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Introduction: In recent years, the increased demand for food has prompted

farmers to increase production to support economic expansion. However, the

excessive use of mineral fertilizers poses a significant threat to the sustainability

of food systems. In Colombia, co�ee cultivation plays a fundamental role in the

economy, thus creating a recognized demand to elevate its production while

minimizing its environmental impact sustainably.

Methodology: The study follows the CRISP-DM methodology (Cross-Industry

Standard Process for DataMining) developing of a fertilizer recommender system

(FRS) for co�ee crops. This process includes business understanding, where the

key factors influencing co�ee production were identified; data understanding

and preparation, where agroclimatic data and expert knowledge were collected

and processed; modeling, which involved building a case-based reasoning

(CBR) system to recommend fertilizer doses and frequencies, and evaluation,

where expert feedback was gathered to assess the system’s performance. The

CBR system integrates soil, crop, and climate variables to provide tailored

recommendations for nitrogen, phosphorus, and potassium applications.

Results: The results revealed that the FRSwas deemed acceptable for application

in the region, with expert evaluations rating the recommendations based on

their experience and knowledge. Additionally, valuable feedback was provided

to facilitate future enhancements to the system.

Discussion: Based on expert feedback and system performance, the proposed

FRS meets the minimum requirements for deployment in real crops, serving as a

valuable tool for small-scale farmers. Future work will expand the case base and

refine recommender algorithms to improve accuracy and usability.

KEYWORDS

crop management, knowledge base farming, environmental sustainability, expert

system, smart farming

1 Introduction

Agricultural production contributes to Colombia’s economic growth and development,
contributing 8.3% to the national gross domestic product (World Bank, 2022). However,
agriculture substantially impacts the environment by producing food, fuel, and fibers to
meet human needs (Boregowda et al., 2022). It is a leading cause of chemical and organic
pollution to surface water and groundwater resources (Drechsel et al., 2023). It contributes
to the release of greenhouse gasses (GHG) emissions (N2O), contributing to climate change
(Rodríguez-Espinosa et al., 2023).
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Colombia’s four major export products are coffee, flowers,
bananas, and sugar. Coffee, in particular, substantially impacts the
country’s economic growth, with 884,000 ha cultivated and 540,000
families relying on coffee production (Vélez-Vallejo, 2022; León-
Burgos et al., 2022). The coffee industry is particularly affected
by climate change, which threatens cultivable land and compels
farmers to seek higher altitudes for optimal growing conditions for
coffee crops (Bilen et al., 2023).

In this respect, coffee producers increasingly prioritize
sustainability, which involves extra costs impacting farm
profitability. Improving fertilizer application is one action
that can contribute to sustainability and the reduction of climate
change. Fertilizer misuse, particularly overapplication, significantly
affects the economy and the environment (Martín Alonso et al.,
2016). According to Lenka et al. (2016) and Sainju (2017), this is
because crops typically utilize only 50–60% of the applied fertilizer,
releasing a residual portion into the environment through natural
processes such as leaching, denitrification, surface runoff, and soil
erosion.

Analyzing agroclimatic and crop data is essential to provide
accurate recommendations on coffee crop fertilizers and other
agricultural inputs. This helps to improve crop efficiency and
maintain environmental responsibility. Unfortunately, many small
Colombian farmers do not have access to technological tools
for data collection due to a lack of knowledge or education
in using them (Chaves, 2016). Therefore, coffee farmers require
better access to data about their crops, as there is a need for
more data throughout the region (Sylvester et al., 2020). In this
context, it is necessary to propose research studies that address
fertilizer recommendations in scenarios with limited data, relying
on scientific literature and expert knowledge (Howland et al., 2015).

This paper proposes a fertilizer recommender system (FRS)
to address the environmental impact of fertilizer application in
coffee crops in Colombia. The FRS was developed using a case-
based reasoning (CBR) approach, a problem-solving methodology
that uses past experiences or “cases” to inform new decisions.
CBR operates by retrieving the most similar previous cases from
a case base, reusing their solutions, revising them if necessary,
and retaining the latest solutions for future use (Kolodner,
1992). In this context, the system integrates expert knowledge
and agroclimatic data collected from local coffee growers and
governmental institutions. The proposed FRS recommends the
amount of nitrogen, phosphorus, and potassium fertilizer to
be applied to a coffee crop, considering the balance between
agricultural production and environmental preservation.

2 Related work

In recent years, the integration of intelligent systems in
agriculture has gained significant momentum, with increasingly
advanced systems combining expert knowledge with data. To
explain these works, three main groups were classified based on
the data sources used to generate recommendations or perform
decision-support systems.

The first category includes works that collect data through
sensors, leveraging real-time data from environmental sensors to

monitor and adjust agricultural practices. The second category
includes systems that rely on historical data, using past agricultural
performance and weather trends to make predictions or provide
recommendations. Finally, the third category encompasses systems
that integrate expert knowledge, using the perspectives of farming
professionals to guide decisions in crop management, fertilization,
and pest control.

In the first category, the primary data collection method is
sensor-based data gathering, where data from both the soil and
the crop plant are collected. These data are subsequently analyzed
and used to generate recommendations. For example, Kumar et al.
(2019) developed a system that utilizes data from the soil, color
sensors, and chemical processes to detect potential nutrient levels
in the soil to provide fertilizer recommendations to small farmers
in India in crops such as wheat, barley, corn, and sugar cane among
others. Other studies, such as Wickramasinghe et al. (2019) and
McFadden et al. (2018), employ machine learning algorithms like
Support Vector Machines (SVM) and Bayesian models to analyze
the data sensors to predict the necessary fertilizer quantities. In
these works, the authors use previous information from the farmer
that they combine with data from sensors that measure soil fertility
to improve the estimation of agricultural production. The systems
are developed and tested in small areas of crops where we can find
corn, peanuts, beans, bananas, tomatoes, and sugarcane, among
others. Among such works, Sujithra et al. (2019) developed a
classification model where the input parameters consist of soil
variables (where NPK, pH, temperature, and humidity stand out)
collected by wireless sensors. The system experiments with J48,
SVM, and k-means decision tree algorithms to select the most
suitable classifier. The results indicated that the J48 algorithm better
classified NPK availability in soil than the others, so it was chosen
to make a more accurate classification. Subsequently, the data they
collected in the field was taken as test data and compared with
the trained data that had already entered the system to suggest
fertilizers for cases with macronutrient deficiency in the soil.

