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Introduction: There is a global priority to ensure food security, environmental 
conservation and sustainability. The adoption of inputs such as organic manures, 
biofertilisers, and biopesticides has been widely promoted as a way to enhance 
agricultural sustainability, yet their adoption rates remain notably low. The study 
examines the determinants and impact of the adoption of multiple sustainable 
inputs by paddy farmers in India. The study also examines the drivers behind the 
intensity of their adoption and their technical efficiency.

Methods: The study utilises the survey dataset on paddy farmers from “Situation 
Assessment of Agricultural Households and Land and Livestock Holdings of 
Households in Rural India” of the 77th National Sample Survey (NSSO) round. 
The reference period for data collection was the agricultural year from July 
2018 to June 2019. The analytical methods employed include the Multivariate 
Probit and Ordered Probit models, Seemingly Unrelated Regression, Regression 
Adjustment model, and Stochastic Frontier method.

Results: The empirical findings reveal that the adoption and intensity of 
sustainable inputs depend significantly on factors such as the household 
head’s age and education, household size, and access to extension services. 
Adopting sustainable inputs has significant benefits, such as increased harvest 
value. However, the currently available technical advisory services are limited in 
effectively promoting the expenditure on sustainable inputs. Technical efficiency 
analysis underscores the potential for improvement and the importance of 
utilising optimal input levels. The research findings provide strong evidence in 
favour of advocating for the use of sustainable inputs in paddy farming.
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1 Introduction

Agrochemicals are essential inputs in Indian agriculture, and the 
country recognises their contribution to ensuring the food security of 
its large population (Kishore et al., 2013; Rajna et al., 2023). Fertilisers 
play a vital role in providing essential nutrients to the soil, improving 
its fertility, and ultimately boosting crop productivity. They mitigate 
soil deficiencies and ensure that crops access the necessary nutrients 
for robust growth (Fageria, 2007). Similarly, pesticides play a crucial 
role in safeguarding crops against insect pests, thereby preventing 
substantial yield losses. Through effective pest management, pesticides 
help sustain high agricultural productivity and meet the escalating 
food demands of the expanding population (Anani and Adetunji, 
2021). The widespread incorporation of these chemical inputs has 
notably bolstered agricultural productivity in India and has played a 
crucial role in enhancing the nation’s food security and fostering its 
economic development (Jafar et al., 2024). Nevertheless, it is vital to 
prudently regulate the utilisation of these inputs to guarantee their 
long-term sustainability and reduce adverse environmental effects 
(Upadhayay et al., 2023).

Historically, India’s agricultural policies, particularly during the 
Green Revolution, prioritised maximising yields to ensure food 
security (Goyal et  al., 2024). This approach, while successful in 
boosting production, led to the heavy use of chemical fertilisers and 
pesticides, resulting in widespread environmental degradation (Paul 
et al., 2023). Over time, the negative consequences of this productivist 
paradigm became increasingly apparent, with issues like soil 
degradation, water pollution, and biodiversity loss coming to the 
forefront (Maddela et  al., 2022). This realisation has spurred a 
significant policy shift in recent decades, with a growing emphasis on 
integrating agricultural and environmental policies to promote 
sustainable agricultural practices (Velayudhan et  al., 2021). The 
majority of policies implemented in the line of the green revolution, 
which was heavily skewed towards achieving higher production 
through enhanced use of chemicals, are now being re-assessed 
(Pingali, 2012; Pathak, 2023). Contemporary policies place equal 
emphasis on ensuring environmental sustainability and responsibly 
balancing nutrient application as they do on maximising food 
production (Velayudhan et  al., 2024). Policies like the National 
Program for Organic Production aim to promote sustainable 
agricultural practices through the advancement of organic farming. 
This program provides certification and financial support to encourage 
farmers to embrace organic methods.

Moreover, the government has introduced incentives to promote 
the use of eco-friendly biofertilisers and biopesticides as sustainable 
alternatives to chemical inputs. Subsidies are also available to 
incentivise the widespread adoption of bio-based inputs in agriculture 
(Velayudhan et al., 2021). Furthermore, programs to educate and train 
farmers on sustainable agricultural practices, including balanced 
nutrient application and integrated pest management, are also in 
place. Regulations to ensure responsible and sustainable use of 
agrochemicals, promoting environmental sustainability while 
maintaining food security, are also expected to benefit in future 
(Praveen, 2017; Praveen and Alka, 2019). For instance, the National 
Mission for Sustainable Agriculture (NMSA), launched in 2014–15, 
aims to enhance resource use efficiency, conserve natural resources, 
and mitigate climate change impacts. Since 2023, the government of 

India has also provided market development assistance of Indian 
Rupees 1,500 per metric tonne of organic manures, under the scheme 
Galvanizing Organic Bio-Agro Resources Dhan (GOBARdhan). The 
PM Programme for Restoration, Awareness Generation, Nourishment, 
and Amelioration of Mother Earth (PM-PRANAM) is another 
innovative program launched by the Government of India in 2023. It 
aims to incentivise states that actively contribute to the balanced use 
of chemical fertilisers in agriculture. The plan involves reducing the 
usage of chemical fertilisers, and the subsidy saved will be granted to 
the respective states to promote sustainable inputs. This unique 
approach aims to encourage regions to take concrete steps towards 
sustainable agriculture and environmental preservation. Other 
policies like Nutrient Based Subsidy, One Nation One Fertiliser, 
PoS-enabled fertiliser sales as part of Direct Benefit Transfer for 
fertiliser subsidy distribution, etc., are all intended to reduce the 
excessive use of chemical fertilisers. Similarly, policies promoting 
organic farming, such as the Paramparagat Krishi Vikas Yojana, reflect 
a clear shift towards environmentally sustainable agriculture in India 
(Fertiliser Association of India, 2023).

Indian agriculture is currently at a crucial crossroads, demanding 
strategic planning to simultaneously uphold food security and ensure 
environmental sustainability for the future (Praveen and Aditya, 
2022). In response to these sustainability concerns, policymakers and 
development agencies have called for initiatives focused on creating, 
distributing, and adopting sustainable agricultural inputs (Sharma 
et  al., 2021). Although the adoption of Sustainable Agricultural 
Practices has been extensively associated with enhanced productivity, 
welfare, and food security globally (Bezu et al., 2014), adoption rates 
remain generally low in several countries (Kagoya et al., 2018). A 
promising development in the Indian agricultural sector is the 
growing consensus among key stakeholders, including the 
government, industry, and scientific community, regarding the 
significant benefits of utilising a diverse range of fertilisers-including 
inorganic, organic, and biofertilisers—for optimising agricultural 
productivity (Velayudhan et al., 2023). However, there are numerous 
challenges to deal with.

Technology adoption is a complex process influenced by multiple 
factors (Passarelli et  al., 2023). It is determined by the adopter’s 
attitude, including their beliefs and motivation to adopt. If a farmer 
sees value in adopting technology, there is a higher chance of adoption. 
However, there are complex dimensions to adoption, including the 
new paradigm for environmentally friendly and socially acceptable 
agricultural practices (Akanmu et  al., 2023). In the realm of 
agricultural production, there exists a risks, encompassing both 
idiosyncratic factors unique to individual farms and covariate risks 
affecting multiple farms simultaneously. In response to these 
challenges, farm households find themselves compelled to incorporate 
a diverse array of sustainable inputs in their operations. Examples of 
such sustainable inputs include biofertilisers, biopesticides, and 
organic manures. The decision-making process involved in the 
adoption of these sustainable inputs is intricately linked to the specific 
characteristics of each farm household, taking into consideration the 
various risk profiles associated with their multiple cropping systems 
(Pretty and Bharucha, 2014). The adoption of one sustainable input 
may rely on the utilisation of another. Consequently, it is essential to 
consider the interdependence of sustainable inputs in multiple 
adoptions to ensure accurate assessment and avoid underestimation 
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or overestimation of factors influencing their adoption (Wu and 
Babcock, 1998). The significance of understanding farmers’ adoption 
behavior has been emphasised in the literature, particularly in shaping 
policies to encourage their adoption patterns effectively (Asprooth 
et al., 2023; Rizzo et al., 2024). These studies have delved into a wide 
range of socio-economic, institutional, environmental, and climatic 
factors that influence the adoption of sustainable inputs in diverse 
contexts (Nguyen et al., 2023). One key finding from these studies is 
the existence of diversity in adoption factors, suggesting that the 
determinants of adoption differ based on household attributes, the 
specific technology, and geographical locations (Oyetunde-Usman 
et al., 2021).

