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Who affects carbon emissions? 
Drivers and decoupling effects of 
agricultural carbon emissions—
evidence from Sichuan, China
Yan Meng , Yangyang Shen , Wei Wang , Yunqiang Liu , 
Fang Wang  and Huan Wang *

College of Management, Sichuan Agricultural University, Chengdu, China

Mitigating agricultural carbon emissions is pivotal for attaining the objectives 
of carbon peak and carbon neutrality. Utilizing a time-varying parametric 
Cobb-Douglas (C-D) production function, this study employs an enhanced 
Logarithmic Mean Divisia Index (LMDI) decomposition approach, the Tapio 
decoupling model, and Monte Carlo simulations to investigate the determinants 
and decoupling dynamics of agricultural carbon emissions within Sichuan 
Province from 2010 to 2020. The findings reveal that: (1) Factors such as carbon 
emission intensity, agricultural structure, labor inputs, and capital stock played 
a significant role in suppressing agricultural carbon emissions, collectively 
contributing to a reduction of 484.12 million tonnes. (2) The unstable decoupling 
of agricultural carbon emissions from economic development in Sichuan 
Province. Capital stock, alongside carbon emission intensity and agricultural 
structure, significantly contributed to this decoupling. To harmonize agricultural 
economic growth with carbon emission reduction, emphasis should be placed 
on manure management and resource utilization in livestock and poultry 
farming. Furthermore, leveraging technological advancements to enhance 
resource efficiency is crucial for reducing carbon emissions. Simultaneously, 
strategic management of fixed asset growth, focused on energy conservation, 
can catalyze the synergistic effects of economic development and technological 
spillovers.
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1 Introduction

In recent years, global warming and its adverse impacts have attracted widespread human 
attention.1 Greenhouse gases are the main cause of global warming (Ojo and Baiyegunhi, 
2021). Among the greenhouse gases, carbon dioxide (CO2), accounting for 68% of global 
greenhouse gas emissions, contributes significantly to the continuous rise in global 
temperatures (Moon et al., 2020; Idroes et al., 2023).

1 https://www.ipcc.ch/report/sixth-assessment-report-cycle/
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Agriculture is a basic industry for the development of the 
national economy, and the total amount of carbon emissions 
generated in the production process should not be underestimated. 
According to the Intergovernmental Panel on Climate Change 
(IPCC), agriculture accounted for 15% of annual anthropogenic 
greenhouse gas emissions in 2019 and has seen an increase of about 
17% over the past three decades (FAO, 2023). China ranks among the 
world’s largest GHG emitters, its agricultural carbon emissions 
constitute a significant component of the country’s overall emissions 
(Ming et al., 2024). Therefore, reducing China’s agricultural carbon 
emissions will help promote global energy conservation and 
emission reduction.

In its pursuit of carbon emission reduction, China is implementing 
a sustainable development strategy with a series of measures aimed at 
reducing carbon emissions and has pledged to achieve carbon peaking 
by 2030 and carbon neutrality by 2060. Since the 18th National 
Congress of the Communist Party of China (CPC), China has 
successively introduced agricultural low-carbon development policies, 
such as “one empty, two reductions and three basics” and “emission 
reduction and carbon sequestration in agriculture and rural areas,” for 
example, constructing a new rice cropping model with high rice yield 
and methane emission (CH4) reduction under straw return, and 
promoting water-saving irrigation technology in rice fields to achieve 
the goals of carbon peaking and carbon neutrality (Botong et al., 2024).