The study by Qin et al. (2018) proposed a content-based RS for
predicting the optimal nitrogen rate for corn crops in the USA. For
this, they captured data from weather stations, sensors, and soil
profile samples, then tested some ML algorithms such as Linear
Regression (LR), Ridge Regression (RR), Most Minor Absolute
Shrinkage and Selection Operator (LASSO), and Gradient Boosting
Regression Trees (GBRT). To evaluate their results, they used R2,
MAE, and RMSE. The ridge regression algorithm presented the best
performance with 70% success in the evaluation. The research by
Islam et al. (2020) enables the determination of nitrogen demand
in plants using a dataset of 6,000 rice leaf images. These images
were classified using a Convolutional Neural Network (CNN) and
a decision tree to determine the necessary amount of nitrogen that
farmers should apply.

The second category comprises studies about FRS based on
the SVM algorithm to analyze historical data from governmental
institutions. Suchithra and Pai (2018) created an FRS that generates
fertilizer type and quantity recommendations in this category.
Their system leverages historical records of soil and crop variables
spanning multiple years. Another study in this category is Jiang
et al. (2020), which used historical data such as applied nitrogen
rates, crop yield, location, rainfall, temperature, pH, soil organic
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carbon, phosphorus, and potassium, from 31 experimental plots of
60 m2 over 5 years located in the central corn producing region
of northwest China, to construct a quadratic model. Puntel et al.
(2019) employed some regression algorithms using data from 54
agroclimatic variables (like pH, organic matter, elevation, depth,
previous crop yield, soil moisture, soil nitrate, precipitation, air
temperature, and among others) which are obtained from historical
databases and meteorological stations in the region, to recommend
to farmers the optimal rate of nitrogen to apply. Vieira Fontoura
et al. (2017) implemented an RS focused only on the nitrogen
nutrient, designed for wheat and barley crops in Parana, Brazil.
The proposed RS is based on content with data from 70 field
experiments carried out between 2007 and 2012. These historical
data correspond to Organic Matter (OM) values, pH, P, K, applied
N rates, and the yield of the crops planted in that period. Thus,
the system tries to obtain the maximum economic efficiency of N
application rates in crops through data correlation analysis.

The second category also included studies where data could
be more present, complete, or partially collected. These studies
often rely on expert information to support their investigations.
Ren and Lu (2012) and Zhang et al. (2011) proposed a DSS
to recommend the most suitable fertilizers for specific crops,
employing historical knowledge databases encompassing data from
soil, crops, fertilization, and previous yields. Hossain and Siddique
(2020) propose to address the problem of intensive input use in
Bangladesh through the Soil Resources Development Institute’s
Online Fertilizer Recommender System (OFRS), which uses a
national database to generate specific fertilizer recommendations.
Cholissodin et al. (2016) developed a knowledge-based RS using
experimental fertilizer data, employing algorithms such as Artificial
Neural Networks (ANN) and Bayesian Improved Particle Swarm
Optimization (BIPSO) to determine the required fertilizer dosage.
Finally, a knowledge-based RS was also identified that utilizes
fuzzy logic to recommend NPK fertilizer dosages, as presented by
Sumaryanti et al. (2019).

The third category included studies that provide precise
recommendations tailored to the specific needs of farmers and
crops using expert knowledge represented as ontologies and
agricultural data from sensors and image analysis. The drawback
of works in this category, like Acuña (2019) and Chougule et al.
(2019), which developed an RS that was fed with historical data
and expert information from government databases, which was
converted and stored in ontologies, subsequently the data were
analyzed and studied with two machine learning algorithms: which
were the grouping of k -means (k -means clustering) and random
forest. The data that made up the knowledge base was a history
of the last three years of the NPK content in the soil, the types of
crops that grew in that soil, the climatic conditions, and what the
production of those crops was like. Finally, with this history, the RS
recommends to farmers based on the region, NPK content in the
soil, and crop type, stating that the system’s performance is highly
accurate and that they expect it to achieve the goal of improving
agricultural production in that country area.

While significant progress has been made in integrating
sensor data, historical data, and expert knowledge for agricultural
recommendations, several challenges remain. This study was
conducted in the Cauca Department, a southwestern Colombia

region, characterized by its diverse altitudes and predominantly
Coffea arabica cultivation. The region’s latitude influences the
number of seasons, and coffee is often grown under shade trees
rather than in full sun. One of the primary challenges in Cauca is
the need for more data, as many farmers need access to advanced
technological tools, which limits the integration of sensor and
historical data. Future research should focus on developing scalable
and adaptable systems that can leverage global data sets and expert
knowledge to provide universally applicable recommendations,
especially in technologically constrained regions.

3 Materials and methods

3.1 Phase 0: methods

Before developing the FRS, we conducted a Systematic
Literature Review (SLR) following Kitchenham guidelines
Kitchenham and Charters (2007) to identify relevant works in
the field, as explained in the previous section. The objective was
to identify agricultural smart systems and the most common and
significant agroclimatic variables considered in these systems.

The SLR process began with an initial search in Scopus and
Web of Science databases, focusing on Recommender Systems (RS),
Prediction Systems, Decision Support Systems (DSS), and Expert
Systems within the agricultural domain. After applying exclusion
criteria to omit non-relevant works such as secondary sources, non-
English publications, and non-agricultural studies, we identified
102 articles that met our inclusion criteria. These articles were
further analyzed based on their geographic focus, with notable
contributions from countries such as India (36), Indonesia (10),
China (8), and the US (7).