Advancements in technology play a vital role in shaping the 
expansion of economic output within the agricultural sector (Zhao 
et al., 2022). The integration of technology has proven to enhance 
productivity and efficiency in agricultural practices. Specifically, the 
concept of technical efficiency is of paramount importance to better 
agricultural performance. Technical efficiency guarantees that a 
maximum yield is achieved from a given level of input use, thereby 
optimising agricultural outputs. This efficiency is pivotal in driving 
agricultural productivity and ensuring sustainable production 
(Sampaio Morais et al., 2021). In response, globally, there is a strong 
emphasis on improving the efficiency of agricultural output. This 
entails the effective conversion of inputs into outputs while minimising 
wastage. By doing so, the aim is to increase overall productivity and 
reduce resource consumption. A critical initial step in realising this 
objective is to assess the current level of technical efficiency 
quantitatively. This assessment allows for the identification of 
production losses attributed to inefficiencies in the production 
process, thus providing valuable insights for improvement (Wang 
et  al., 2012). Furthermore, when using sustainable inputs in 
combination with their chemical counterparts, testing technical 
efficiency becomes even more crucial. Such assessments offer key 
indications of the potential for productivity enhancement and provide 
insights into cost-effective means of achieving it. Therefore, 
scrutinising technical efficiency is essential for guiding sustainable 
agricultural practices and ensuring optimal resource utilisation.

Against this backdrop, we utilize the survey dataset obtained from 
the “Situation Assessment of Agricultural Households and Land and 
Livestock Holdings of Households in Rural India” of the 77th National 
Sample Survey (NSSO) round to examine the determinants 
influencing the uptake of various sustainable inputs in agricultural 
practices. Alongside this, we investigate the driving forces behind the 
intensity of their adoption and the technical efficiency in paddy 
cultivation. To achieve this, we employ a range of analytical methods, 
including Multivariate Probit and Ordered Probit models, Seemingly 
Unrelated Regression, Regression adjustment model, and the 
Stochastic Frontier Technical Efficiency Model.

Our research makes a significant contribution to the existing 
literature in several key ways. Firstly, it seeks to explicitly evaluate the 
factors that influence the adoption of multiple sustainable agricultural 
inputs in India, taking into account the interactions among diverse 
socio-economic and farm factors. Secondly, our study utilises 
extensive and nationally representative household data to identify the 
wide range of sustainable input choices adopted by households, 
recognising the interconnected nature of various sustainable inputs. 
This provides valuable insights essential for developing effective 
policies and strategies to promote agricultural innovations. We also 

recognise that not all farm households can adopt all available 
sustainable inputs due to variations in farming and livelihood 
contexts, and our study acknowledges that farm households combine 
sustainable inputs in varying numbers. Importantly, we  study the 
intensity of the use of sustainable inputs (expenditure on sustainable 
inputs), which is poorly covered in adoption literature. Further, the 
relationship between factors and technical efficiency is another aspect 
of this study that fills the gap in the literature. Specifically, our research 
aims to answer the following questions:

 (1) What factors influence the adoption of multiple sustainable 
inputs in paddy cultivation at the farm household level?

 (2) What are the economic implications of using sustainable inputs 
in rice farming?

 (3) What is the current level of technical efficiency in 
paddy cultivation?

2 Literature review

The adoption of sustainable input usage in agriculture is crucial 
for ensuring long-term food security, environmental sustainability, 
and the well-being of farmers (Kassie et al., 2013). Numerous research 
studies have delved into the adoption and impact of sustainable input 
usage, with a specific focus on organic fertilisers (Sulaiman and 
Misnan, 2022). These studies have consistently highlighted the positive 
outcomes associated with integrating sustainable inputs in agriculture, 
including reduced reliance on chemical inputs, enhanced 
environmental and soil health, promotion of biodiversity, and 
improved farmer livelihoods (Dittmer et  al., 2023). However, the 
adoption of sustainable input usage in agriculture is influenced by 
various factors. The economic viability and profitability of sustainable 
inputs significantly impact adoption. Farmers are more likely to adopt 
sustainable practices if they perceive them to be  economically 
advantageous and if they can provide immediate benefits to address 
their urgent livelihood needs (Piñeiro et  al., 2020). Moreover, 
availability and accessibility can significantly influence the adoption.

Access to education can equip farm families with knowledge 
about modern farming methods and provide them with the ability to 
adapt quickly. However, research on joint adoption of these methods 
has shown differing effects on decision-making, indicating different 
perspectives (Ndiritu et al., 2014). Sustainable practices are seen as 
requiring a lot of work in adoption studies. The size of the family 
affects the availability of labour and, therefore, influences the decisions 
on adoption (Voss et al., 2024). Some studies suggest that larger farm 
families are more likely to invest in labour-intensive sustainable 
practices (Rust et al., 2020). The wealth of a family influences its ability 
to buy modern varieties and hire labour for farming activities. The 
significance of farming innovations in affecting livelihoods has been 
shown by using wealth as an indicator. However, variation in wealth 
may lead to unequal adoption of Sustainable Agricultural Practices 
(Onumah et al., 2023). Evidence also points towards the significant 
influence of land ownership on decisions related to agricultural 
innovations, as the lack of land can deter farmers from investing due 
to the risk of eviction.

Farm households’ adoption decisions may conflict with or 
complement each other, depending on their perceived benefits. 
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Research has shown diverse patterns in joint adoption decisions, with 
factors such as innovative agricultural techniques and geographic 
location playing a significant role (Zeweld et al., 2020). Gender also 
plays a crucial role in the adoption of Sustainable Agricultural 
Practices within conservation packages (Rola-Rubzen et al., 2020). 
Variations have been observed in gender-specific adoption decisions 
within different categories of practices. For example, female plot 
managers were found to be less likely to adopt specific yield-enhancing 
and soil-restoring strategies compared to male counterparts. However, 
no differences were observed in adopting yield-protecting strategies 
such as manure and compost. Additionally, differences were noted 
when considering specific groups, such as female plot managers who 
are household heads versus wives in male-headed households. 
Similarly, better technology adoption rates were demonstrated among 
female farmers living in male-headed households compared to those 
living in female-headed households (Voss et al., 2024).

One critical factor influencing the adoption of sustainable 
practices is the availability of information and knowledge. Extension 
agents play a vital role in disseminating information and providing 
training to farmers on the benefits and implementation of sustainable 
input use (Oyetunde-Usman et  al., 2021). In addition, extension 
institutions are vital in promoting the adoption of modern farming 
practices and conservation techniques, although their impact can vary 
(Jena, 2022). While extension services aim to bridge the information 
gap, several challenges may hinder their effectiveness, such as farmers’ 
limited access to complementary inputs, information failures, and the 
need for tailored learning processes to suit diverse farmer contexts 
(Abdulai, 2022). Farmers rely on a combination of formal and 
informal channels to gather knowledge and make informed decisions 
about their farming practices (Gaddam et  al., 2022). Traditional 
information sources, such as fellow farmers, family members, and 
local knowledge networks, continue to hold considerable sway. These 
informal channels often provide context-specific advice and practical 
insights based on shared experiences (Naveed and Hassan, 2021). 
However, their effectiveness can be limited by the potential for biases 
and the slow dissemination of new information (Zhang et al., 2020). 
Recognising the limitations of traditional channels, government 
extension services and agricultural universities play a crucial role in 
disseminating scientifically validated information on sustainable 
inputs (Lamm et  al., 2023). These formal channels often conduct 
training programs, field demonstrations, and farmer-scientist 
interactions to bridge the knowledge gap (van den Berg et al., 2020). 
Finally, the increasing penetration of information and communication 
technologies (ICTs) in rural India presents new opportunities for 
disseminating information on sustainable agriculture. Furthermore, 
the influence of private sector actors, such as input suppliers and 
agribusiness companies, on information dissemination is growing. 
While they can play a positive role in promoting sustainable inputs, 
it’s crucial to ensure transparency and avoid potential conflicts of 
interest that could prioritise profit over sustainability goals 
(Stuart, 2021).

Both formal institutions and informal farmer organisations play 
crucial yet distinct roles in promoting the adoption of sustainable 
agricultural inputs in India. Government support and incentives, such 
as subsidies or grants, can contribute to the adoption of sustainable 
input use by alleviating the financial burden on farmers (Zheng et al., 
2021). Formal institutions, including government agencies, research 
institutions, and agricultural universities, primarily function as 

sources of knowledge and technical expertise (Prusty et al., 2022). 
They develop and disseminate scientifically validated information on 
sustainable practices, conduct training programs, and often provide 
access to improved inputs (Nagar et al., 2021). On the other hand, 
informal farmer organisations, such as self-help groups, farmer 
collectives, and local cooperatives, play a critical role in fostering 
trust, facilitating social learning, and enabling collective action 
(Ullaguari et al., 2023). These groups provide a platform for farmers 
to share experiences, learn from each other’s successes and failures, 
and reduce the perceived risks associated with adopting new practices. 
The social capital embedded within these networks can be particularly 
valuable in promoting behavioral change and encouraging the 
adoption of sustainable inputs (Isensee et al., 2021). Furthermore, the 
strength of local institutions and their ability to provide farmers with 
access to inputs, market outlets, and information can facilitate the 
adoption of sustainable input use in agriculture (Velayudhan 
et al., 2021).