The first task to achieve carbon emission reduction in agriculture 
is to accurately account for the total amount of carbon emissions. 
Scholars around the world have developed models including national 
inventories, life cycle assessment (LCA), and denitrification 
decomposition of agroecosystems (DNDC; Alhashim et al., 2021). 
These models help to measure carbon emissions from different regions 
and sectors, creating a comprehensive measurement system for 
agricultural carbon emissions (Sus et al., 2010). Compared to national 
accounting inventories, LCA provides a more comprehensive view of 
carbon accounting by taking into account carbon emissions from the 
neglected import and export of products based on the carbon-
emitting links in the production chain (Müller et al., 2020). Despite 
recent mathematical and computational improvements in LCA, the 
data availability of LCA remains the biggest constraint for LCA in 
novel social issues and environmental change (Jebari et al., 2024). 
Agricultural LCA models apply to environments with different 
characteristics (Nemecek et al., 2024), and a detailed description of 
environmental impacts requires the construction of a detailed and 
customized system, a requirement that often leads to inadequate LCA 
estimates. On the other hand, DNDC is mainly used in agroecology 
for modeling nitrogen and carbon cycling processes to estimate 
carbon emissions. For example, it simulates rice production based on 
changes in yield and GHG emissions after multi-objective 
optimization (Yulin et al., 2024), but data upper bounds on crop yields 
and carbon emissions in simulation experiments may be unclear due 
to limited data.

Secondly, most of the studies on identifying drivers of agricultural 
emissions combine the logarithmic mean Divisia index (LMDI) model 
with the C-D function, from the population (Jia et al., 2024), economic 
growth (Maulidar et al., 2024), energy structure and intensity (Lauk 
et al., 2024), industrial structure (Peng et al., 2024), technological 
progress (Liu and Feng, 2021), agricultural policy (Mac Leod et al., 
2015; Dharmasena and Gunasena, 2024) and other aspects of the 
empirical analyses, indicating that agricultural carbon emissions are 

affected by the complexity of macro-environment and 
industrial characteristics.

Finally, regarding how agriculture can reduce emissions to meet 
standards and achieve a dynamic balance between economic growth 
and carbon emission reduction, some scholars have applied the 
decoupling factors proposed by the Organization for Economic 
Co-operation and Development. They used the Tapio decoupling 
model to study the decoupling stages of various localities (Yuan et al., 
2023; Jia et  al., 2024). The separation of economic growth and 
environmental pressure can be  effectively achieved by promoting 
low-carbon agricultural technologies (Raza et  al., 2023) and 
optimizing agricultural structures to improve energy efficiency (Chen 
et al.,2020), which can lead to a shift from weak decoupling to strong 
decoupling of agricultural carbon emissions, enhancing the 
agricultural economy’s sustainability. However, the existing literature 
only emphasizes a certain perspective of factor inputs, ignoring the 
impact of the production process on carbon emissions, resulting in an 
underestimation of the total carbon emissions. At the same time, the 
research methodology mostly adopts the traditional LMDI and 
decoupling model, which uses the C-D production function with 
constant output elasticity to estimate the impact of technology, capital, 
and labor factors on carbon emissions, and ignores the impact of 
technological progress and changes in factor inputs on outputs (Solow, 
1957), which fails to accurately propose a scientific path to achieve 
carbon emission reduction while realizing economic development.

The innovation of this paper is reflected in three aspects. First, the 
importance of the research object. Sichuan, known as the “Land of 
Heaven” since ancient times, is a significant traditional agricultural 
province in China. This makes it strategically important for ensuring 
the supply of crucial domestic primary products. In 2023, the 
province’s grain sowing area spanned 960.6 million mu (a traditional 
Chinese unit of area, where 1 mu equals approximately 0.0667 
hectares), comprising 6.4% of the country’s total. Moreover, the 
province accounted for 9.17% of the country’s total with 66.627 
million pigs slaughtered. Considering the environmental pollution 
problems caused by agricultural cultivation and breeding in Sichuan 
in recent years, Sichuan is facing an urgent need for a green 
transformation of agriculture. However, previous studies have focused 
on industrial carbon emissions, ignoring the carbon emissions caused 
by agricultural development, and the data are mainly based on 
national data, and few data at the provincial level are used. Second, the 
measurement indicators and methods are innovative. Compared with 
the traditional LMDI and Tapio decoupling models, which are often 
used for agricultural carbon emission analysis, the study object of the 
drivers and decoupling relationship is relatively fixed, and cannot 
reveal the impact of changes in factors such as technological progress, 
investment expansion and employment expansion on agricultural 
carbon emissions. Therefore, this study centers on Sichuan Province, 
utilizing the C-D production function and the LMDI decomposition 
approach to examine the determinants and the degree of decoupling 
in agricultural carbon emissions between 2010 and 2020. Additionally, 
it constructs a Monte Carlo simulation model to forecast the 
prospective trajectory of agricultural carbon emissions in Sichuan 
Province. It considers changes in technology, labor, and capital, aiming 
to understand the contributions of these factors to emissions. Third, 
the closeness of the theoretical and practical connection. This analysis 
provides objective data to support Sichuan’s economic and social 
development and its agricultural green transformation. The ultimate 
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goal is to accelerate Sichuan’s achievement of carbon neutrality and 
peak carbon emissions targets.