In addition, we analyzed the agroclimatic variables used in these
systems. The variables were categorized, and a bar chart (Figure 1)
was generated to illustrate the frequency of these variables in
the reviewed studies. The most frequently used variables were
temperature (36 articles), pH levels (28 articles), disease incidence
(26 articles), and soil moisture (16 articles). Other significant
variables included soil NPK content (12 articles), crop yield (11
articles), crop type (11 articles), and pests (10 articles).

This analysis is visualized in Figure 2, which shows the
distribution of the most used agroclimatic variables in smart
systems within agriculture. The frequency of these variables
highlights the diversity of factors that must be considered in
agricultural decision-making systems, emphasizing the complexity
of integrating environmental and crop-specific data.

The results of this SLR provided insights into the state of the art
in smart agriculture systems and established a basis for the design of
the system proposed in this work. This review also highlighted the
importance of incorporating expert knowledge and agroclimatic
data to improve the accuracy and relevance of recommendations.

Following this review, we adopted the CRISP-DM (Cross-
Industry Standard Process for Data Mining) methodology to
develop the FRS. The CRISP-DM phases that guided our
development include business understanding, data understanding,
modeling, and evaluation. The system was created in the Cauca
Department, located in southwestern Colombia (with approximate

Frontiers in Sustainable FoodSystems 03 frontiersin.org

https://doi.org/10.3389/fsufs.2024.1445795
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


León Chilito et al. 10.3389/fsufs.2024.1445795

FIGURE 1

Input variables in the works.

coordinates of 2◦30’ N latitude and 76◦30’ W longitude). Cauca is
characterized by a diverse range of altitudes (from 1,000 to 2,800
m above sea level), which influences its climate and, consequently,
its agricultural practices. Coffee cultivation in Cauca primarily
involves coffea arabica grown under shaded trees, although some
coffee is grown in full sun. The region’s latitude leads to distinct
rainy and dry seasons, directly affecting fertilization practices. The
phases of the CRISP-DM methodology applied in this work are
detailed in the following sections.

3.2 Phase 1: study area

Initially, a business understanding was conducted to identify
the critical factors in the development and growth of a crop.
Like any other plant species, coffee cultivation requires essential
elements for its development. Three of these elements, known
as organic constituents, are freely available in the environment:
carbon, hydrogen, and oxygen. According to Sadeghian (2008) they
are obtained from water and the atmosphere, representing 95% of
the plant’s weight. The remaining 5% is found in the soil and is
known as minerals, which are classified as macronutrients such as
nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur,
as well as micronutrients like iron, manganese, copper, boron,
chlorine, molybdenum, and nickel.

It is essential to mention that macronutrients are required
in larger quantities and are further categorized into primary
macronutrients (N, P, and K) and secondary macronutrients (S,

Ca, and Mg). However, while N, P, and K are applied annually
as fertilizers, Ca and Mg are considered soil amendments. These
amendments are typically used in a single dose, usually before
planting, to correct soil pH. As Sadeghian Khalajabadi (2017)
explained, although primary macronutrients are applied more
frequently, the doses of Ca and Mg are calculated to have a long-
term effect. Additionally, due to changes and climatic phenomena
that occur over time, various natural processes can lead to the loss
of these nutrients in the soil.

• Leaching: According to Sadeghian Khalajabadi et al. (2015),
leaching is the displacement of nutrients and subtances below
the crop’s root zone toward water bodies due to excessive
moisture in the soil.

• According to Valdivielso (2020), surface runoff is precipitation
that flows over the soil surface under the influence of gravity
without infiltrating into the soil.

• Erosion: the wearing away of the Earth’s surface due to various
natural events such as rainfall, sunlight, and natural disasters,
as well as causes generated by human improper use of soil
resources.

• Denitrification: due to the presence of a large number of
microorganisms that use nitrite and nitrate instead of oxygen,
the production of gaseous forms of nitrogen occurs, including
nitrous oxide, which is one of the leading air pollutants, by
Sadeghian Khalajabadi et al. (2015).

The fertilization process addresses the nutrient deficiency
in the soil, which provides the necessary supplements for the
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FIGURE 2

Schedule of co�ee cultivation in Cauca (illustrated with experts).

plant to be productive and prevent nutrient losses. The fertilizer
dose is typically calculated based on the crop’s specific nutrient
requirements, considering factors such as soil nutrient content,
plant nutrient uptake, and expected yield. Soil testing is often used
to determine the current levels of critical nutrients like N, P, and
K, and recommendations are made to apply enough fertilizer to
meet the plant’s needs without over-fertilizing. Pozas (2008) states
that one crucial factor to consider in this process is the stage of the
crop. There are two stages in coffee crops: vegetative (juvenile) and
production (adult). This study is centered around the production
stage of coffee, which starts with the first crop harvest. It’s worth
noting that the timing and frequency of fertilizer application are
just as important as the quantity applied. Hence, this initial phase
also identifies the most appropriate periods for fertilizing a coffee
crop during its production stage.

It is essential to recognize that crop fertilization needs to be
timed correctly. It is crucial to determine the time from flowering to
harvest for coffee crops. Figure 2 illustrates a coffee-growing period,
known as a “coffee year.” This figure shows two flowering periods
and two harvest periods throughout the year.

In the Cauca department, the coffee year typically starts in
July and ends in June of the following year. The flowering of the
coffee crop usually occurs between September and November, with
8 months until the harvest or production of the crop. Thus, it is
essential to fertilize the coffee during this period. However, coffee
also has a second flowering, which results in a smaller harvest
known locally as “Mitaca.” The Mitaca typically represents 40–
50% of the main harvest. Consequently, there are two periods of
fertilization in coffee throughout the year to account for the main
harvest and the Mitaca.

