food additives, quality indicators, microbial contamination, and 
non-food contamination. Various risk assessment methodologies are 
employed to analyze the risks associated with alcoholic beverages. 
These methodologies involve the integration of prior information and 
experimental data to ensure reliable and consistent risk assessment 
outcomes. This paper offers guidance for the supervision and 
surveillance of the safety of alcoholic beverages, which promotes the 
growth of the alcoholic beverage industry and enhances food safety 
assurance technology. The subsequent sections of this work are 
structured in the following manner. Section 2 presents a 
comprehensive analysis of the existing literature on food safety 
evaluation and the NSGA-II algorithm. Section 3 provides an 
overview of the materials and procedures employed in this work. 
Section 4 presents an empirical analysis utilizing the government 
sampling dataset. Section 5 offers a comprehensive conclusion to this 
paper from different perspectives.

2 Literature review

2.1 Research on safety risks of alcoholic 
beverages

China plays a significant role in both the production and 
consumption of alcoholic beverages. The risk of alcohol quality safety 
permeates the entire industrial chain. Min and Yue (2023) categorized 
the risk associated with the safety of alcohol quality into three types: 
endogenous risks, exogenous risks, and quality risks. In their study, 
Wang et al. (2021) examined the several stages involved in alcohol 
production, including steaming, mixing, fermentation, and 
distillation. Their findings offer valuable insights for the advancement 
of China’s alcohol sector and the enhancement of product quality 
control. In their study, Chen et al. (2019) examined the potential safety 
concerns about the quality and presence of dangerous compounds in 
the manufacture of Chinese rice wine. This investigation encompassed 
many stages of the manufacturing process, such as the selection of raw 
materials, fermentation, aging, and other related procedures. Yang 
et  al. (2019) conducted an analysis of the primary elements that 
influence the quality and safety of grape raw materials and the process 
of making wine in China. This analysis was based on the existing 
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regulations and standards. They provided recommendations for 
enhancing the quality and safety of wine using standards and 
technological advancements. Foreign scholars have also performed 
thorough research on the safety hazards associated with alcoholic 
beverages. Leonardi and Portinale (2017) developed a machine 
learning classifier using a Bayesian network model to analyze the 
different characteristics of Piedmont (Italy) wine. This approach offers 
an efficient way to detect fraudulent local wine.

2.2 Research on methods in food safety 
assessment

The subject of food safety risk assessment is intricate and 
demanding, including many qualitative and quantitative indicators. 
It necessitates the thorough use of diverse assessment methods and 
standards (Gupta et al., 2023). Food safety risk assessment study faces 
substantial obstacles due to the large volume of data and the 
complexity of standard unification. The National Food Safety 
Inspection Results Query System reveals that prevalent food safety 
risk factors encompass pesticide and veterinary medicine residues, 
food additives, biotoxins, microbiological residues, and chemical 
contamination, among other factors (Han et  al., 2022). When 
considering the evaluation process, food safety assessment methods 
can be  categorized into two groups: comprehensive evaluation 
methods and machine learning approaches. Comprehensive 
evaluation methods are appropriate for circumstances that need the 
consideration of various indicators in a comprehensive manner and 
can offer an intuitive assessment of risk levels (Song and Zhuang, 
2017). In contrast, machine learning techniques offer benefits in 
handling large volumes of data and identifying intricate patterns, 
hence revealing potential non-linear correlations and patterns (Bao 
et al., 2023). Furthermore, it is essential for food safety risk assessment 
to be  a dynamic process that consistently enhances and adapts 
evaluation methodologies to uphold the precision and dependability 
of the evaluation outcomes (Deng et al., 2021). Zamiri-Noghreh et al. 
(2023) examine the conduct of participants in the food supply chain 
by employing the game theory methodology. The experimental 
findings demonstrate that with the implementation of suitable 
legislation, the government can effectively deter the utilization of 
unapproved chemical additives by participants in the food 
supply chain.

The comprehensive evaluation method is a widely employed 
approach for the qualitative or quantitative assessment of various 
indicators (Zhu et al., 2021; Boggia et al., 2023). Wang and Chen 
(2014) used an enhanced analytical hierarchy process to examine 
different indicators of an early warning system. They also used the 
fuzzy comprehensive evaluation method to determine the significance 
of each indicator. As a result, they developed a safety warning system 
using fuzzy clustering and principal component analysis. Another 
often utilized strategy is implementing an indication system followed 
by conducting a thorough examination. Wang and Yue (2017) 
developed a safety warning strategy for mitigating food transportation 
hazards. They implemented a sustainable data mining approach to 
continuously monitor and identify potential dangers using warning 
criteria. They utilized internet technology and association rule mining 
technologies in the realm of food safety monitoring, resulting in a 
decrease in the potential hazards to the food supply chain. Ma et al. 