2 The methodology

2.1 Carbon emission measurement 
methods and data sources

Greenhouse gases (GHG) mainly include CH4, CO2, and nitrous 
oxide (N O2 ), and the World Resources Institute (WRI) and the World 
Business Council for Sustainable Development (WBCSD) have classified 
the sources of GHG emissions from agriculture into mechanical and 
non-mechanical categories. The mechanical category mainly comes from 
agricultural irrigation, power generation, and other operations involving 
the combustion of fossil fuels (Seungman et  al., 2023); The 
non-mechanical category is generated through complex biological 
reactions, such as intestinal fermentation and manure treatment of 
ruminant livestock, which produces large quantities of CH4 (Charlotte 
et al., 2023), nitrogen-intensive agricultural practices, such as the use of 
fertilizers and pesticides, generate N O2 . Additionally, changes in the 
anaerobic environment during rice cultivation (Qiang et  al., 2023), 
agricultural land preparation, and straw burning can induce CH4 and 
CO2 emissions (Carla et al., 2024, Bhuvaneshwari et al., 2019).

Based on the above discussion, and concerning existing studies 
(Kamarposhti et al., 2024) and the situation in Sichuan Province, this 
paper measures agricultural carbon emissions from two major 
perspectives (Figure 1): among them, carbon emissions from six types 
of carbon sources, namely, electricity, fertilizer, agricultural film, 

pesticide, irrigation, and straw burning (including Corn, Wheat and 
Rice), are measured from the perspective of factor inputs; and from the 
perspective of the production process, focusing on animal intestinal 
fermentation and fecal management, four types of carbon emissions, 
namely, cattle, swine, sheep, and poultry, are measured. Fertilizer use is 
measured based on the discounted amount. The amounts of various 
factor inputs, the yields of different crops, planted areas, and unit yields 
are based on actual quantities recorded in the current year’s statistical 
yearbook. Due to the lack of direct, detailed data on soil management 
types, the actual sown area (including Corn, Wheat and Rice) of the 
current year serves as an approximate indicator for analysis (Cheng-shi 
and Yu, 2021). According to the National Bureau of Statistics (NBS), in 
2021, cereal production in Sichuan province accounted for 80.38% of the 
province’s grain crop production, potatoes accounted for about 15.61%, 
and legumes accounted for about 9.68%; the cereal crops planted in 
Sichuan province are mainly rice, maize, and wheat, and rice production 
accounted for 51.86% of the province’s cereal crop production. Therefore, 
the use of rice, wheat, and maize as the sources of carbon emissions from 
agricultural soil management and straw treatment in Sichuan Province 
is highly representative; For the measurement of the number of cattle, 
pigs, sheep, and other livestock, calculations were based on the stock 
data for the year as recorded in the China Livestock Yearbook to ensure 
the accuracy and reliability of the data. The required data come from the 
2010 to 2020 editions of the China Rural Statistics Yearbook, the China 
Livestock Yearbook, and the Sichuan Statistics Yearbook.