3.3 Phase 2: determination of variables

A study was conducted to collect data on the agroclimatic
factors that affect crop fertilization or are considered significant
from the domain perspective. The goal was to determine
which variables would be addressed in the system. Afterward,
these variables were gathered using a wireless sensor network,
information provided by coffee farmers, and a service for extracting
historical meteorological data from weather stations.

TABLE 1 Agroclimatic variables studied.

Variable type Variable Unit of measurement

Crop Planting density No. of plants per hectare (plan/ha)

Crop Shade coverage Percentage (%)

Crop Flowering date Date

Climate Rainfall millimeters of rain

Soil N level mg/kg

Soil P level mg/kg

Soil K level mg/kg

Soil Moisture Percentage (%)

Soil pH pH level

Determination of variables: This work involved collaborating
with various agricultural experts affiliated with ECOTECMA SAS.
Then, a knowledge base was constructed with their guidance. This
involved a systematic compilation process encompassing reviewing
reports, books, summaries, yearbooks, and bulletins sourced from
CENICAFÉ. This knowledge base was constructed to determine the
relevant soil, climate, and coffee crop variables deemed crucial for
comprehensive study and analysis. Table 1 shows these variables.

Table 1 displays the fundamental variables for studying coffee
crops. These variables are defined as follows:

• Planting density: This factor depends on the type of coffee
planted by the coffee farmer, with the most common being
Robusta coffee. A low planting density is considered when
values are below 5,000 trees per hectare, and a medium
or average density falls between 5,000 and 6,000 trees
(approximate values for Robusta coffee), and a high density
is considered when the number of trees per hectare exceeds
6,000, Arcila et al. (2007) noted.

• Shade coverage: This variable refers to the shade the coffee
crop receives per hectare. It is measured in percentage, and
low values are considered when below 30%, medium values
range from 30 to 60%, and high values are above 60%. It
is important to note that for proper development in coffee

Frontiers in Sustainable FoodSystems 05 frontiersin.org

https://doi.org/10.3389/fsufs.2024.1445795
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


León Chilito et al. 10.3389/fsufs.2024.1445795

crops, water availability, and sunlight exposure must be
controlled to develop coffee crops properly. Effective shade
management in the crop contributes to maintaining soil
fertility, nutrient recycling, and erosion reduction (essential
during dry seasons), supported by the findings of Farfán and
Mestre (2004).

• The flowering date refers to the date when the crop flowers.
Knowing this date is essential because, according to Sadeghian
(2008), the fertilization process should be initiated on this day.

• Rainfall precipitation measures the accumulated rainfall in a
specific region during a day. By studying these accumulations
over a certain period, the state of the climatic season
can be identified. Therefore, based on the collected expert
information, it was determined to establish an analysis of
historical meteorological data to classify the climatic season in
a specific period (dry, normal, or rainy), as mentioned in Gast
et al. (2013).

• Soil nitrogen: Nitrogen levels in coffee crops can range
between 0 and 225 mg/kg. The appropriate nitrogen range
is between 51 mg/kg for optimal crop development and 87
mg/kg. If nitrogen levels fall below 51 mg/kg, it leads to
a nutritional deficiency. This shortage can adversely affect
chlorophyll, essential for photosynthesis, thereby hindering
the healthy growth of the plant. On the other hand, nitrogen
levels exceeding 87 mg/kg suggest an overabundance or
misuse of this nutrient. This represents waste from an
economic standpoint for the farmer and carries the risk of
causing environmental pollution. This information and the
next were taken from Sadeghian Khalajabadi (2017).

• Soil phosphorus: The possible range of values in the soil is
between 0 and 80 mg/kg, with suitable values for coffee crops
falling between 10 and 20 mg/kg. If the values are below 10
mg/kg, the plant may exhibit uneven yellowing in older leaves,
accompanied by reddish spots, and in severe cases, defoliation.
If the value exceeds 20 mg/kg, it is considered a high soil
phosphorus value, which can lead to the blocking of boron
absorption in plants.

• Soil potassium: Its values range from 0 to 546 mg/kg. The
appropriate values for coffee crops are between 78 and 156
mg/kg. A potassium value below 78 mg/kg reduces fruit size
and leaf defoliation. If the potassium value exceeds 156 mg/kg,
block in the absorption of micronutrients in plants.

• pH: Sadeghian Khalajabadi (2016) observes that it is measured
on a scale of 0–14. The appropriate pH value for coffee crops
should be between 5.5 and 6.5. If the soil pH is below 5, it is
considered acidic soil, which affects the growth of plant roots
and hinders the proper absorption of nutrients. It should be
noted that acidic soils also block the absorption of potassium
and nitrogen while promoting the absorption of manganese at
levels that can be toxic to crops. If the pH is above 6.5, it leads
to a blockage in the absorption of phosphorus, iron, zinc, and
copper, resulting in a lower availability of these nutrients.

After the variables to be included in the development of this
work were determined, the system architecture was designed, as
shown in Figure 3. The collection and processing of data in the
CBR system was done from three primary data sources that are
integrated to generate the system recommendations:

IoT sensors in the field: A sensor network was deployed on
a small farm in Piendamó, Cauca, to collect real-time critical soil
data. The sensors include the 7-in-1 NPK, humidity, temperature,
salinity, and electrical conductivity (EC). This sensor, with an NPK
measurement range of 0 to 1,999 mg/kg and an accuracy of ±2%,
was essential for measuring nutrient levels in the soil. The sensor
sends its data to a collector via RS485, a communication protocol
that ensures data transmission. The collector, in turn, transmits the
data to a LORA gateway that uses RF communication at frequencies
of 915–960MHz with a range of up to 2 km. Finally, the data is sent
via GPRS/GSM to a central server where it is stored and processed.

Features of the IoT devices used include:

• 7-in-1 NPK sensor: measures nitrogen, phosphorus,
potassium, humidity, temperature and electrical conductivity
with high accuracy and a resolution of 1 mg/kg for NPK.