(2020) suggested an enhanced AHP-based data analysis approach for 
assessing food safety indicators. This method allows for the calculation 
of risk values for different components of food safety.

Some scholars combined comprehensive evaluation methods with 
machine learning methods to study food safety risks. As an illustration, 
Huang et al. (2020) introduced a parallel LSTM model to forecast the 
risk level of non-compliant and high-risk merchants. They also 
developed a dataset for evaluating food safety. Westerveld et al. (2021) 
incorporated the extreme gradient-boosting machine learning model 
into food safety prediction and achieved high accuracy in forecasting 
the long-term safety of grains.

From the literature review of food safety evaluation methods, the 
following deductions can be made: (1) Comprehensive evaluation and 
machine learning are now the dominant approaches used for assessing 
food safety. By combining these two methodologies, we may exploit 
their respective strengths to investigate and assess food safety 
concerns. (2) Developing a risk assessment model and hazard 
evaluation system is a very efficient research approach for conducting 
food safety risk assessment. (3) Food safety risk assessment 
methodologies must be regularly updated and refined in coordination 
with current national requirements to ensure they remain timely 
and realistic.

3 Materials and methods

3.1 Data acquisition and indicator selection

The data was obtained from the National Food Safety Sampling 
Inspection Results Query System’s inspection data on alcoholic foods, 
which were published from 2020 to 2022. The inspection data comprises 
various details, including product classification, product name, 
inspection judgment result, classification of non-conforming items, 
non-conforming items, non-conforming standard columns, detection 
values, regulatory limits, product specifications, trademarks, production 
dates, production enterprise names, production enterprise addresses, 
production provinces, sampling unit names, sampling unit addresses, 
notification times, notification numbers, notification units, execution 
measures, source links, inspection items, inspection levels, inspection 
agencies, and inspection standards. The primary objects of investigation 
are alcoholic beverages and their associated goods. Irrelevant 
information, such as trademarks, notification units, execution measures, 
and source connections that cannot be used as variable information for 
the study objectives, are excluded and removed.

The risk categories for alcoholic beverages typically include quality 
indicators, food additives, contaminants, biological toxins, pesticides, 
veterinary drugs, microorganisms, illegal additives, and other factors 
(China National Center for Food Safety Risk Assessment, 2023). The 
total data obtained amounted to 40,464 records, with part of the data 
shown in Table  1, where the inspection results are the actual 
detected values.

Figure  1 shows the proportion of unqualified items in the 
inspection data.

The risk indicators are chosen based on many criteria, which 
include: (1) Selecting representative indicators rather than all the 
indicators, as the possibility of a dimensional disaster during 
evaluation grows when there are dozens or more indicators. Choosing 
indicators with a significant proportion of non-conformance rates to 

https://doi.org/10.3389/fsufs.2024.1449964
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Song et al. 10.3389/fsufs.2024.1449964

Frontiers in Sustainable Food Systems 04 frontiersin.org

indicate relevant risk categories can both decrease the burden and 
ensure the study’s success (Li et al., 2021). (2) Pertinent legislation, 
regulations, or standards for alcoholic beverages, primarily derived 
from the corresponding standards of the National Medical Products 
Administration; (3) the inherent qualities of alcoholic beverages, 
determined by production methods, ingredients, and storage 
conditions, among other factors. Alcoholic beverages, for instance, 
include a sterilizing effect that can potentially lower the danger of 
microbiological contamination. Additionally, these beverages contain 
indications that are poisonous and damaging. It is important to 
prioritize indicators that present substantial dangers to human health, 
such as heavy metals and banned chemicals. Additionally, economic 
and measurable aspects should be considered. The costs of detecting 
various indicators are subject to variation, and data normalization is 
necessary during the preprocessing phase. Hence, the assessment 
criteria considered the expense of detection and the measurability of 
the indicators. After considering the factors mentioned above, six key 
indicators are chosen to assess the safety hazards associated with 
alcoholic beverages. These indicators include alcohol concentration, 
sodium cyclamate, methanol, heavy metals, solids, and sucralose.

3.2 Weight acquisition

3.2.1 Entropy weighting method for weight 
calculation

The Entropy method is a weight calculation method based on the 
principle of information entropy. It is suitable for multi-criteria 
decision-making problems, especially in the case of relatively 
independent criteria indicators, different scales, and different data 
types. The steps are as follows:

 1) Collect data for all indicators and normalize the data to enable 
comparison between indicators with different units and scales. 

The calculation methods for the positive and negative 
indicators are shown in Equations 1, 2, respectively.