Production shocks are also linked to the uptake of agricultural 
innovations, with different types of shocks interacting differently with 
specific farming practices (Sargani et al., 2023). Additionally, climatic 
factors such as temperature and rainfall can influence the adoption of 
sustainable agricultural practices (Mgomezulu et al., 2023). In short, 
the adoption of sustainable input use in agriculture not only 
contributes to long-term environmental sustainability and food 
security but also has positive economic implications for farmers, 
including cost savings, market access, and income generation. As 
more farmers embrace sustainable input use, the agricultural sector 
stands to benefit from improved productivity, profitability, and 
resilience. Finally, a multi-pronged approach that leverages the 
strengths of both formal and informal information sources, while 
taking advantage of the potential of ICTs, is essential for promoting 
the widespread adoption of sustainable agricultural inputs in India.

Reaching higher levels of adoption and intensity in the use of 
sustainable inputs not only benefits the farmers but also helps the 
nation achieve the targets of sustainability, including the Sustainable 
Development Goals (SDGs) (Pathak, 2023). For instance, by 
enhancing soil health and resource use efficiency, these inputs 
contribute to increased agricultural productivity and resilience, 
ultimately supporting SDG 2: Zero Hunger by improving food 
security and nutrition. Furthermore, reducing reliance on chemical 
fertilisers and pesticides minimises water contamination risks, 
aligning with SDG 6: Clean Water and Sanitation by protecting 
water resources and promoting sustainable water management. 
Sustainable agricultural practices also promote resource efficiency, 
waste reduction, and the adoption of environmentally friendly 
inputs, contributing to SDG 12: Responsible Consumption and 
Production by transitioning to a more sustainable and circular 
economy. Additionally, these practices often have a lower carbon 
footprint compared to conventional alternatives, supporting SDG 
13: Climate Action through climate change mitigation and 
adaptation efforts (Hellin and Fisher, 2019). By minimising soil 
degradation, reducing pollution, and conserving biodiversity, 
sustainable agriculture also helps protect and restore terrestrial 
ecosystems, aligning with SDG 15: Life on Land (Kamau et  al., 
2022). Furthermore, the adoption of sustainable inputs can have 
positive ripple effects on other SDGs, such as promoting decent 
work and economic growth by creating new opportunities in 
sustainable agriculture and enhancing farmer livelihoods (Piñeiro 
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et al., 2020). Ultimately, embracing sustainable inputs in agriculture 
is not just an environmental imperative but a crucial step towards 
a more just and sustainable future for all.

3 Methodology

3.1 Data

The study utilises the survey dataset from “Situation Assessment 
of Agricultural Households and Land and Livestock Holdings of 
Households in Rural India” of the 77th National Sample Survey 
(NSSO) round. This comprehensive country-wide dataset covers 
information from 5,940 villages covering 45,714 agricultural 
households. The reference period for data collection was the 
agricultural year from July 2018 to June 2019. After providing some 
general insights on the sustainable inputs in all the crops of the 
country, we specifically perform analysis using data from farmers 
cultivating paddy in the Kharif (monsoon) season. Hence, the data 
used for all the analyses on sustainable input use in paddy comprises 
information from 14,313 farmers.

3.2 Analytical techniques

3.2.1 Adoption and impact of multiple sustainable 
inputs

3.2.1.1 Multivariate probit model
Farmers in our sample have reported using three different types 

of sustainable inputs to meet the nutritional needs of their crops. The 
decision-making process regarding these inputs can be analysed using 
either multinomial or multivariate analysis. While multinomial 
models assume independence of irrelevant alternatives, it is important 
to note that the choices among these inputs are not mutually exclusive 
due to simultaneous adoption by farmers. Therefore, random error 
components may be correlated. Using a multivariate model would 
account for potential contemporaneous correlations arising from the 
use of all three sustainable inputs. This approach allows for increased 
efficiency in estimation when facing simultaneous adoption decisions. 
Unlike other binary models, the multivariate model takes into 
consideration unobservable factors that may affect farmers’ adoption 
decisions by allowing for correlation across the error terms of 
latent equations.

In examining the factors influencing the adoption of multiple 
sustainable inputs, we  operate under the assumption of the 
interdependence of different sustainable inputs, indicating that 
the decision to adopt these is inherently multivariate. Drawing 
from the approach employed by Teklewold et  al. (2013), 
we  utilised a Multivariate Probit Model (MVP) to assess the 
factors influencing the adoption of multiple sustainable inputs at 
the farm household level. The null hypothesis posits that there is 
no significant disparity in the characteristics of farmers and their 
adoption of sustainable inputs, suggesting that regardless of age, 
farm size, or education level, farmers will adopt a given type of 
sustainable inputs.

The empirical model is as follows:

 Y Xi ij i1 1 11= +′ β ε

 Y Xi ij i2 2 22= +′ β ε

 Y Xi ij i3 3 33= +′ β ε

Where,
i = farmer id,
Yi1 = 1, if farmer adopts biofertilisers (0 otherwise),
Yi2 = 1, if farmer adopts biopesticides (0 otherwise),
Yi3 = 1, if farmer adopts manures (0 otherwise),
Xi′ = Vector of determinants of adoption,
β j  = Vector of unknown parameters (j = 1,2,3), and
ε  = Error term.

The hypothesis can be examined by conducting three distinct 
independent binary probit models, assuming that the error terms are 
mutually exclusive. However, since the decision to utilise different 
sources may be correlated, the error term components could exhibit 
stochastic dependence. In such cases, a multivariate probit model of 
the following type is employed to test the hypothesis.

 Y Xij ij j ij= +′ β ε

Where,
 Yij (j = 1,2,3) indicate three different choices of sustainable inputs 
for the ith farmer (i = 1, 2,…,14,313),
 Xij′  is a 1 × k vector of observed factors that determine 
the adoption,
β j is k × 1 vector of unknown parameters, and.
εij is the unobserved error term.

Assuming that the errors (across j = 1, …, m alternatives) follow a 
multivariate normal distribution with a mean vector of zero, the 
unknown parameters in the above equation are estimated using 
simulated maximum likelihood. The technique applies the Geweke-
Hajivassiliour-Keane smooth recursive conditioning simulator 
procedure to assess the multivariate normal distribution. We conduct 
the model estimation using STATA software version 15.

3.2.1.2 Ordered probit model
The MVP model suggests that before adopting sustainable inputs, 

farm households consider the overall benefit of adoption versus 
non-adoption. If they perceive that the benefits of adoption outweigh 
non-adoption, they will choose to adopt new sustainable inputs. Farm 
households are more likely to adopt additional sustainable inputs if 
they have had positive experiences with previous adoptions. Although 
the MVP model has limitations in gauging adoption intensity, our 
focus was on assessing the level of adoption by looking at the number 
of sustainable inputs taken up at the household level. While a Poisson 
count distribution model is commonly used for this purpose, it does 
not align with our assumption about interdependence among 
sustainable inputs and is, therefore, not suitable for our context. Due 
to limitations in data on relevant variables, we treated our dependent 
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variable as an ordinal one indicating ordered outcomes—such as 
households adopting one or two or more sustainable inputs—and 
used an ordered probit model instead.

We sequentially model our ordered outcomes as a latent variable 
y* similar to the approach by Oyetunde-Usman et al. (2021). This 
represents an unobserved measure of households’ adoption of 
sustainable inputs in numbers, and is defined as follows:

 y X B ui i i
∗ ′= +

In the case of the jth farm household, when normalisation dictates 
that the predictors x do not contain an intercept, there is minimal 
adoption of sustainable inputs for low y*. However, as y* surpasses 1, 
the number of sustainable inputs adopted increases, and for values 
greater than 2, adoption continues to increase further. Given m 
categories in accordance with a standard ordered probability model, 
the likelihood of observing outcome i aligns with the following:

 
Pr Pr( )outcome K X uj i i i i=( ) = < + ≤∝−

′1 1 β

where ui is assumed to follow a standard normal cumulative 
distribution function. The coefficients β1….βk are collectively 
estimated with the cutpoints α1, α2…, αk-1; where k represents the 
number of potential outcomes.

3.2.1.3 Seemingly unrelated regression model
Further, we employ the Seemingly Unrelated Regression (SUR) 

model to analyse the determinants of farmers’ expenditure on 
sustainable and chemical inputs. The SUR model is particularly useful 
due to the likely correlation between the error terms of the equations 
modeling expenditures on these inputs. By allowing for such 
correlations, this model provides more efficient estimators compared 
to estimating each equation separately. The model is chosen because 
of the potential interdependence between expenditures on sustainable 
and chemical inputs; a farmer’s decision to invest in sustainable 
practices might be influenced by their current use of chemical inputs 
and vice versa. Ignoring this interdependence could lead to biased 
estimates and misleading conclusions. Therefore, the SUR approach 
provides a comprehensive understanding of the factors influencing 
these expenditures. The parameters of the SUR model are estimated 
using Generalized Least Squares, which accounts for the correlation 
between error terms across equations, improving the efficiency of 
parameter estimates. The model can be specified as follows:

 Y Xi ij i1 1 11= +′ β ε

 Y Xi ij i2 2 22= +′ β ε

Where.
i = farmer id,
Yi1 = expenditure on chemical inputs,
Yi2 = expenditure on sustainable inputs.
Xi′ = Vector of determinants of adoption,
β j  = Vector of unknown parameters to be estimated (j = 1,2), and
ε  = Error term.