• Collector: responsible for collecting and transmitting the data
from the sensors, using the MODBUS-RTU protocol and
LORA modulation with a range of up to 2 km.

• LORA gateway: device that connects the sensor data to the
central server using network technologies such as GPRS and
GSM.

Historical data comes from weather stations and public
databases that record precipitation, temperature, and other
agroclimatic conditions over time. This data is captured and sent to
a processing server via HTTP. The server stores historical and real-
time sensor data; for later use in the CBR. Besides automatically
collecting data, the system feeds specialist information. This
knowledge base contains rules and recommendations drawn
from previous research and consultations with field professionals,
which enriches the recommendations generated. Expert knowledge
is integrated into the CBR system, which allows fertilization
recommendations to be adjusted based on the specific farm context
and soil conditions.

The system architecture therefore, combines three data sources:
real-time sensors, historical databases, and expert knowledge. The
central server processes all this data, allowing the CBR system to
create new cases and make recommendations for crop fertilization.
This integration of multiple sources of information makes it
possible to improve the accuracy of recommendations and adapt
them to the specific needs of each agricultural situation.

3.4 Phase 3: system construction

In this phase, an exploratory analysis of the variables
determined in the previous section was conducted, identifying the
numerical and categorical variables. Subsequently, the structure of
each case in the CBR system was established, defining the data that
constitute the problem and the solution for each case.

Case structure:

• Problem: This represents the part of the case that describes
the situation that needs to be resolved or for which a solution
needs to be found. It is represented by data or information
that describes the need or problem. For the proposed CBR
system, the problem consists of the variables determined in
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FIGURE 3

System architecture.

the previous section, except for the flowering date and rainfall
precipitation, which are used to classify the climatic season
that occurred 4 months before the flowering date.

• Solution: The solution was constructed using the system’s
output data, which corresponds to the fertilizer quantity rates
that the system will recommend to the coffee farmer based
on the data comprising the case problem. Three recommend
fertilizer rates are provided due to the three most essential
macronutrients identified in the first phase of CRISP-DM (N,
P, and K).

3.4.1 Classification of climatic season
It is necessary to organize the climate seasons from 2006 to

the established date to classify the climatic season based on the
date of the last crop flowering. These seasons were identified based
on historical records of dry or rainy periods each year obtained
from the National Weather Service (2023). Using the classification
provided by the NWS, eight years were identified as usual, five years
as rainy, and three years as dry from 2006 to 2021.

With these historical classifications, historical data was
analyzed to define a new classification of the climatic season for
the year in which the last flowering date in the crop occurred. The
mentioned classification was based on information suggested by
experts. It involved obtaining the accumulated precipitation (PP)
for the last 4 months before the flowering date and the historical
accumulated PP for those same months in the years classified as
standard within the 2006–2021 period. The obtained values are

compared, and the season is categorized based on the comparison
results. Suppose the accumulated PP in the year of the flowering
date exceeds the historical average PP by more than 35%. In that
case, the climatic season at that flowering date is classified as rainy.
Conversely, the season is dry if the comparison shows that the
accumulated PP is lower by 25% than the historical average. The
season is classified as usual if these conditions still need to be met.

Therefore, by classifying a climatic season at the beginning
of the fertilization period in the crop, the system can define the
frequency of fertilizer application it recommends. According to
expert information, applying fertilizer three times per period (at
2, 4, and 6 months after the flowering date) is appropriate if the
season is classified as usual or rainy. On the other hand, if the season
is classified as dry, applying fertilizer twice per period (at 3 and 6
months after the flowering date) is recommended.

3.4.2 Case base
The case base is the core of any CBR system, as it directly

depends on the existence of a case base to perform all the steps in
a CBR cycle, as Sànchez-Marrè (2001) mentioned. A case can be
constructed by human experts or past experiences of the system.
Cases can be represented in various ways, such as rules, logical
formulas, frames, and database records (Shang, 2005). In this work,
the case base was constructed, considering the knowledge base
explained in the data collection process and determining variables
for the system. Subsequently, experts validated this case base.
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Different possible combinations of problem data were
considered, and the most suitable solutions were determined based
on expert knowledge. In each case, the variables of climatic season,
humidity, pH, and NPK in the soil represent the problem of a case,
and the fertilizer rate data represent the solution. For example, in
a case where there is a rainy season, normal pH, low NPK, and
high humidity, it may indicate unfavorable soil conditions for the
crop, which would require a high NPK fertilizer rate. In this way,
300 problems are constructed, representing different situations
that can occur in a coffee crop, and expert solutions are assigned to
each of these problems, resulting in a case base of 300 cases.

3.5 Phase 4: modeling

In this phase, the model of the developed CBR system was
implemented using Python. The CBR system follows the classic
retrieval, reuse, revision, and retention steps described by Kolodner
(1992), also known as the 4 R’s of CBR. The first two steps in our
implementation–retrieving the most similar cases and determining
a new solution—were the focus. The data manipulation and case
creation were done using Python libraries such as Pandas and
Numpy, which facilitated the processing of historical climatic data
and expert knowledge. These tools were used to build the case
base for the system. The code was developed and tested in Python
Notebooks, using the Google Colab platform to effectively run and
visualize the results. This environment allowed for interactive data
analysis and collab development, making refining the CBR model
based on the input data easier.

• Retrieval: Given a new problem, the CBR system uses an
algorithm to retrieve the cases that are most similar to it.
Miller (2019) used the K-Nearest Neighbors (KNN) algorithm,
which can be used for classification or regression tasks.
This algorithm uses a factor k, which indicates the number
of nearest neighbors (similar cases) to consider making a
prediction.