For positive indicators:

 
X

x x
x xij
ij j

j j
=

−  
  −  

min

max min
 

(1)

For negative indicators:
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x x
x xij

j ij

j j
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 2) Define the information entropy to calculate the entropy value 
of each indicator in the sample. Information entropy is a 
measure of the variability or uncertainty of indicators. The 
larger the entropy value, the greater the variability of the 
indicator, and the higher the weight.

The weight of the j-th indicator in the i-th sample is shown in 
Equation 3.

 

ρij
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where, i = 1, 2, 3,..,n, and j = 1, 2, 3,..,m.
The entropy value of the j-th indicator is shown in Equation 4.
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TABLE 1 Partial raw data of food safety supervision and sampling inspection.

Product 
category

Product 
name

Determination 
result

Item 
classification

Non-
compliant 
item

Regulatory 
limit

Measured 
value

Baijiu Sorghum baijiu Unqualified Quality indicators Solids ≤0.50 g/L 24.85 g/L

Baijiu
Pure sorghum 

baijiu
Unqualified Quality indicators Alcohol content 53.0 ~ 55.0%vol 52.6%vol

Baijiu Sorghum baijiu Unqualified Quality indicators Alcohol content 49.0 ~ 51.0%vol 46%vol

Baijiu Sorghum baijiu Unqualified Quality indicators Alcohol content 49.0 ~ 51.0%vol 46%vol

Baijiu Bulk baijiu Unqualified Quality indicators Methanol ≤0.6 g/L 0.686 g/L

Baijiu Yancheng baijiu Unqualified Quality indicators Cyanide (as CN−) ≤8.0 mg/L 10 mg/L

Baijiu 46 Degree baijiu Unqualified Contaminants Lead (as Pb) ≤0.5 mg/kg 1.19 mg/kg

Baijiu Sorghum baijiu Unqualified Contaminants Dibutyl phthalate ≤1.0 mg/kg 36.0 mg/kg

Baijiu Bulk baijiu Unqualified Food additives sucralose Prohibited 0.0275 g/kg

Huangjiu Sorghum baijiu Unqualified Food additives Sodium saccharin Prohibited 0.0337 g/kg

Other Fermented juice Unqualified Food additives Sodium cyclamate Prohibited 0.152 g/kg

Pawpaw wine Pawpaw wine Unqualified Food additives Sodium cyclamate Prohibited 0.150 g/kg

Baijiu Sorghum baijiu Unqualified Food additives Sucralose Prohibited 0.0112 g/kg

https://doi.org/10.3389/fsufs.2024.1449964
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Song et al. 10.3389/fsufs.2024.1449964

Frontiers in Sustainable Food Systems 05 frontiersin.org

where, k
n

=
( )
1

ln
, (0≤ <e j 1).

 3) Determine the coefficient of variation to calculate the weight 
of each indicator. The coefficient of variation is the ratio of the 
standard deviation to the mean value of the indicator, which 
represents the volatility or difference of the indicator. The larger 
the coefficient of variation, the greater the volatility of the 
indicator, and the higher the weight.

The difference coefficient of the j-th indicator is shown in 
Equation 5.

 
d ej j= −1

 (5)

The weight of the j-th indicator is shown in Equation 6.

 

a
d

d
j

j

j
m

j
=

=∑ 1  

(6)

3.2.2 Improved AHP method for weight 
calculation

The AHP method is a weight calculation method based on 
hierarchy theory. By dividing the decision problem into multiple levels 
and using methods such as expert judgment and comparative 
evaluation for hierarchical analysis, the weights of various criteria were 
ultimately obtained. The traditional AHP method usually uses expert 
scoring to construct judgment matrices, but it has the disadvantage of 
high subjectivity (Zheng and Frey, 2004). This paper proposes 
improvements to the method of constructing judgment matrices from 
three aspects: the nature of the indicators themselves, legal rules, and 
expert scoring (Garre et al. 2020). The specific steps are as follows:

 1) Quantify the nature of the indicators themselves and legal 
rules. The indicators are scored based on the toxicity and harm 
of the detected substances (Li et al., 2013). Higher levels of 
toxicity and harm result in a higher score. The toxicity and 
harm are referenced from the descriptions of the indicators 
provided by the National Medical Products Administration, 
shown in Table 2.

Additionally, the hazardous substance detection items can 
be categorized into “prohibited use” and “restricted use” categories in 

accordance with legal standards. The detection results of each 
indicator can be  reported as “qualified,” “unqualified,” or “not 
detected.” Samples that contain prohibited hazardous substances are 
classified as high-risk and assigned the maximum possible score upon 
detection. The scoring for restricted hazardous compounds is 
determined by quantitatively comparing them to legal standards. 
Table 3 displays the legal standards for each indicator as stated by the 
National Medical Products Administration.