3.2.1.4 Regression adjustment model
To evaluate the effect of using sustainable inputs on harvest 

value, we used a regression adjustment model. This model involves 
fitting separate regressions for the treated and control units and 
estimating the partial regression coefficients for all control variables 
included in the model (dependent variable – outcome variable such 
as income). Next, the model calculates the Potential Mean 
Outcomes (PMO), which represents the average value of the 
outcome if all the units in the sample are either in the treated or 
control group. The model first calculates the expected value of the 
dependent variable for the entire sample based on the coefficients 
of regression estimated on treated units. The mean of these expected 
values is termed as the PMO of the treated group. Similarly, the 
expected value of the dependent variable for the entire sample 
based on the coefficients of regression estimated on control units is 
used to estimate the PMO for control units. The difference between 
the PMO of the treated and control groups is considered as the 
estimate of the impact.

3.2.2 Estimation of technical efficiency
The concept of technical efficiency, initially introduced by Michael 

Farrell in the mid-19th century, pertains to an individual’s proficiency 
in functioning at the frontier isoquant (Farrell, 1957). This 
fundamental concept holds significant relevance in the spheres of 
economics and production theory as it governs the evaluation of 
resource deployment to optimise output. At its core, technical 
efficiency signifies the capacity of an economic entity, whether it be a 
farm, an industry, or a firm, to attain the utmost level of output 
conceivable while operating within a predetermined set of inputs and 
the prevailing technological capacities. Technical efficiency inherently 
involves the ability to generate the greatest possible output from a 
given set of inputs through the optimal utilisation of technology and 
resources. This notion indicates the extent to which a production 
process operates at the edge of its potential production range, devoid 
of inefficiency or waste.

Economists typically differentiate technical efficiency from 
allocative efficiency, the former pertaining to the productive aspect of 
resource utilisation and the latter concerning the optimal distribution 
of resources among alternative uses. While technical efficiency refers 
to the attainment of maximal output with current technology, 
allocative efficiency denotes the alignment of the marginal value 
product with the marginal factor cost. Organisations strive to optimise 
output following neoclassical principles by reducing input costs and 
seeking a technically effective allocation, emphasising the production 
of a greater quantity of output for the same quantity of inputs 
(Koopmans, 1951).

The foundation of technical efficiency lies in neoclassical 
economics and production theory, emphasising organisational 
endeavors to optimise financial gains through cost reduction and 
output enhancement within the constraints imposed by existing 
technology. The application of this conceptual framework has led to 
the development of numerous theoretical models elucidating the 
factors that influence technical efficiency, encompassing institutional 
factors, environmental circumstances, and firm-specific variables. 
Quantification of technical efficiency involves the assessment of the 
disparity between actual and potential output relative to production 
inputs. Various methodologies are available for estimating technical 
efficiency, each offering distinct perspectives and practical 
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applications. Widely employed approaches include Data Envelopment 
Analysis (DEA) and Stochastic Frontier Analysis (SFA), both of which 
hold distinct advantages and applications within the realm of technical 
efficiency estimation.

3.2.2.1 Stochastic frontier method for technical efficiency
Aigner et al. (1977) and Meeusen and van den Broeck (1977) 

introduced methods for evaluating the stochastic frontier production 
function. Two separate investigations found that random factors play 
a crucial role in determining output variability. In general, the SFM 
method is described as follows:

Let us assume that a farm has a production function denoted by 
f = (X, β). The farm, denoted as ith, would generate a yield, Yi, as a 
function of the variables Xi and β, i.e., Yi = f (Xi, β), assuming no errors 
or inefficiencies. The stochastic production frontier model suggests 
that each farm may produce less than its maximum capacity due to 
varying levels of inefficiency.

More precisely,

 
Y f Xi i i= ( ),β ξ

Where,
Yi = output.
Xi = input vector of farm i.
βi = vector of the estimated parameters.
ξi = the degree of efficiency of farm i.

In this study, f = (X, β) is assumed as a Cobb–Douglas production 
function for assessing the concept of returns to scale. Furthermore, it 
is postulated that the output is susceptible to random error denoted as 
vi. This implies that

 
Y f X vi i i i= ( ) ( ),β ξ exp

where the variable vi is assumed to be independently and identically 
N (0; σ2

v). The expression for the natural logarithm of the production 
function is given as

 
ln lnY f X vi i i i= = ( )  + ( ) +,β ξ

Let us suppose that there are k inputs and that the production 
function is linear when taking logarithms. We define the technical 
inefficiency effect ui as the negative natural logarithm of ξi which 
is considered to be independently exponentially distributed σ2

u. 
With this assumption, the production frontier function can 
be expressed as

 
ln lnY X v ui

k

k
k ik i i= + −

=
∑β β0

1

The technical inefficiency effect can be stated as:

 
u Zi o

j

j

j ij ij= + +
=
∑± ± É

1

The variable ωij represents the stochastic noise, while Zij  refers to 
the exogenous factors that influence rice production. The parameter 
estimates α indicate the relationship between these exogenous factors 
and the technical efficiency of rice production. A negative value of αj 
suggests a positive relationship between the exogenous factors and the 
technical efficiency, and vice versa. Technical efficiency (TE) in an 
output-oriented ith farm is quantified as ξi = exp.(−ui), where it 
represents the ratio between the observed output and the frontier 
output. The value of ξ must be within the range of (0,1). If ξi equals 1, 
the farm is deemed to be operating at the optimal output level using 
the technology represented by the production frontier.

4 Results and discussion

4.1 Comparison of farmers’ expenditure on 
chemical inputs and sustainable inputs

The data presented in Figure 1 provides a visual representation of 
the average expenditure by Indian farmers on both chemical and 
sustainable inputs. It is apparent from Figure 1 that farmers allocate a 
significantly higher amount of their budget to chemical inputs 
compared to sustainable alternatives. Specifically, farmers spend 
approximately 7 rupees on chemical inputs for every rupee spent on 
sustainable inputs. This expenditure ratio is particularly pronounced 
in the case of gram (7.9:1), followed by cotton (6.2:1), maize (6.1:1), 
and paddy (5.7,1). Moreover, when analysing the regional disparities 
in spending on sustainable inputs (Figure 2), it becomes evident that 
different regions exhibit varying patterns of expenditure. Additionally, 
a comparison of Figures 2, 3 suggests that southern states tend to 
allocate a greater portion of their resources to sustainable inputs 
compared to their counterparts in the northern states. In relation to 
specific sustainable inputs under consideration, it is noteworthy that 
farmers allocate the highest portion of their budget to manures (Rs 
639/ha), followed by biofertilisers (Rs 347/ha) and biopesticides (Rs 
217/ha). On the contrary, their spending on chemical fertilisers and 
chemical pesticides amounts to Rs 5,431/ha and Rs 1,368/ha, 
respectively (Figure 4).

4.2 Analysis of paddy farmers’ adoption and 
expenditure on sustainable inputs and 
chemical inputs

4.2.1 Description and summary statistics of 
variables

Table 1 provides a summary of the variables used in this study, 
including their descriptions and statistics. Age is a crucial factor in 
adoption studies as it reflects the level of farming experience. Our 
findings show that the average age of the household head is around 
50 years, indicating that, on average, farm households are still 
actively engaged in farming. Only a small percentage (9%) of 
households are led by females, which may indicate fewer female 
roles in the farming population. This observation, however, does 
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FIGURE 1

Average expenditure on sustainable inputs and chemical fertilizer and pesticides (Rs/ha).

FIGURE 2

Expenditure on sustainable inputs per ha.
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not take into account the influence of spouses in male-headed 
households, who may act as plot managers and play a role in 
adoption decisions. On the other hand, the average household size 
is approximately 5, indicating a moderate family setting. Large 

family sizes were previously common in agricultural settings in 
developing countries, as they allowed for the potential utilisation of 
family labor. However, in recent years, farm sizes have declined due 
to various factors. Additionally, household size is a factor to 

FIGURE 3

Expenditure on chemical inputs per ha.

FIGURE 4

Expenditure on sustainable inputs and chemical inputs for paddy.
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be  considered in adoption decisions, depending on the type of 
sustainable inputs.