A comparison was made between each case data point
using a similarity measure to find the most similar cases
(nearest neighbors) given a new input. According to Gabel
(2010), the choice of similarity measures in a CBR system
depend on the composition of the problem variables. The
Hamming distance or the Simple Matching Coefficient (SMC)
is commonly used if the values are discrete. The cosine
similarity measure is used if the data is symbolic or character
strings. Similarly, the Manhattan, Euclidean, andMahalanobis
distances are used for real-valued numeric data. In this work,
the Euclidean distance was chosen due to the numerical nature
of the problem data and the advantage of feature weighting
that this similarity measure possesses.

Next, by calculating the distance between each data point
of the two cases, similarities are obtained for each problem
variable. It means that two problems can be similar from the
perspective of a particular variable but entirely different when
viewed from another variable. Therefore, assigning a weight
to each variable was considered to strengthen the similarity
in some variables rather than others. It is done based on the

impact variables have on the crop, as not all variables affect it
in the same proportion. For example, two problems that only
differ in the shade of the crop cannot have the same similarity
as two problems that only differ in the climatic season. In other
words, the season has a more significant impact in considering
those two problems differently. In summary of this step in
CBR, a new entry is entered into the system, and the k most
similar cases are obtained based on the Euclidean distance
calculated between the incoming problem and each case stored
in the case base.

• Reuse: With the identification of the k most similar cases, the
solutions of those cases were reviewed to determine or adapt
a new solution for the new problem. In CBR, Gabel (2010)
observes different methods to find a new solution based on
rules, conditions, formulas, expert guidance, and constraints.
Additionally, one of the methods to determine a new solution
is the regression technique, which was used to predict the
fertilizer rates for the three studied macronutrients. Therefore,
the average fertilizer rates from the most similar cases found
were used to determine the fertilizer rates for the new problem.

• Recommendations: As explained earlier, the first three
variables of a case’s solution indicate the rates (low, medium,
high, or very high) of NPK fertilizer to apply based on
the general soil condition. After obtaining the predictions,
these rates are converted into fertilizer amounts expressed in
kilograms per hectare (kg/ha) per year. The recommended
fertilizer rates were obtained through consultations with
experts and studies from Cenicafé according to Sadeghian
(2008) and FNC (2013). These studies determined the
maximum amounts of N, P, and K fertilizer required for a
coffee crop in Colombia, based on a case with high density and
low shade.

This study determined the fertilizer quantities for various
soil conditions that can occur in a case. Additionally, these
fertilizer quantities are scaled according to the crop planting
density. Recommending a medium rate, for example, in a
density of 3,000 plants per hectare, is different from making
the same recommendation in a density of 7,000 plants per
hectare. Therefore, it is essential to define three high rates for
low, medium, and high planting densities and three medium
rates for low, medium, and high densities in a periodical way.
Table 2 presents the determined quantities for each studied
nutrient, which domain experts validated.

3.6 Phase 5: evaluation

For this phase, the evaluation of the RS depends directly
on the perspective of the application domain, in this case,
agriculture; therefore, it is imperative to validate the findings in
consultation with experts in the domain. This validation process
would help alleviate the uncertainty of the developed model for
future applications. Six case studies (randomly chosen from the
case base) were addressed, covering information related to crops,
soils, and climatic conditions. Table 3 shows the information for
each case and the respective recommendation provided by the
system, considering the units of measurement of each variable.
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TABLE 2 Amount of fertilizer to recommend according to the crop’s soil

condition and planting density.

Nutrient Fertilizer
rate

Fertilizer quantity
(kg/ha per year)

High
density

Medium
density

Low
density

Nitrogen Low 150 180 210

Medium 180 210 240

High 210 240 270

Very high 240 270 300

Phosphorus Low 30 36 42

Medium 36 42 48

High 42 48 54

Very high 48 54 60

Potassium Low 135 165 195

Medium 165 195 225

High 195 225 255

Very high 225 255 295

These six cases were obtained from data collected by sensors on
several farms in the Department of Cauca and information shared
by Ecotecma experts in their investigations. In developing our RS,
we have reached a level of technological maturity 3, indicating
that our project has passed the theoretical phase and created
a functional prototype, according to National Aeronautics and
Space Administration (2017). This prototype has been designed
to demonstrate the viability of the underlying RS concept; using
the data and scenarios provided in the case above. While this
prototype is functional, it is essential to note that it is designed for
proof of concept and initial experimentation, rather than for large-
scale implementation or commercial use. Future work will focus
on advancing this prototype to higher TRL levels and improving
the CBR KB, aiming to create a scalable recommender system that
can be effectively adapted to various agricultural conditions and
requirements.

The system evaluation involved the collaboration of six domain
experts whose credentials and specific areas of experience provide
significant validity to their assessments. These include:

• Expert 1: A Biologist with a Ph.D. in Environmental Sciences
and postdoctoral experience in soil management in coffee
agroecosystems. Over 7 years of experience in science,
technology, and innovation in Colombia’s agricultural sector
and natural resource conservation.

• Expert 2: Agricultural Engineer, Master in Agroecology, PhD
in Environment and Society, professor at the University of
Cauca, and coordinator of the Agroecology and Territory
component of the Center for Innovation and Social
Appropriation of Coffee Growing.

• Expert 3: Agricultural Engineer. Agronomist at a coffee
development company in the region.

• Expert 4: Agronomist Engineer. Agronomic Advisor and
Researcher for the Cauca Soils Project at the Government of
Cauca.

• Expert 5: Environmental engineer. Coordinator in
environmental management activities in Cauca. Doctoral
student in Telematics Engineering in the research field of
agriculture.

• Expert 6: Business administrator and farmer.

The RS was evaluated using a structured survey. The process
consisted of open recommendations for the first three cases and
multiple-choice evaluations for the final three cases.

In the first part of the survey, experts were provided with
information on three cases detailing crop, soil, and climate
conditions. Based on their expert knowledge, they were asked to
recommend the amounts of N, P, and K fertilizers to be applied per
hectare per year. The system’s recommendations were compared
with these open responses, and subsequently, for the following
three cases, the experts rated the system’s suggestions using a
modified Likert Scale (LS) (1 = Inadequate, 2 = Unsatisfactory, 3
= Acceptable, 4 = Effective, and 5 = Optimal).