Finally, the scores from the toxicity and harm assessment table, 
legal standards assessment table, and expert scoring table are 
combined in Table 4.

 2) Construct the indicator judgment matrix

Based on weighted average method, the indicator judgment 
matrix is constructed in Table 5.

3.2.3 CRITIC method for weight calculation
The CRITIC method is a multi-criteria decision-making approach 

that aims to objectively allocate weights to each indicator by 
considering both the strength of their comparisons and the conflicts 
between indicators. This method can accurately reflect the importance 
and interrelationships between indicators while also considering the 
variability of each indicator and its correlations. The steps of the 
CRITIC method are as follows:

 1) Indicator normalization: normalize the evaluation indicators 
to the same scale for effective comparison.

 2) Indicator variability calculation: measure the degree of 
variation of each indicator in the sample.

 3) Indicator conflict calculation: measure the conflict between 
indicators by calculating their correlation coefficients. The 
higher the correlation coefficient, the more conflict exists 
between indicators and the more difficult it is to optimize 
them simultaneously.

 4) Information quantity and weight calculation: calculate the 
information quantity of each indicator using the concept of 
information entropy. The greater the information quantity, the 
more important the indicator. Calculate the weight of each 
indicator based on both its variability and conflict.

Table 6 shows the results of the variability, conflict, information 
quantity, and weight of each indicator.

Table 7 shows the weighting results from the entropy weighting 
method, the improved AHP method, and the CRITIC method.

3.3 Multi-weight decision model based on 
deviation reconstruction

There are six indicators related to alcoholic beverages, including 
alcohol content, sodium cyclamate, methanol, heavy metals, solids, 
and sucralose. The weights are determined by three different methods. 
The weighted vectors are constructed for each method, but each 
method has its advantages and disadvantages (Kou et al., 2014; Deng 
and Zhang, 2019). Therefore, a comprehensive analysis of the weights 
is constructed to identify a more accurate method. The deviation 
function f wi( ) is defined in Equation 7.

FIGURE 1

Proportion of unqualified indicators.
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TABLE 4 Summary of indicator scores.

Indicators Toxicity and 
harm 

assessment

Legal 
standards 

assessment

Expert 
scoring

Sodium 

cyclamate
3 5 3

Sucralose 3 5 3

Methanol 4 1 4

Heavy metals 4 3 5

Solids 2 1 1

Alcohol content 1 1 3

 
f w w ui

k

n
k ik( ) = −( )

=
∑
1

2

 
(7)

where n i k= = =1 2 3 4 5 6 1 2 3 1 2 3 4 5 6, , , , , ; , , ; , , , , , .

wk is the target weight, u k1  is the weight of the six indicators 
calculated by the entropy weighting method, u k2  is the weight of the 
six indicators calculated by the improved AHP method, and u k3  is the 
weight of the six indicators calculated by the CRITIC method.

Equation 8 shows the relative deviation di. Divide the weighted 
value of method by the weighted values of all methods to obtain the 
relative weight of method. Then, compare this relative weight with the 
relative weights obtained by each method under ideal conditions to 
derive the relative deviation. The smaller it is, the performance of this 
method is closer to the ideal situation and better.
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where α  represents the number of methods, with α  = 3. m = 1, 2, 3.
Consider the minimum deviation for each method, ensuring 

positivity by using squared forms. Construct three distinct objective 
functions: the entropy weight method objective function g w1( ), the 
improved AHP method objective function g w2( ), and the CRITIC 
method objective function g w3( ). They constitute a multi-objective 
optimization function, as shown in Equation 9.
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where j m n= = =1 2 3 1 2 3 1 2 3 4 5 6, , ; , , ; , , , , , .

3.4 Weight optimization based on NSGA-II 
algorithm

The fundamental aspect of risk assessment methodologies is the 
determination of the weight of each indicator. Conventional methods 
to determine the weights of composite indicators, such as linear 
weighting and multiplication weighting, have inherent constraints. 
These methods can only yield a single set of answers, which often falls 
short of the optimal set. The study initially combines the weights 
derived from various approaches using deviation reconstruction. It 
then applies the NSGA-II algorithm to maximize the solution set of 
this multi-weight decision. The NSGA-II algorithm is capable of 
generating a Pareto front and fully considering factors such as expert 

TABLE 2 Toxicity and harm assessment.

Toxicity 
level

Risk 
description

Hazard 
level

Score

Very low
Slight discomfort in 

the body.
Extremely low 1

Low

Significant bodily 

reactions, but 

hospitalization is not 

necessary.