Referencing the carbon emission coefficients from the Fourth 
Assessment Report of the IPCC, this study employs the carbon emission 
measurement formula to calculate the emissions from each category of 
carbon sources (Equation 1). The calculation formula is as follows:

FIGURE 1

Six major carbon sources of agricultural carbon emissions.
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 CE CE Si i i� � � � ��  (1)

Where: CE  denotes the total amount of agricultural carbon 
emissions in Sichuan Province (kg); CEi is the carbon emissions from 
the ith source (kg); Si is the number of the ith source; and σi  is the 
carbon emission coefficient corresponding to the ith source. The 
required carbon emission coefficients and sources for each type of 
carbon emission source are as follows:

Due to the lack of specific annual data for straw treatment, rice 
production, and animal enteric fermentation, when calculating the 
carbon emissions generated by them, the collected data need to 
be processed to ensure the measurement caliber is consistent (Table 1).

In the calculation of carbon emissions generated during the 
growth process of rice, the carbon emission coefficients refer to the 
IPCC’s Fourth Assessment Report after the unification of the unit by 
the conclusions of Yun et al. (2012), according to the median value of 
the growth cycle of rice 130 d unified data.

This study next calculated the carbon emissions of animal enteric 
fermentation and determined the annual average feeding quantity of 
cattle, pigs, sheep and poultry in the calculation formula according to 
Zhu et al. (2023).

For pigs and poultry, the annual stockpile does not accurately 
reflect the current year’s stockpile because outgrowths are 
generated during the stockpiling process, so we adjust the amount 
of livestock and poultry breeding, which is based on the average 
rate of livestock and poultry slaughtering. It is known that the 
turnout rate of pigs and poultry is greater than 1, and the turnout 
rate of both cattle and sheep is less than 1. Therefore, the annual 
average feeding quantity of pigs and poultry is adjusted according 
to the following formula (Equation 2):

 
Q

M
i

i� ��
365  

(2)

Where Qiis the average annual rearing capacity of livestock and 
poultry in the ith (head/million birds); ϕ  is the average life cycle of 
livestock and poultry in the ith (d), with the average life cycles of pigs and 
livestock and poultry being 200 and 55 d, respectively; and Mi is the annual 
production capacity of livestock and poultry in the ith (head/million units).

For cattle and sheep with a turnout rate of less than 1, their 
average annual feeding capacity is adjusted according to the year-end 
stocking, with the formula (Equation 3):

 
Q C Ci it i t� �� ��� �1 2/

 
(3)

Where Cit and Ci t�� �1  are the year-end stock of cattle and sheep 
in year t and year t-1. The carbon emission coefficients of each 
livestock are shown in Table 2.

In addition, due to the different types of gases emitted during the 
growth of livestock and poultry in the above table, the study based on the 
IPCC’s Fourth Assessment Report to replace the emissions CH4 and N O2  
gases from livestock and poultry manure into standard carbon (C) 
according to the conversion factors of 6.818 and 81.273, 1 tCH4 = 6.82 t C.

The carbon emission formula for straw burning is as follows 
(Equation 4):

 E P C R F EFi� � � � �  (4)

Where E is the total carbon emission from straw burning (kg); Pi 
is the grain production of Sichuan Province in the year i (million t); C 

TABLE 1 Emission factors for major carbon sources from agricultural production activities.

Carbon source Carbon emission factor Source

Agricultural film 5.180 kg C·kg−1 The Institute of Resource, Ecosystem and Environment of Agriculture (IREEA) of Nanjing 

Agricultural University

Pesticide 4.934 kg C·kg−1 Oak Ridge National Laboratory

Chemical fertilizer 0.896 kg C·kg−1
Oak Ridge National Laboratory

Paddy field 3.136 kg·m−1·d−1
Yun et al. (2012)

Irrigation 266.480 kg C·hm−2 Duan et al. (2011)

Plow 312.600 kg C·hm−2 College of Biotechnology, China Agricultural University

Agricultural electricity 0.526 kg CO2·kW
−1·h−1

National Development and Reform Commission in 2012

TABLE 2 Carbon emission factors for major livestock and poultry   (kg head a ).1 1�� ���� ��

Livestock species Enteric fermentation Fecal emission

CH4 CH4 N O2

Cattle 51 1.50 1.37

Pig 1 4.00 0.53

Sheep 5 0.16 0.33

Poultry 0 0.02 0.02

Data from the IPCC (2006).
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is the average grain-to-straw ratio of grain crops (%); R is the average 
open burning ratio of grain crops (%), with a scale of 1; F is the 
combustion efficiency (%); and EF is the average straw open burning 
emission factor of grain crops (g·kg−1).