Table 4 shows the recommendations given by the experts for the
first three cases. As well as the recommendations generated by the
RS. Likewise, Table 5 shows the expert’s ratings for the following
three cases, where each one made a general rating for the three
recommendations (N, P and K) generated by the RS, based on the
given options.

To analyze the similarity between the CBR system’s
recommendations and those provided by the experts, the
Pearson correlation coefficient (PCC) was calculated for each case
and nutrient. This coefficient measures the strength of the linear
relationship between the two variables, in this case, the fertilization
recommendations by the experts and those generated by the
system. The coefficient results are shown at the end of Table 4,
where the variability between the values is observed.

N shows a moderate correlation in the three cases, with values
ranging between 0.578 and 0.665. A high correlation was observed
for P in Case 1 (0.894). Still, in Case 2 the correlation was negative
(−0.178), indicating significant discrepancies between the system’s
recommendations and those of the experts in that context. Finally,
very high correlations were found for K, with values close to 1 in all
three cases, suggesting a solid alignment.

To analyze the consistency and reliability of the expert’s
assessments, we calculated the Intraclass Correlation Coefficient
(ICCa) using Python and the Pingouin library. The ICCa assesses
agreement by analyzing the variance between the rater’s ratings
relative to the total variance. An ICCa value close to 1 indicates
high consistency or agreement between raters, while a value close
to 0 or negative reflects a lack of significant agreement. This metric
is beneficial when assessing the reliability of assessments provided
by different people using a similar scale.

For the first three cases, three coefficients were calculated based
on the three recommendations given by each expert for each case.
The results, divided by nutrient (N, P, and K), are presented below:

• ICCa for N: The ICCa for the expert’s N recommendations
was 0.266, indicating low agreement between experts. This
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TABLE 3 System recommendations based on case information.

Variable Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Planting density (No. of plants per ha) 5,500 4,500 5,700 5,800 6,700 7,800

Shade coverage (%) 30 30 38 20 50 30

Climatic season Rainy Dry Rainy Rainy Normal Dry

Moisture soil (%) 50 30 75 60 35 15

N level soil (mg/kg) 40 60 45 60 95 55

P level soil (mg/kg) 12 6 8 42 80 60

K level soil (mg/kg) 196 100 125 216 160 93

pH soil 5.2 4.5 5 6.1 5.1 6.9

N fertilizer recommendation (kg per ha per year) 214.29 188.57 235.51 222.86 227.14 270

P fertilizer recommendation (kg per ha per year) 47.14 42 50.57 41.14 44.57 54

K fertilizer recommendation (kg per ha per year) 203.57 173.57 225 177.86 220.71 242.15

TABLE 4 Expert recommendations for cases 1, 2, and 3.

Subject Case 1 Case 2 Case 3

Recommendations per hectare per year

N P K N P K N P K

Expert 1 275.75 47.5 - 246 42.5 - 246 42.5 -

Expert 2 285 38 171 221 51 221 238 51 221

Expert 3 250 45 230 245 443 225 260 51 240

Expert 4 289.5 15.05 180 275 25.07 224.1 298.5 25.07 211.65

Expert 5 280 99 297 229 81 243 171 102 307

Expert 6 266 38 171 221 51 221 238 51 221

CBR system 231.42 44 177.86 217.14 44.57 202.14 244.28 51.42 216.43

PCC 0.578 0.894 0.987 0.665 -0.178 0.939 0.612 0.431 0.883

TABLE 5 Expert assessment for cases 4, 5, and 6.

Subject
Case 4 Case 5 Case 6

LS Value LS Value LS Value

Expert 1 Acceptable 3 Unsatisfactory 2 Unsatisfactory 2

Expert 2 Acceptable 3 Acceptable 3 Acceptable 3

Expert 3 Inadequate 1 Inadequate 1 Unsatisfactory 2

Expert 4 Acceptable 3 Effective 4 Effective 4

Expert 5 Unsatisfactory 2 Inadequate 1 Unsatisfactory 2

Expert 6 Effective 4 Effective 4 Effective 4

suggests a significant discrepancy in how each expert assessed
the nitrogen recommendations.

• ICCa for P: The ICCa for P was very low (−0.003),
indicating no consistent agreement between experts. This
lack of agreement highlights the challenges in determining
phosphorus levels, which are often more context-specific and
sensitive to local soil chemistry.

• ICCa for K: The ICCa for potassiumwas also negative (−0.17),
again indicating poor agreement. This could be due to expert’s

different approaches to addressing potassium levels under
various conditions.

• The average ICCa for the three nutrients combined was
also low, reflecting the overall discrepancy in expert
opinions. These findings indicate that while experts provided
valuable information, their recommendations often needed
to be more consistent, likely due to the high variability
and complexity of coffee fertilization practices. These
discrepancies underline the need to incorporate more local
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environmental data into the FRS to better align with
expert knowledge.

Furthermore, for the final three cases, we calculated the ICCa
for these categorical ratings, indicating poor agreement between
experts (−0.03). The lack of consensus may indicate the subjective
nature of these assessments, where factors such as individual
experience, specific field conditions, and interpretation of the data
provided may generate such discrepancy in the formation of expert
opinions. The Notebooks used for the calculation of the ICCa,
as well as the surveys and the expert’s responses, are included
in the supplementary data attached to this work, allowing the
reproduction and verification of the results obtained.

Finally, by averaging the PCC values between the system’s
recommendations and those provided by the experts for the
first three cases (1, 2, and 3), an average value of 0.646 was
obtained. This result indicates a moderate agreement between
the system’s recommendations and the experts. On the other
hand, for Cases 4, 5, and 6, in which the experts evaluated the
system’s recommendations using a Likert scale, the average of the
ratings was 2.66, which falls between the Regular and Acceptable
categories, with a slight inclination toward the Acceptable
category. This result suggests that, although the system provides
recommendations that are mostly seen as adequate, there are
still areas for improvement. The PCC analysis and the use of
LS reinforce the idea that the CBR system has good potential
for fertilizer recommendation in coffee crops but still requires
adjustments and greater incorporation of local contextual data
to achieve greater alignment with the recommendations. These
results provide a solid foundation for continued development and
refinement of the system to improve its accuracy and applicability
in coffee agriculture.