Risky 2

Moderate

Contact or ingestion 

may cause moderate 

health problems, such 

as dizziness, nausea, 

vomiting, stomach 

pain, skin allergies, 

etc.

Moderate risk 3

High

Contact or ingestion 

may cause serious 

harm or fatal danger 

to the human body, 

requiring appropriate 

protective measures.

Dangerous 4

Very high

Violent vomiting, 

severe diarrhea, nerve 

damage, heart 

paralysis, etc., may 

result in death.

High risk 5

TABLE 3 Legal standards assessment.

Indicators Legal standard Score

Sodium cyclamate Prohibited use 5

Sucralose Prohibited use 5

Methanol ≤0.6 g/L 1

Heavy metals ≤0.5 mg/L 3

Solids ≤0.5 g/L 1

Alcohol content Divided according to the 

type of alcohol

1
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subjectivity, overall data level, and data information to determine the 
optimal solution set.

3.4.1 Steps of NSGA-II algorithm
NSGA-II algorithm is a multi-objective optimization algorithm 

that Deb et al. improved based on the NSGA (Deb et al., 2002). The 
NSGA-II algorithm’s implementation involves a series of steps: 
initialization of the population, fast non-dominated sorting, crossover 
and mutation of the population, fusion of parent and offspring 
populations, and identification of the Pareto solution set (Yaghoubi 
and Fazli, 2023). The NSGA-II process flow diagram is shown in 
Figure 2.

Step 1: Develop a multi-objective optimization model by defining 
parameters for various objective functions and weight parameters. 
Construct an algorithmic model based on the DEAP framework.

Step  2: Initialize population parameters, including population 
size, maximum generation, crossover rate, and mutation rate. Once 
initialized, designate the initial parent population as ‘Pop’ and the 
offspring population as ‘Offspring’.

Step 3: Conduct fast, non-dominated sorting of the population 
and perform crossover and mutation operations. To enhance the 

algorithm’s ability to explore the solution space and avoid local optima, 
employ binary crossover and polynomial mutation algorithms.

Step  4: Combine the offspring population with the parent 
population after crossover and mutation, resulting in a population size 
of (pop + offspring). Remove duplicate individuals from this merged 
population before proceeding. If the deduplicated population size is 
less than Pop, use crossover and mutation algorithms to supplement it.

Step 5: Perform elite selection on the merged population ‘Pop’ 
using the following strategy: utilize the fast non-dominated algorithm 
for Pareto front sorting of all individuals in the population, 
establishing different Pareto front levels. Calculate the crowding 
distance for each individual in each Pareto front level using the 
crowding distance algorithm. This computation involves sorting 
individuals’ values in each level along each dimension of the objective 
function space and calculating the sum of distances between adjacent 
individuals as the crowding distance for each individual. Subsequently, 
prioritize individuals in each Pareto front level based on their 
crowding distance, starting from higher Pareto front levels and 
selecting individuals until the specified quantity limit is met.

Step 6: Check whether the specified maximum generations have 
been reached. If so, terminate the algorithm and output the Pareto 

TABLE 5 Indicator judgment matrix.

Indicators Sodium 
cyclamate

Sucralose Methanol Heavy 
metals

Solids Alcohol 
content

Sodium cyclamate 1.00 0.91 1.11 0.83 2.50 2.00

Sucralose 1.10 1.00 1.22 0.92 2.75 2.20

Methanol 0.90 0.82 1.00 0.75 2.25 1.80

Heavy metals 1.20 1.09 1.33 1.00 3.00 2.40

Solids 0.40 0.36 0.44 0.33 1.00 0.80

Alcohol content 0.50 0.46 0.56 0.42 1.25 1.00

TABLE 6 Related calculation data of the CRITIC method.

Indicators Indicator variability Indicators conflict Information quantity Weight (%)

Sodium cyclamate 0.204 1.291 0.264 17.731

Sucralose 0.073 2.011 0.147 9.879

Methanol 0.112 1.35 0.151 10.145

Heavy metals 0.217 1.772 0.384 25.79

Solids 0.12 1.19 0.143 9.602

Alcohol content 0.153 2.605 0.4 26.852

TABLE 7 Indicator weights of various methods.

Methods Sodium 
cyclamate

Sucralose Methanol Heavy 
metals

Solids Alcohol 
content

Entropy Weighting 

Method
0.202 0.041 0.077 0.277 0.077 0.326

Improved AHP 

Method
0.196 0.216 0.176 0.235 0.078 0.098

CRITIC Method 0.177 0.099 0.101 0.258 0.096 0.269

https://doi.org/10.3389/fsufs.2024.1449964
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Song et al. 10.3389/fsufs.2024.1449964

Frontiers in Sustainable Food Systems 08 frontiersin.org

FIGURE 2

Implementation of NSGA-II algorithm.

front solution set. Otherwise, continue with the aforementioned 
operations until the maximum evolution generations are achieved.