Further analysis of household statistics reveals that the education 
level of the household heads is relatively low, with an average of 
3.3 years of education. This suggests that while the majority of 

household heads are educated, their education level is low, which 
could potentially affect their understanding of farm practices and their 
uptake of technological information. Additionally, 95 percent of the 
farmers operate their land individually, which could have a positive or 
negative effect on the adoption of sustainable inputs. Furthermore, 76 
percent of the farmers own the entire land they operate. Significant 
differences were observed in the means of several variables between 
the treated (farmers adopting sustainable inputs) and control group 
(farmers not adopting sustainable inputs) (see Table 2).

4.2.2 Multivariate probit estimates of the 
determinants of adoption of multiple sustainable 
inputs

In order to investigate the main research question, which involves 
examining the factors that affect the adoption of various sustainable 
inputs at the farm household level, we employed the Multivariate 
probit model. The results of this model are presented in Table 3. The 
analysis indicates that the log-likelihood ratio (LR) of the model is 
−7093.24, and the Wald chi-square (57) value is 271.5, both of which 
are significant at a level of p < 0.01. This suggests that the model fits 
the data well. The significance of the LR test further implies that the 
decisions to adopt multiple sustainable inputs are interdependent. 
The adoption of biofertilisers was found to be  significantly and 
positively affected by factors such as age, farm size, and membership 
in farm organisations while being negatively influenced by social 
groups. This indicates that farmers from disadvantaged societal 
segments have limited access to such inputs. Moreover, education was 
found to have a positive influence on the adoption of biofertilisers 
and biopesticides, but no influence on manure adoption. Access to 
technical advisory, on the other hand, was observed to influence 
biopesticide and manure adoption but had no significant effect on 
biofertiliser adoption.

4.2.3 Ordered probit estimates of the 
determinants of the number of sustainable inputs 
adopted

The results presented in Table 4 provide a comprehensive overview 
of the findings obtained from the ordered probit model, which aimed 
to explore the various factors influencing the adoption of sustainable 
inputs by agricultural households. Upon analysis, the chi-squared 
statistics derived from the ordered probit model were found to 
be  highly statistically significant (chi square (19) = 111.96, Prob > 
chi-square = 0.000), indicating a strong fit of the model to the data. 
This suggests that the model effectively captures the complexity of the 
factors influencing the adoption of sustainable inputs. Furthermore, 
the results indicated that the number of sustainable inputs adopted 
exhibited a positive association with the age of the household head, 
implying that as the age of the household head increases, the 
propensity to adopt sustainable inputs also increases. Conversely, 
there was an inverse relationship observed between the number of 
sustainable inputs adopted and the household size, signaling that 
larger households tend to adopt fewer sustainable inputs. Additionally, 
the study revealed that households from the disadvantaged segments 
of society tended to adopt a lower number of sustainable inputs, 
highlighting a potential disparity in the adoption of sustainable 
agricultural practices. On the other hand, farmers affiliated with farm 
organisations displayed a higher propensity to adopt a greater number 

TABLE 1 Description and summary statistics of variables used in the 
analysis.

Variables Mean Std. Dev. Expected sign

Gender (male = 1) 0.91 0.28 Positive/Negative

Age (years) 49.93 12.77 Positive/Negative

Education (years) 3.31 2.58 Positive

Agricultural training 

(yes = 1) 1.99 0.12

Positive

Household size 

(number) 4.93 2.27

Positive/Negative

Social group (SC/

ST = 1) 0.35 0.48

Negative

Land operation 

(individual = 1) 0.95 0.22

Positive/Negative

Land holding 

(entirely owned = 1) 0.77 0.42

Positive

Farm size (small/

marginal = 1) 0.38 0.48

Positive/Negative

MGNREGA work 

(yes = 1) 0.55 0.50

Positive

Membership in farm 

organisations (yes = 1) 0.03 0.18

Positive

Kisan credit card 

(yes = 1) 0.15 0.35

Positive

Soil health card 

(yes = 1) 0.01 0.08

Positive

Crop insurance 

(yes = 1) 1.97 0.19

Positive/Negative

Credit (yes = 1) 0.14 0.35 Positive

MSP awareness 

(yes = 1) 0.33 0.47

Positive

Access to technical 

advisory (yes = 1) 0.25 0.43

Positive

Access to technical 

advisory (yes = 1) 0.25 0.43

Positive/Negative

Maximum 

temperature (degrees) 44.45 4.06

Positive/Negative

Minimum 

temperature (degrees) 4.32 3.96

Positive/Negative

Biofertilisers 

(adopter = 1) 0.13 0.34

Biopesticides (adopter 

=1) 0.11 0.32

Manures (adopter =1) 0.21 0.41

Sustainable inputs 

(adopter =1) 0.36 0.48
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of sustainable inputs, reflecting the positive influence of organisational 
membership on sustainable input adoption. Furthermore, the 
awareness of minimum support price (MSP) and accessibility to 
technical advisory services emerged as significant factors contributing 
to the increased adoption of sustainable inputs, underscoring the 
importance of information dissemination and technical support in 
promoting sustainable agricultural practices.

4.2.4 Determinants of expenditure on chemical 
and sustainable inputs

Further, we  estimated the determinants of chemical and 
sustainable inputs in paddy cultivation through the use of a seemingly 
unrelated regression model (see Table 5). From the analysis, it was 
found that age has a positive influence on the expenditure for both 
chemical and sustainable inputs. Additionally, agricultural training 
was found to have a positive impact on the expenditure for chemical 
inputs but no noticeable influence on sustainable inputs expenditure. 
It was also observed that farmers who are not from disadvantaged 
backgrounds and larger farmers tend to spend more on both types of 
inputs. Furthermore, membership in a farm organisation was 
identified as a crucial determinant of expenditure on sustainable 
inputs. An important finding was that, despite technical advisories 
promoting spending on chemical inputs, there was no discernible 
influence on the expenditure for sustainable inputs.

4.3 Impact using regression adjustment

Table 6 presents the results of the regression adjustment, focusing 
on the impact of sustainable inputs on harvest value. The findings 
indicate a statistically significant and positive influence of the adoption 
of sustainable inputs on harvest value, with an average increase of Rs 
3,415 per hectare. This finding holds substantial policy implications, 
particularly since the government is actively seeking to encourage the 
adoption of sustainable inputs. The results underscore the necessity 
for robust government action, as they align with the goals of a 
sustainable future.

4.4 Technical efficiency

The data in Table 7 illustrates the distribution of paddy farms 
based on their expenditure levels for chemical and sustainable 
fertilisers (biofertilisers and manures) per hectare. About 68.37% of 
paddy farms spend less than 5,000 Rs./ha on chemical fertilisers, while 
60.73% spend less than 2000 Rs./ha on sustainable fertilisers. On the 
other hand, only 22.68% of paddy farms allocate a budget ranging 
from 5,000 to 10,000 Rs./ha for chemical fertilisers. Additionally, 
30.76% of these farms spend between 2000 and 5,000 Rs./ha on 
sustainable fertilisers. Furthermore, just 8.95% of paddy fields spend 

TABLE 2 Mean difference among the variables for treated and control group.

Variables Non adopters of 
sustainable inputs

Mean Adopters of 
sustainable inputs

Mean Mean difference

Gender (male = 1) 9,145 0.92 5,168 0.90 0.01***

Age (years) 9,145 49.60 5,168 50.51 −0.91***

Education (years) 9,145 3.24 5,168 3.42 −0.18***

Agricultural Training 

(yes = 1) 9,145 1.99 5,168 1.98 0.01***

Household size (number) 9,145 4.95 5,168 4.88 0.07*

Social group (SC/ST = 1) 9,145 0.38 5,168 0.31 0.07***

Land operation 

(individual = 1) 9,145 0.95 5,168 0.95 0.01

Land holding (entirely 

owned = 1) 9,145 0.76 5,168 0.78 −0.03***

Farm size (small/

marginal = 1) 9,145 0.39 5,168 0.36 0.03***

MGNREGA work (yes = 1) 4,170 0.56 2084 0.54 0.03*

Membership in farm 

organisations (yes = 1) 9,145 0.03 5,168 0.04 −0.02***

Kisan credit card (yes = 1) 9,145 0.15 5,168 0.15 0.01

Soil health card (yes = 1) 9,145 0.01 5,168 0.01 −0.01**

Crop insurance (yes = 1) 9,145 1.97 5,168 1.97 −0.01

Credit (yes = 1) 9,145 0.14 5,168 0.14 0.01

MSP awareness (yes = 1) 9,145 0.32 5,168 0.35 −0.03***

Access to technical 

advisory (yes = 1) 9,145 0.24 5,168 0.28 −0.04***

*,**, and *** indicates significance at 10, 5, and 1 per cent, respectively.
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over 10,000 Rs./ha on chemical fertilisers, while 8.50% invest more 
than 5,000 Rs./ha on sustainable fertilisers.