This study used three-grain crops, namely, maize, wheat, and rice, 
as representatives to substitute into the above equation, and to simplify 
the arithmetic, the carbon emissions from straw burning were only 
considered CO2 as gas emissions, and the values applied in the process 
of calculations are shown in Table 3.

2.2 Study area

The study area is located in the inland of southwest China, in the 
upper reaches of the Yangtze River, with a land area of 486,000 km2, 
including 9.68 million hectares of cultivated land (Figure 2).

2.3 LMDI decomposition based on 
time-varying parametric C-D production 
function

Kaya emission constancy equation mathematically links the 
degree of pollution caused by total energy consumption to energy 
intensity, per capita income, and population density (Hasan and 
Chongbo, 2020). On top of the kaya constancy equation, the LMDI 
decomposition method proposed by Honeywell is straightforward to 
implement and eliminates the residual effect (Ye et  al., 2022). 
Therefore, this paper integrates the LMDI decomposition with a time-
varying parameter C-D production function to modify the constant 
Equation 5 (Ye et al., 2022; Zhu et al., 2023), decomposing agricultural 
carbon emissions into three parts: the intensity of agricultural carbon 
emissions, the level of agricultural economic development, and the 
agricultural structure:

 
C

C

GCP

GCP

AGR

AGR

G
G

t

t

t

t

t

t

t� � � ��
 

(5)

Where: C denotes the total agricultural carbon emission (kg); Ct ,  
GCPt, AGRt, Gt, denotes the total agricultural carbon emission (kg), 
the total output value of the plantation industry (RMB 10,000), the 
total output value of agriculture, forestry, animal husbandry and 
fishery (RMB 10,000), and the growth of the total output value of 
agriculture, forestry, animal husbandry and fishery (RMB 10,000), 
respectively, in the year t. CI C GCPt t t= / denotes the intensity of 
agricultural carbon emission (kg); SI GCP AGRt t t= /  denotes the 
factor of agricultural structure; and EL AGR Gt t t= /  represents the 
increase of agricultural unit output value (the inverse of the growth 

rate of agricultural output value). The above formula can be simplified 
by making (Equation 6):

 C CI SI EL Gt t t t t� � � �  (6)

The time-varying parametric C-D production function is 
introduced into the LMDI decomposition method to obtain the 
agricultural production function (Equations 7, 8):

 G A K L
sv sv� � �

1 2

 (7)

 ln ln ln lnG K L At t t t t t t� � � � � �s s� �1 2 �  (8)

Where: G denotes the amount of output; A, K and L
sv sv

1 2

, denote 
the time-varying technology, capital, and labor input factors, 
respectively; At is the level of technology; Kt is the capital stock; Ltis 
the labor input; µt is the stochastic perturbation term obeying a 
normal distribution with an expected value of 0; s sν νt tand

1 2are the 
time-varying parameters of the capital stock and the labor input 
factors, respectively, and satisfy the following Equations 9, 10:

 
s s� �t t t
1

1

1
1� �� �

 (9)

 
s s� �t t t
2

1

2
2� �� �

 (10)

Where: ε is the random disturbance term (obeying normal 
distribution, expectation value is 0).

By combining Equations 7, 8, the impact of agricultural growth 
on total carbon emissions can be decomposed into the effects of three 
major factors: labor input, capital stock, and technological progress. 
This analysis facilitates the LMDI decomposition of agricultural 
carbon emissions, leveraging the Cobb-Douglas (C-D) production 
function (Equation 11):

 
C CI SI EL

G

K L

K Lt t t t
t

t t

t t
t t

t t� � � �
�

� �
s s

s s
� �

� �
1 2

1 2

 
(11)

Based on the above equation, the new agricultural carbon 
emissions can be  decomposed into carbon emissions caused by 
different factors: the intensity of agricultural carbon emissions 
( ),∆CCI  the structure of agriculture ( ),∆CSI  the level of development 
of the agricultural economy ( ),∆CEL  technological progress  
( ),∆CA  the capital stock ( ),∆CK  and the input of labor ( ),∆CL   
where Ct  is the total amount of carbon emissions in the reporting 
period, and C0is the total amount of carbon emissions in the base 
period, and ∆Ct  is the difference between the two:

TABLE 3 Carbon emission indicators of straw from major food crops.