3.4.2 Pareto solution set
The Pareto Solution Set is the set of all non-dominated solutions 

in multi-objective optimization problems. In this study, the Pareto 
Solution Set is determined by using the fast non-dominated sorting 
method and crowding distance calculation method, and is defined 
as follows:

S = {S1, S2, S3, Sn}, where each solution Si is not dominated by any 
other solution. That is, for any solution Sj ∈ S (i ≠ j), at least one of the 
following two conditions is satisfied:

 1) Si has at least one objective function value that is better than the 
corresponding value of Sj.

 2) All objective function values of Si are equal to the corresponding 
values of Sj.

3.4.3 Binary crossover operator
In the crossover operation, the genes of the parent individuals are 

crossed according to a certain ratio to obtain two different offspring. 
The crossover factor is constructed based on the distance between the 
two offspring and their parent individual. It is applied to the genes of 
the offspring to obtain the final offspring shown in Equation 10.
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where r  is a uniformly distributed random number on the [0,1] 
interval, dm is the precision of the variable, i is the i-th variable, and j 
represents the j-th gene.

After obtaining the crossover factor, the genes of the offspring 
individuals are obtained in Equations 11, 12.
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c p pj ij j ij j2 1 20 5 1 1, , ,.= ∗ −( ) ∗ + +( ) ∗( )β β

 (12)

where p j1,  and p j2,  are the j-th genes of the two parent 
individuals, respectively.

Finally, the offspring genes are constrained to ensure that their 
value ranges are within the variable’s value range. Once the offspring 
genes exceed the value range, they are truncated to the 
nearest boundary.

3.4.4 Polynomial mutation operator
The individual before mutation is xi and the individual after 

mutation is xi′. The random variable δ follows the polynomial 
distribution. The arithmetic relationship among xi, xi′ and δ is shown 
in Equation 13.

 
x x U Li i i i
′ = + ∗ −( )δ

 (13)

where U Li i,  are the upper and lower bounds of variable xi.
Here δ is used to control the degree of mutation. Its value is 

determined in Equation 14.
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Here y is an auxiliary variable calculated by Equation 15.
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where r is a random number between 0 and 1, and eta is the 
control parameter to control the shape of the polynomial function.

When eta is small, the polynomial function is flatter, and the 
mutation range changes less significantly, which is suitable for fine-
grained mutation searches. When eta is large, the polynomial function 
is steeper, and the mutation range changes significantly, which is 
suitable for coarse-grained mutation searches.

The degree of mutation for each mutation point is controlled, and 
it increases gradually with the distance from the mutation point. It 
ensures that the degree of local mutation is larger than that of global 
mutation, which can avoid getting trapped in local optima to some 
extent. Moreover, for the central point, the degree of mutation is more 
uniform, and the mutation is more stable. The risk of large jumps 
leading to a missing solution set is minimized, ensuring the accuracy 
of the search.

4 Empirical analysis

4.1 Basic parameters

A multi-objective optimization problem is solved by using the 
NSGA-II algorithm in the PyCharm Community Edition 2022. The 
parameters in the NSGA-II algorithm include x1, x2, x3, x4, x5, and 
x6, representing sodium cyclamate, sucralose, methanol, heavy metals, 
solids, and alcohol content, respectively. The population size is set to 
150, and the evolutionary generation is set to 250. The crossover 
probability is set to 0.5, and the mutation probability is set to 0.2, with 
a mutation parameter of eta = 30.0.

4.2 Analysis of Pareto solutions

4.2.1 Convergence analysis of Pareto solutions
For multi-objective optimization functions, observing whether 

the Pareto front converges is an effective way to validate the 
experimental results. Convergence implies that the Pareto front 
undergoes substantial changes after each iteration, no matter whether 
it is able to maintain stability. The number of Pareto solutions is set as 
50, 100, 150, and 250, respectively, to obtain the Pareto front plot as 
shown in Figure 3.

4.2.2 Diversity assessment of Pareto solutions
The hypervolume indicator refers to the volume of the region in 

the target space enclosed by the non-dominated solution set obtained 
by the algorithm and the reference point. The advantage of HV is that 
it can evaluate both convergence and diversity simultaneously, but its 
complexity is high when facing high-dimensional multi-objective 
optimization. The selection of reference points can affect the accuracy 
of the hypervolume indicator to some extent. The calculation formula 
for the hypervolume indicator is shown in Equation 16.