The stochastic production frontier model examines nine input 
variables, including bio-fertiliser, manures, chemical fertiliser, human 
labor, seed, irrigation, animal labor, maintenance of machinery, and 
hiring of machinery. The output in this model is based on the income 
in rupees, as shown in Table 8. In the Stochastic Frontier model, the 
total income is the dependent variable, while the costs (spending) of 
seeds, chemical fertilisers, bio-fertilisers, manures, equipment 
maintenance, human and animal labor, machinery maintenance, and 

machinery hiring are used as covariates. All variables are in 
natural logarithm.

The Stochastic Frontier estimates of the coefficients are presented 
in Table 9. The coefficients of bio-fertilisers, chemical fertilisers, seeds, 
human labor, and animal labor are statistically significant and have 
positive signs. Conversely, irrigation and machinery hiring costs have 
negative coefficients. An increase in bio-fertiliser expenditure by 1% 
leads to a 0.2% increase in paddy yield. Similarly, a 1% increase in 
chemical fertiliser expenditure results in a 0.09% increase in yield. 
Increasing investment in seeds, human labor, and animal labor by 1% 

TABLE 3 Multivariate probit model of factors driving adoption of sustainable inputs.

Variables Biofertilisers Biopesticides Manures

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Gender (male = 1) 0.03 0.08 0.01 0.08 −0.01 0.07

Age (years) 0.01*** 0.01 0.01 0.01 0.01 0.01

Education (years) 0.02* 0.01 0.02* 0.01 0.01 0.01

Agricultural training 

(yes = 1) −0.19 0.14 0.10 0.18 0.05 0.14

Household size (number) −0.01 0.01 0.04*** 0.01 −0.06*** 0.01

Social group (SC/ST = 1) −0.17*** 0.04 −0.08* 0.05 −0.16*** 0.04

Land operation 

(individual = 1) 0.07 0.10 0.04 0.11 −0.09 0.08

Land holding (entirely 

owned = 1) 0.03 0.05 0.06 0.05 −0.01 0.04

Farm size (small/

marginal = 1) 0.11*** 0.04 0.08* 0.05 −0.11*** 0.04

MGNREGA work (yes = 1) −0.03 0.04 0.04 0.05 0.01 0.04

Membership in farm 

organisations (yes = 1) 0.35*** 0.09 0.06 0.11 0.35*** 0.08

Kisan credit card (yes = 1) −0.03 0.06 0.10 0.07 −0.13** 0.06

Soil health card (yes = 1) 0.24 0.19 0.27 0.21 0.08 0.18

Crop insurance (yes = 1) 0.01 0.10 0.25** 0.12 −0.03 0.08

Credit (yes = 1) 0.01 0.06 −0.02 0.06 0.01 0.05

MSP awareness (yes = 1) −0.07 0.05 −0.09* 0.05 0.21*** 0.04

Access to technical advisory 

(yes = 1) 0.02 0.05 0.12** 0.05 0.17*** 0.04

Maximum temperature 

(degrees) 0.02*** 0.006 0.01 0.01 0.01 0.01

Cumulative rainfall (mm) 0.01*** 0.01 0.01 0.01 0.01* 0.01

Constant −2.31*** 0.50 −2.56*** 0.57 −1.03** 0.46

Number of observations 6,254

Log likelihood −7093.24

Wald chi2(57) 271.50

Prob > chi2 0.01

Joint significance of mean of 

households varying 

covariates

chi2(3) = 304.153

Prob > chi2 = 0.01

*,**, and *** indicates significance at 10, 5, and 1 per cent, respectively.
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leads to yield increases of 0.03, 0.12, and 0.01%, respectively. However, 
an increase in irrigation expenditure is associated with a 0.02% decline 
in production output, indicating decreased efficiency. This suggests 
that excessive irrigation may lead to reduced yields and productivity. 

Moreover, increasing machinery expenditure by 1% correlates with a 
reduction in paddy production output by approximately 0.001%. Both 
variance parameters, σ and λ, are statistically significant. The primary 
aim of running the stochastic frontier model was to estimate the 
technical efficiency level of each observational unit in the sample. The 
findings can be compared across specified groups of interest while 
excluding the influence of additional variables representing the social 
attributes of the cross-sectional units in the sample (see Table 10).

The Stochastic production function is used to evaluate the 
technical efficiency of sample farms, which are then categorised into 
four distinct groups based on their efficiency levels. From Table 11, it 
is evident that the average technical efficiency of the selected paddy 
farms is 87.42%, with the lowest efficiency at 48.52% and the highest 
at 94.28%. The data in the table indicate that 147 farms operate at a 
level below 50%, while 15.64% demonstrate an efficiency ranging from 
50 to 80%. A majority (67.65%) of the 9,651 households are operating 
at an efficiency level of 80 to 85 percent, and 15.68% are operating at 
an even higher efficiency level above 90%. Figure  5 depicts the 
histogram of technical efficiency scores.

Table  10 provides a comparison between the groups using 
chemical fertilisers and sustainable fertilisers with different costs 
incurred. It displays the means of technical efficiency scores for the 
groups using these fertilisers. The asterisks in the table indicate the 
significance level of the t-test, showing whether the technical efficiency 
mean score of the sustainable fertilisers was significantly higher than 
that of the chemical fertilisers. The findings show that the groups 
utilising sustainable fertilisers exhibited greater efficiency scores, with 
the exception of the group using >10,000 (Rs/ha). Those utilising 
sustainable fertilisers with even lower expenditure levels demonstrated 
higher mean efficiency scores compared to users of chemical fertilisers.

The data suggests that moderate spending on fertilisers tends to 
yield better results, possibly because of the use of optimal input levels. 
It is crucial to apply fertilisers at an ideal amount to preserve the well-
being of paddy fields and promote sustainable agriculture methods. 
Excessive fertiliser can have detrimental effects on plants, soil, water 
quality, expenses, as well as the environment and human well-being. 
Hence, meticulous oversight of fertiliser utilisation is vital for the 
viability of agriculture and the preservation of the ecosystem.

4.4.1 Exogenous variable descriptions in the 
technical inefficiency effects model and its 
descriptive statistics

The sample farms show some level of technical inefficiency. 
Enhancing the level of efficiency can lead to increased production. 
Farmers who effectively manage production inputs that significantly 
impact production efficiency can improve the efficiency of their farms. 
Therefore, it is crucial to identify the important production inputs that 
either positively or negatively affect output. The level of technical 
inefficiency is explained by the statistical description of exogenous 
variables related to farmer and farm characteristics in the inefficiency 
effects model, as shown in Table 12.

Considering the attributes of farmers, it is expected that the level 
of education will have a negative impact on the technical inefficiency 
of paddy farming. This suggests that farmers with higher levels of 
education exhibit lower levels of technical inefficiency due to their 
enhanced knowledge and ability to utilise information and modern 
technology. The average educational attainment of farmers in the delta 
is approximately 6 years of formal education. In terms of experience, 

TABLE 4 Ordered probit estimates of the factors influencing the number 
of sustainable inputs adopted.

Variables Coef. Std. Err. p >  |z|

Gender (male = 1) 0.01 0.06 0.82

Age (years) 0.01 0.01 0.03

Education (years) 0.01 0.01 0.13

Agricultural training 

(yes = 1) −0.06 0.12 0.60

Household size 

(number) −0.02 0.01 0.01

Social group  

(SC/ST = 1) −0.17 0.03 0.01

Land operation 

(individual = 1) −0.01 0.07 0.87

Land holding  

(entirely owned = 1) 0.02 0.04 0.55

Farm size  

(small/marginal = 1) 0.01 0.03 0.87

MGNREGA work 

(yes = 1) −0.01 0.03 0.86

Membership in farm 

organisations (yes = 1) 0.34 0.07 0.01

Kisan credit card 

(yes = 1) −0.05 0.05 0.34

Soil health card 

(yes = 1) 0.21 0.15 0.17

Crop insurance 

(yes = 1) 0.09 0.07 0.51

Credit (yes = 1) −0.01 0.04 0.80

MSP awareness 

(yes = 1) 0.06 0.04 0.08

Access to technical 

advisory (yes = 1) 0.14 0.04 0.01

Maximum temperature 

(degrees) 0.01 0.01 0.01

Cumulative rainfall 

(mm) 0.01 0.01 0.01

/cut1 1.27 0.38

/cut2 2.29 0.39

/cut3 3.16 0.39

Number of obs 6,254

LR chi2(19) 111.96

Prob > chi2 0.01

Log likelihood −5224.08

Pseudo R2 0.01

*,**, and *** indicates significance at 10, 5, and 1 per cent, respectively.
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farmers with more years of experience are likely to be more skilled, 
leading to reduced inefficiency. Additionally, farmers who have a 
larger land area are expected to have superior skills in managing input 
resources, resulting in a more efficient yield.

4.4.2 Determinants of technical inefficiency
Table 13 presents the estimated relationships between technical 

inefficiency and various socio-economic and demographic factors of 
the respondents. This analysis also considers the influence of 
additional variables on efficiency levels. When the coefficient of the 
evaluation is negative, it indicates that the relevant variable has a 
positive effect on technical efficiency; conversely, when it’s positive, it 
suggests that the variable has a negative effect on technical efficiency.