4 Discussion

The evaluation of the CBR system revealed essential insights
into its performance in providing fertilization recommendations
for coffee crops. Despite the system showing moderate to
high correlation for some nutrients—particularly potassium—
discrepancies between the system’s outputs and expert
recommendations highlight areas where improvement is needed.
For instance, nitrogen and phosphorus showed variability across
different cases, with a negative correlation for phosphorus in one
of the evaluated cases. These findings suggest that the promising
system still requires refinement to better capture the nuances of
fertilization practices, particularly in regions like Cauca, where
environmental factors and soil characteristics vary significantly.

The ICCa further highlighted the inconsistencies among
expert evaluations, particularly for nitrogen and phosphorus.
Low agreement among experts, as reflected by negative or
near-zero ICCa values, suggests that the complexity of coffee
fertilization may lead to divergent opinions depending on
individual experience and local knowledge. This is consistent
with previous studies showing similar challenges in developing
uniform fertilizer recommendations across diverse agricultural
contexts. For instance, Kumar et al. (2019) and Suchithra and Pai
(2018) emphasize integrating local environmental data, such as

soil pH, organic matter content, and crop-specific conditions, into
intelligent systems to improve recommendation accuracy.

These results reinforce the need for further development of
the CBR system. Incorporating additional variables such as organic
matter, crop age, the nutrients exported by the future harvest,
and more detailed local soil and climate data could improve
the alignment between the system’s recommendations and expert
opinions. Similar improvements have been suggested in works like
Wickramasinghe et al. (2019), where sensor-based data collection
has been shown to enhance the precision of FRS.

Considering these findings, future iterations of the
system should focus on increasing its adaptability to different
environmental conditions. This could involve integrating real-time
sensor data and expanding the knowledge base with region-specific
agricultural data, similar to the approaches seen in McFadden et al.
(2018) and Ren and Lu (2012). By doing so, the system can move
toward providing more contextually relevant recommendations
that better align with expert knowledge while maintaining
flexibility across various regions and agricultural practices.

5 Conclusions

Recommender systems have provided multiple insights into
various crops, allowing farmers to improve production, mitigate
risks such as diseases and pests, improve decision-making
in various agricultural practices, and even reduce associated
environmental impacts. However, their implementation in real-
world environments must be enhanced by technological limitations
in capturing the data necessary for these systems to function
effectively, especially in the Colombian region. In this sense, this
research proposed an RS that, unlike existing works, is based
on expert knowledge obtained through interviews with domain
experts and scientific research from Colombian private institutions
related to coffee cultivation. The approach’s recommendations
are based solely on current crop status and climatic conditions;
rather than historical soil information or crop production
records. Consequently, the implemented system successfully
addressed the problem of the scarcity of data needed to generate
recommendations. It was demonstrated through evaluation that the
results obtained were close to the expert’s suggestions, but there
were many corrections regarding more information to be analyzed.
To increase the case base and the agroclimatic variables studied.
Considering that the tests carried out reached the laboratory level,
it is an initial prototype that can receive many improvements in the
future.

Regarding implementing the system, it was determined that
leveraging expert knowledge in agriculture is essential for crops
with limited data availability, especially when it is challenging
to access historical data on crucial parameters such as climate,
crop management, and soil. The CBR, which has proven effective
in other application domains, demonstrated in this study that
its application in agriculture, together with the participation
and collaboration of experts, can contribute to supporting the
sustainability of small farmers.

Furthermore, the knowledge base built can be important for
future research in coffee cultivation, as it establishes a mechanism
to automatically identify relevant variables in coffee cultivation by
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analyzing the importance and meaning of soil, crop, and climate
variables. This allows us to determine which variables are more
appropriate or have greater weight than others.

6 Future works

Considering the research opportunities that arise with the
development of this research project, the following future work is
proposed.

The current FRS provides suggestions solely for the quantity
and frequency of fertilizer application. However, an essential
aspect of fertilization management that remains to be explored
is the type of fertilizer. Future work could focus on refining the
recommendations by considering the types of fertilizers available
in the market, which vary in cost and nutrient composition. In
this sense, a key enhancement would be the ability of the system
to recommend specific fertilizer formulations based on the crop’s
nutrient requirements at different growth stages. For example,
based on the results of this study, the IoT system could recommend
an initial application of a complete NPK fertilizer that covers
the phosphorus requirement at flowering, followed by a second
application of urea + KCl to meet the nitrogen and potassium needs
during the fruit growth and filling stages.

In addition, developing a dashboard interface for farmers
and domain experts to provide more detailed information
beyond fertilizer quantities is proposed as a next step. This
interface could offer early alerts related to fertilization, including
analysis of seasonal changes and their impact on nutrient
absorption and loss. It could also integrate soil condition
monitoring, helping farmers optimize fertilizer application timing
and effectiveness.

Although this study demonstrated that the system’s
recommendations were in line with those provided by experts,
more research is needed to assess the long-term impact of these
recommendations on coffee production. Future evaluations should
be conducted over multiple years, tracking fertilization events,
coffee yield, and quality. To that end, the recommender system
could be complemented with automated data collection modules
that monitor fertilization events and production outcomes,
allowing feedback to be incorporated into the CBR system and
improving its accuracy over time.

Finally, it is essential to mention that while this system
was developed for coffee cultivation, the architecture and
approach can be adapted for other crops. This system could
be extended by modifying the case base to consider crop-
specific characteristics to optimize fertilization practices for various
agricultural contexts.
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