 
HV U vi

S
i= ( )=δ 1

 
(16)

where δ represents the Lebesgue measure for volume 
measurement, |S| indicates the number of non-dominated solution 
sets, and vi represents the hypervolume formed by the reference point 
and the i-th solution in the solution set.

This paper designs an experiment to calculate the hypervolume 
indicator of the Pareto solution set. Firstly, 50, 100, and 150 random 
Pareto solution sets are extracted, defined as the data to be solved. 
Secondly, a reference point is set as 1.0, 1.0, 1.0 that h can cover all 
Pareto solution sets, where the Pareto front of the objective function 
is located in the first quadrant, and the values of the objective function 
tend to zero. In addition, practical applications have shown that for 
minimization multi-objective optimization problems, using this 
reference point can effectively measure the coverage of the Pareto 
front (Fonseca et al., 2006; Si et al., 2015). Finally, according to the 
extracted Pareto solution sets and the reference point, parallel 
experiments are set up to reduce the influence of other factors and 
obtain the hypervolume indicator, as shown in Figure 4.

Figure 4 shows that as the Pareto solution set increases, the mean 
of the hypervolume indicator shows an upward trend, indicating that 
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the hypervolume index is effective in the experiment. The solution set 
obtained by the algorithm exhibits diversity and a convergence trend.

4.2.3 Comparative analysis
To verify the suitability of the NSGA-II algorithm for the proposed 

model, the genetic algorithm (GA) and least squares model (LS 
Model) are introduced for comparative experiments. In the PyCharm 
Community Edition 2022, a population size of 100, crossover 
probability of 50%, mutation probability of 33%, and 250 evolution 
generations are set for each method. By combining the NSGA-II 
algorithm, the genetic algorithm, the deviation-reconstructed multi-
objective decision-making model, and the least squares model, four 
different methods for optimal solution sets are shown in Figure 5.

Figure 5 shows that the NSGA-II algorithm has a higher quality 
solution set overall for the deviation-reconstructed multi-objective 
decision-making model and outputs a more stable and less fluctuating 
solution set, which significantly reduces the difficulty of finding 
suitable solutions in the optimal solution set. Moreover, the deviation-
reconstructed multi-objective decision model is significantly superior 
to the least squares model in terms of the accuracy of finding the 

optimal solution. The optimal solution’s fluctuation is smaller, 
demonstrating the model’s superiority in application in this field.

4.3 Indicator risk assessment

Based on the Pareto solution set, the weights of each indicator are 
set as 0.073 for sodium cyclamate, 0.192 for methanol, 0.113 for solids, 
0.066 for heavy metals, 0.162 for sucralose, and 0.395 for alcohol 
content. Table  8 shows the risk assessment for different types of 
alcohol according to the weight of each indicator. The risk evaluation 
list shows the ratio of the total risk of each type of alcohol to the 
sample quantity.

From the perspective of different types of alcoholic beverage, the 
risk evaluation value of Chinese Baijiu is the highest. It is related to the 
raw materials and production processes of Chinese Baijiu, whose raw 
materials for Chinese Baijiu production are grains and legumes. High 
purity Chinese Baijiu cannot be directly obtained by small factories 
that carry out preliminary fermentation, and the raw materials or 
some additives added to improve the taste in the production process 

FIGURE 3

Comparison of different numbers of Pareto solutions. (A) Shows that when there are few numbers of solutions set as 50, the individuals are scattered 
randomly in the solution space. However, as the number of individuals increases in (B–D), their distributions show significant convergence, 
demonstrating the effectiveness and convergence of the NSGA-II algorithm.

https://doi.org/10.3389/fsufs.2024.1449964
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Song et al. 10.3389/fsufs.2024.1449964

Frontiers in Sustainable Food Systems 11 frontiersin.org

may also cause problems in the alcohol and solid content of Chinese 
Baijiu. Therefore, it is suggested that the regulatory authorities can 
take the two indicators of alcohol content and solids as a key point 
when testing Chinese Baijiu to improve the efficiency of testing and 
obtain results faster.

From the perspective of indicators, methanol and heavy metal 
indicators have a higher risk. It is related to the raw materials and 
environment of alcoholic beverages. Protein-and starch-rich raw 
materials tend to generate methanol and aldehydes at high 
temperatures, and some unscrupulous vendors also directly blend 
methanol into alcohol, resulting in significant food safety hazards. The 
heavy metal problem in alcoholic beverages is closely related to the 
quality of raw materials or environmental pollution during processing. 
Non-compliant additives and packaging materials can also cause 

similar problems. To address these issues, regulatory authorities 
should conduct regular or random inspections of the alcohol beverage 
production enterprises during the production supervision process, 
which can reduce or avoid food safety issues from the source.