According to Table 13, higher education has a significant negative 
impact on technical inefficiency in paddy production. This suggests 
that as farmers attain higher levels of education, there is a small 
reduction in technical inefficiency. More specifically, each additional 
unit of education is associated with a reduction of approximately 
0.034% in technical inefficiency. Higher education generally provides 
individuals with enhanced decision-making and problem-solving 
abilities. Farmers with a higher level of education are likely to possess 
superior skills in strategising and overseeing their agricultural 
activities, resulting in a decrease in inefficiencies. They are also more 
likely to acquire and understand information regarding optimal 
farming methods, emerging technologies, and market conditions, 
which can help them enhance their operational efficiency. Pursuing 
higher education can also enhance individuals’ inclination and 
capacity to adopt modern farming techniques and technologies, 
thereby reducing inefficiencies. Individuals with a higher level of 
education are more likely to have enhanced networking opportunities 
and access to support systems such as agricultural extension services 
and cooperatives, which can further assist them in operating with 
greater efficiency.

TABLE 5 Estimates of determinants of expenditure on chemical and 
sustainable inputs using seemingly unrelated regression.

Variables Chemical input 
expenditure

Sustainable input 
expenditure

Coef. Std. 
Err.

Coef. Std. 
Err.

Age (years) 11.07*** 3.60 5.32*** 1.74

Gender −272.32* 157.88 62.33 76.31

Education 

(years) 24.81 18.57 37.07*** 8.83

Agricultural 

training 695.74* 383.52 −292.56 185.99

Social group 54.41*** 16.28 23.55*** 7.83

Membership in 

organisations 281.19 255.80 348.23*** 123.92

KCC 1,372.55*** 133.87 −27.23 64.69

MGNREGA 164.09 107.31

Soil health card 1,981.38*** 530.44 437.67* 257.16

Cropping area 

(acres) 505.21*** 30.98 38.32** 15.02

Total value of 

output 0.11*** 0.01 0.02*** 0.01

Credit accessed 727.54*** 131.03 53.53 63.43

MSP awareness 1,171.30*** 102.90

Access to 

technical advices 472.69*** 106.88 46.02 51.47

Temperature_

maximum 150.33 121.36

Temperature_

minimum 4.74 43.57

Rainfall (mm) −12.63*** 4.22

State dummies Yes

Constant 10,408.73 8,422.11 2,123.02 *** 503.62

Breusch-pagan test of independence: chi2(1) = 9.09, Pr = 0.003

*,**, and *** indicates significance at 10, 5, and 1 per cent, respectively.

TABLE 6 Impact of adopting sustainable inputs.

Outcome/
treatment

Coefficients Robust Std. 
Err.

Average treatment effect 

(ATE) of using 

sustainable inputs 3,415.59*** 609.32

Potential mean outcome 

of the control group 25,649.96*** 378.45

*** indicates significance 1 per cent, respectively.

TABLE 7 Expenditure on chemical fertilisers and sustainable fertilisers 
(manure and biofertiliser) per hectare by farmers.

Exp on 
chemical 
fertilisers 
(Rs. ha-1)

Percent Exp on 
sustainable 
fertilisers 
 (Rs. ha-1)

Percent

<5,000 68.37 (%) <2,000 60.73 (%)

5,000–10,000 22.68 (%) 2,000–5,000 30.76 (%)

>10,000 8.95 (%) >5,000 8.50 (%)

TABLE 8 Output and input variables descriptions for the production 
frontier model.

Variables Description Mean

LnIncome (Rs) Income from the crop sold (Rs.) 29,203.38

LnExp biofertiliser Spending on Bio-fertilizers ha−1 2,636.22

LnExp manures Spending on manures ha−1 638.50

LnExp chemical fertiliser Spending on chemical fertilisers ha−1 2,198.88

LnExp human labour Spending on human labour ha−1 8,403.05

LnExp seeds Spending on seeds ha−1 942.17

LnExp irrigation Spending on irrigation 764.98

Ln Exp animal labour Spending on animal labour ha−1 122.24

LnExp maintenance of 

machinery

Spending on maintenance of 

machinery

472.89

LnExp cost of hiring of 

machinery

Spending on hiring of machinery 2,103.50
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The impact of agricultural training on technical inefficiency is 
significant. Specifically, for every 1% increase in agricultural training, 
there is a decrease of approximately 0.001% in technical inefficiency. 
Agricultural training provides farmers with knowledge of advanced 
farming techniques, leading to waste reduction, optimal resource 
utilisation, increased productivity, and improved efficiency. These 
programs educate farmers on efficient resource management 
techniques, including optimal use of water, fertilisers, and pesticides, 
resulting in decreased input expenses and improved efficiency. 
Farmers gain knowledge about optimal techniques in agriculture, such 
as crop rotation, soil health management, and integrated pest 
management, which enhance farming efficiency. Training also 
improves farmers’ problem-solving abilities, enabling them to 
effectively tackle issues such as pest infestations, plant diseases, and 
soil fertility, resulting in reduced inefficiency. Furthermore, 
agricultural training often includes instruction on risk management 
techniques, helping farmers reduce the impact of uncertainties such 
as weather conditions and market fluctuations, leading to more 
consistent and productive agricultural practices.

Household size also has a significant impact on technical 
inefficiency. A larger household size is associated with a small rise in 
technical inefficiency. Specifically, a 1% increase in household size is 
linked to a roughly 0.045% rise in technical inefficiency. Larger 
household sizes can strain resources, resulting in less-than-optimal 
utilisation of agricultural inputs and heightened inefficiency. 
Additional individuals in a household may lead to increased resource 
allocation away from productive investments to provide sustenance 
for more people. Household members involved in non-agricultural 
tasks or other responsibilities may reduce attention and effort 
dedicated to farming activities, leading to increased inefficiency and 
higher overall expenses. This economic burden can reduce the 
available capital for investment in efficient farming practices and 
technologies. Larger households may also experience problems related 
to overcrowding and resource dilution, resulting in decreased overall 
farm efficiency. Moreover, households with a greater number of people 
may have a higher dependency ratio, leading to increased pressure on 
working members and decreased overall productivity.

Membership in a specific social group has a significant negative 
impact on technical inefficiency. It suggests that belonging to this 
social group is linked to a reduction of about 0.210% in technical 
inefficiency. Certain demographic cohorts may have better access to 
extensive social networks that offer help, knowledge, and resources, 
leading to more efficient agricultural practices. Belonging to 
supportive social groups can provide individuals with access to 
communal resources, collaborative efforts, and shared expertise, 
thereby reducing inefficiencies. Some social groups may have cultural 
practices and traditions that prioritise the efficient use of resources 
and the implementation of sustainable agricultural methods. Social 
collectives can improve the accessibility of educational and agricultural 
training programs, thus promoting the adoption of advanced farming 
methods. Groups often engage in collaborative practices such as 
cooperative farming, joint purchase of inputs in large quantities, and 
collective marketing of their produce. These practices can lead to 
increased efficiency.

The land area has a significant positive impact on technical 
inefficiency. Increasing the land area is associated with a rise in 
technical inefficiency of approximately 0.074%. Managing larger land 
areas can pose significant challenges. Coordinating activities over a 
larger geographical area can result in inefficiencies, especially if 
resources and labor are not appropriately managed. Efficiently 
distributing resources (such as labor, water, and fertilisers) becomes 
more challenging when dealing with a larger area. Smaller farms could 
benefit from implementing more meticulous and concentrated 
management practices. Larger agricultural operations often require a 
higher number of workers, and overseeing a larger labor force can 
be complex. Inefficiencies can occur due to difficulties in overseeing 
and effectively utilising all employees. As the farm expands in size, the 
operations involved, such as crop rotation, pest management, and 
harvesting, become more complex, which can lead to inefficiencies if 
not managed effectively. Although larger farms can take advantage of 
economies of scale, they may also face diseconomies of scale if their 
expansion leads to inefficiencies caused by the aforementioned factors.

The number of crops harvested has a significant positive impact 
on technical inefficiency. Specifically, the data shows that for each 
additional crop harvested, there is an approximate 1.351% increase in 
technical inefficiency. Managing multiple crops simultaneously adds 
complexity to farm management. Various crops have different 

TABLE 9 Parameters estimation of the stochastic frontier model.

Variables Coefficient Standard error

Constant 3.63*** 0.03

LnExp_biofertilizer 0.03*** 0.01

LnExp_manures 0.01 0.01

LnExp_chemical_

fertilizer

0.09*** 0.01

LnExp_human_labour 0.12*** 0.01

LnExp_seeds 0.03*** 0.01

LnExp_irrigation −0.02*** 0.001

Ln Exp animal labour 0.01*** 0.01

LnExp_maintenance_of_

machinery

−0.01 0.01

LnExp_cost_of_hiring_

of_machinery

−0.01 ** 0.0

σ2 0.14*** 0.01

λ 0.53*** 0.04

Number of observations 14,266

Wald chi2(6) 4374.55

Probability>chi2 0.04

Log likelihood = −5209.3166, ***,** indicates significance at 1% and 5% level, respectively.

TABLE 10 Mean of efficiency scores comparison based on the 
expenditures used.

Expenditure 
on chemical 
fertilisers 
(Rs./ha)

Mean 
efficiency 

score

Expenditure 
on 

sustainable 
fertilisers 
(Rs./ha)

Mean 
efficiency 

score

<5,000 0.76 <2,000 0.77*

5,000–10,000 0.70 2,000–5,000 0.77**

>10,000 0.71 >5,000 0.70

*,**, and *** indicates significance at 10, 5, and 1 per cent, respectively.
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requirements in terms of timing, labor, and inputs, which can result 
in inefficiencies if not effectively managed. Efficiently distributing 
resources such as labor, water, and fertilisers among multiple crops can 
pose a challenge. The complexity of the situation can result in less-
than-optimal utilisation of resources, consequently leading to 
inefficiency. Every crop requires distinct farming methods, pest 
control approaches, and harvesting procedures. Simultaneously 
managing these diverse requirements can lead to inefficiencies. 
Cultivating multiple crops can increase vulnerability to pests and 
diseases, as different crops may attract distinct pests or have different 
susceptibilities. Effectively managing these risks is a complex task that 
can result in inefficiencies. Agricultural practitioners require a 
comprehensive range of knowledge to efficiently oversee various types 
of crops. Inadequate proficiency in a specific crop can result in 
ineffective methods and decreased overall efficiency.

Awareness of the Minimum Support Price (MSP) is linked to a 
reduction in technical inefficiency. More precisely, having knowledge 
of the MSP is linked to a reduction of approximately 0.299% in 
technical inefficiency. Farmers who are aware of the Minimum 
Support Price (MSP) are able to secure a fixed price for their 

agricultural products, mitigating the uncertainty linked to volatile 
market prices. This guarantee can result in improved strategic 
planning and allocation of resources, consequently minimising 
inefficiencies. The existence of a guaranteed minimum price for their 
crops may incentivise farmers to allocate more resources towards 
high-quality inputs and farming techniques, thereby improving 
productivity and minimising inefficiencies. Increased awareness of 
MSP is often associated with improved access to market information 
and support services. Farmers are more likely to be well-informed 
about market conditions, which in turn enables them to make more 
efficient decisions. The MSP serves as a safeguard that mitigates the 
financial hazards linked to agriculture. Minimising the potential for 
harm can result in farming operations that are more consistent and 
productive. Moreover, farmers tend to be more knowledgeable about 
other government assistance programs and subsidies, which can 

TABLE 11 Frequency distribution of the efficiency score from the 
production frontier model.

Range of 
technical 
efficiency

Frequency Percent

Less than 0.5 147 1.03

0.5 to 0.8 2,231 15.64

0.8–0.85 9,651 67.65

Above 0.9 2,237 15.68

Total 14,266 100

Mean technical efficiency 0.87

Minimum technical 

efficiency

0.49

Maximum technical 

efficiency

0.94

Standard deviation 0.03

FIGURE 5

A histogram showing the distribution of technical efficiency scores 
across observations.

TABLE 12 Descriptive statistics and exogenous variable descriptions in 
the technical inefficiency effects model.

Variables Description Mean S.D Min Max

Gender 1 if male; 0 

otherwise

1.09 0.28 1 3

Age Age of the 

households in 

years

49.93 12.77 12 80

Highest 

education

Highest level of 

education years

3.30 2.58 1 12

Agricultural 

training

1 if participated 

in training on 

agriculture

1.99 0.11 1 2

Wage and 

salary

Wage and salary 

earnings (Rs)

10,235.73 30,999.89 0 600,000

Earning from 

pension

Earnings from 

pension (Rs)

2,550.75 16,844.06 0 400,000

Social group Social group 

(Dummies)

3.92 2.98 1 9

Size of 

household

Number of 

household 

members

4.92 2.27 1 26

Income 

(leased-out 

land)

Income from 

leased-out land 

(Rs)

351.98 3864.32 0 200,000

Religion Religion 

(Dummies)

1.33 1.09 1 9

Crop insured 

under 

PMFBY

1 if crops insured 

under PMFBY; 0 

otherwise

1.97 0.19 1 3

Area Total area (ha) 3.80 3.24 0 37.05

Number of 

crops 

harvested

Crops harvested 

in number

1.01 0.07 1 3

Awareness of 

MSP

1 if awareness 

about MSP; 0 

otherwise

0.33 0.47 0 1
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further optimise their productivity by offering supplementary 
resources and support.

5 Conclusion

The literature widely recognises the significant roles of sustainable 
inputs in improving productivity, ensuring food security, and reducing 
poverty. Despite these acknowledged benefits and efforts to promote 
awareness and adoption of these innovations in developing countries, 
farmers’ adoption rates are often perceived as generally low. In this 
study, we  used cross-sectional data from the 77th round of the 
National Sample Survey to investigate the factors influencing the 
adoption of multiple sustainable inputs in India. The reference period 
for the data is 2018–19, which is a limitation of this study. Yet, this data 
permitted us to explore the factors influencing the adoption of 
sustainable inputs and their intensity (expenditure) at the farm 
household level. This sequence is not generally covered in adoption 
literature and, hence, is the strength of this study. The sustainable 
inputs we  considered include biofertilisers, biopesticides, and 
organic manure.

Our study results reveal that several factors, including the age of 
the household head, gender, education, household size, and access to 
technical advisory services, influence the adoption of various 
sustainable inputs and the intensity of their use. Specifically, the 
probability of adopting these inputs tends to increase with age and 
farm size. Our findings underscore the interdependence of agricultural 
technologies and innovations, highlighting the need to consider this 
nature when devising strategies for the development and dissemination 

of sustainable inputs in India and other similar developing countries 
with a focus on agriculture. Given the diverse factors influencing 
various combinations of sustainable inputs, policymakers must 
consider farm managerial, socio-economic, and plot-specific factors 
when designing incentives for farmers to adopt multiple sustainable 
inputs. Further, the adoption of sustainable inputs significantly 
increases the harvest value of the crops and, hence, the income of 
farmers. The analysis employing a stochastic frontier production 
function in the context of paddy farmers’ efficiency yielded several 
significant findings. Notably, sustainable fertilisers, chemical 
fertilisers, seeds, human and animal labour demonstrated positive 
coefficients, while irrigation and machinery hiring costs exhibited 
adverse effects. Beyond these findings, the study indicates that 
governments should focus on investing in education and training 
initiatives for farmers and supporting agricultural cooperatives to 
enhance access to resources. In addition, the creation of knowledge 
systems would help to build further information and training channels 
capable of activating new learning processes for these inputs.

Our findings have several important implications for policy 
development. The need to factor in interdependence when devising 
effective strategies for the advancement and dissemination of 
sustainable inputs in paddy cultivation in India is reiterated. Given the 
diverse factors influencing varying combinations of sustainable inputs, 
policymakers should consider numerous farm management, socio-
economic, and plot-specific factors when creating incentives for 
farmers to adopt multiple sustainable inputs. Though the adoption of 
sustainable inputs has a significant positive impact on increasing the 
harvest value for farmers, it is advisable to use them in conjunction 
with chemical inputs to reach higher levels of technical efficiency. 
National policies such as PM-PRANAM and Paramparagat Krishi 
Vikas Yojana can benefit from the findings of this study to improve 
their effectiveness at the grassroots level. Additionally, these findings 
emphasize the importance of sustainable inputs for India to achieve 
SDGs 2, 12, and 13. Although the findings from this research help, 
future research endeavours in this domain should build upon these 
findings to develop targeted interventions and policies that improve 
technical efficiency, productivity, and sustainability in the agricultural 
sector. Future studies should also consider environmental effects and 
risks faced by farmers, which were not covered in this study.
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can be  found at: https://microdata.gov.in/nada43/index.php/
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The participants provided informed consent to participate in 
this study.

TABLE 13 The technical inefficiency effects model.

Variables Coefficient Standard error

Gender 0.01 0.01

Age 0.01 0.01

Highest_education −0.01* 0.01

Wages_salary_earnings −0.05 0.04

Agricultural_training −0.01* 0.01

Earning_from_pension −0.01 0.01

Income_leased_out_

land
0.01 0.01

Household_size 0.01** 0.01

Social_group −0.02*** 0.01

Religion −0.01 0.01

Crop_insured_under_

PMFBY
−0.01 0.01

Area_of_land 0.01*** 0.01

Number_of_crop_

harvested
0.01** 0.01

Awareness_of_MSP −0.01*** 0.01

Crop_insurance_status 0.01 0.01

Constant 0.87*** 0.01
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