4.4 Risk level classification

This paper combines existing risk weight data with raw data to 
provide a more detailed classification of the testing results of sampled 
products, which can improve sensitivity and accurate evaluation of 
food safety. The safety risk levels of detection items for alcoholic 
beverages are divided into five levels in Table 9.

Based on the improved Argmax function, the comprehensive risk 
rating for alcoholic beverages is defined as shown in Equation 17.

 
Level argmax w ei i= ( )

 
(17)

where i refers to the safety risk rating of the detection items, and 
wi refers to the passing rate of the detection items i for each product 
(Figure 6).

5 Conclusion and future research 
directions

This paper employs a novel risk assessment methodology that is 
based on a weighted analysis of monitoring data to examine the safety 
risks associated with alcoholic beverages. The study examines six 
specific categories of risk factors and offers risk evaluations from the 
viewpoints of both types of alcoholic beverages and types of hazards. 
The risk safety assessment method described in this paper is capable 

FIGURE 4

Boxplot of hypervolume.

FIGURE 5

Comparison of solution sets of each method.
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of effectively identifying potential safety hazards in alcoholic beverages 
and providing risk warning information. This method can assist 
consumers in transitioning from a reactive approach to a proactive 
one when dealing with food safety concerns. The study develops novel 
risk assessment guidelines for alcoholic beverages, offering a 
theoretical foundation for risk prevention and control measures, and 
providing guidance for enhancing regulatory effectiveness. The main 
conclusions are as follows:

 1) Method innovation and weight assignment. The study employs 
an improved AHP method for assigning weights to risk 
indicators. This method integrates subjective weighting based 
on expert scoring, objective weighting derived from the 
toxicological properties of hazardous substances, and legal 
standard-based weighting. The multi-weighted decision-
making model based on deviation reconstruction synthesizes 
the weights obtained from the improved AHP method, the 
entropy weighting method, and the CRITIC method. This 
approach optimizes weight calculations under constraints, 

establishing a comprehensive risk assessment system for 
alcoholic beverages.

 2) Detailed risk assessment outcomes for alcoholic beverages. The 
proposed risk weighting methodology provides detailed risk 
assessment results by analyzing both the types of alcoholic 
beverages and their detection indicators. The evaluation results 
indicate that for different types of alcoholic beverages, Chinese 
baijiu poses a greater risk, with the risk primarily concentrated 
on its alcohol content and solids; for various risk indicators of 
alcoholic beverages, methanol and heavy metals present a 
higher risk and require focused attention.

 3) Comparative analysis of decision models. The multi-weighted 
decision model based on deviation reconstruction is compared 
and analyzed with the least squares model, NSGA-II algorithm, 
and conventional genetic algorithm. It indicates that the 
NSGA-II algorithm and the deviation reconstruction-based 
multi-weighted decision model exhibit superior adaptability, 
achieving more stable and higher-quality solutions compared 
to the other models.

TABLE 8 Risk assessment for different types of alcohol.

Sample 
Labels

Risk 
assessment

Sodium 
cyclamate

Alcohol 
content

Methanol Solids Heavy 
metals

Sucralose

Chinese Baijiu 0.61 0.66 0.72 0.75 1.28 0.66 0.03

Chinese rice 

wine
0.52 0.37 0.34 1.02 0.77 1.24 0.01

Beer 0.51 0.57 0.64 0.55 0.44 0.87 0.01

Wine and Fruit 

Wine
0.49 0.85 0.50 0.54 0.43 0.64 0.12

Other Types 0.55 0.75 0.77 0.62 0.41 0.58 0.01

FIGURE 6

Comprehensive risk level of alcoholic beverages.
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 4) Strategic recommendations for risk regulation. Existing 
research and previous experience show the limitations of 
relying solely on qualitative evaluations or quantitative 
detections for large-scale food safety risk assessments. It 
suggests that combining qualitative and quantitative 
approaches can enhance the efficiency and effectiveness of 
regulatory efforts. For different types of alcoholic beverages, 
targeted detection strategies should be employed. High-risk 
detection indicators should be prioritized for sampling, while 
the frequency of detecting low-risk indicators should 
be reduced to minimize redundant work and improve efficiency.

The paper can be improved as follows:

 1) Differential evolution algorithms, particle swarm optimization 
algorithms, and other algorithms can be introduced for model 
comparison experiments.

 2) There is room for improvement in the NSGA-II algorithm, 
such as adaptive crossover and mutation factor strategies, and 
super-individual strategies, which can improve the 
optimization efficiency of the solution set and reduce the 
complexity of the work.

 3) The source data contains regional information. Besides the 
analysis and comparison of alcoholic beverage types and 
indicator types, the analysis and comparison can also 
be conducted from the perspective of regions.
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