Parameter Corn Wheat Rice Average

Grain-to-crude ratio 1.2 1.1 0.9 1.07

Open burning ratio 17.2 23.8 26.8 22.6

Combustion efficiency 0.92 0.93 0.93 0.927

Data from Zhu et al. (2023).
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� � � � � � �C C C C C C C C Ct t CI SI EL A K L� � � � � � � �0  (12)

 
�C C C

C C

C C
C Ct t

t

t

t� � �
�
�

� �� �0
0

0

0
ln ln

ln ln

 
(13)

Deformation of Equation 12. Where: ∆Ct  denotes the difference 
between carbon emissions in year t and the base year; C0 denotes the 

carbon emissions in the base year (2010); and Ct  denotes the carbon 
emissions in year t. The carbon emissions of the six factors can 
be obtained from Equations 11–14:

 
�C W

CI

CI
CI t

t� � ln
0

 
�C W

SI

SI
SI t

t� � ln
0

FIGURE 2

Location of the study area.
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L
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t
t

t

� � ln
s

s

�

�

2

2

0  
(14)

Where: W C C C Ct t t� �� � �� �0 0/ ln ln , if C Ct > 0, then Wt > 0.
It can be seen that agricultural carbon emissions are influenced by 

six driving factors: agricultural carbon intensity ∆CCI,  agricultural 
structural factors ∆CSI,  agricultural economic development level 
∆CEL,  technology level ∆CA,  capital stock ∆CK,  and labor  
input ∆CL.

2.4 Tapio decoupling model based on 
time-varying parametric C-D production 
function

The Tapio decoupling elasticity coefficient method is widely 
employed to assess the separation of economic growth from 
environmental pressures, notably the escalation of carbon emissions, 
within specific industries or regions. In agriculture, it means reducing 
or stabilizing greenhouse gas emissions while maintaining or 
increasing agricultural outputs. This study integrates the Tapio 
decoupling model with the Cobb-Douglas (C-D) production function 
to delve into the dynamics of carbon emissions influenced by 
technological advancements, capital investment, and 
labor contributions.

Equations 15–18 are the decoupling indices of agricultural carbon 
emissions from agricultural growth D C,G� �, capital stock D C,K� �, 
labor input D C,L� �, technological progress D C,A� �, and respectively:

 
D C,G

C C

C

G G

G
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0

0
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(15)
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K K
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(18)

Where: C and Ct0 , respectively, is the base period and the 
reporting period of agricultural carbon emissions; G and Gt0 , 
respectively, is the base period and the reporting period of agriculture, 
forestry, animal husbandry, and fisheries value added; K and Kt0 , 
respectively, is the base period and the reporting period of the capital 
stock; L and Lt0 , respectively, is the base period and the reporting 
period of the labor input.

Referring to Zha et al. (2021), the impact of each factor on the 
decoupling relationship between agricultural carbon emissions and 
economic growth is further disaggregated as follows (Equation 19):
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Where: d d d d d dCI SI EL A K L, , , , , represents the contribution to 
the decoupling elasticity of the carbon intensity of agriculture, the 
structure of agriculture, the level of economic development of 
agriculture, the level of technology, the capital stock, and labor inputs, 
respectively.

2.5 Monte Carlo model construction

The Monte Carlo model, which integrates uncertainty with 
probability distributions, enables the estimation of total amount’s 
probability distribution across various factors to forecast future trends 
of variables. This experiment employs the Monte Carlo model 
alongside scenario analysis, thereby comprehensively examining the 
evolutionary trends of carbon emissions under diverse agricultural 
development structures and economic levels. This approach addresses 
the limitation of the Monte Carlo model, which traditionally predicts 
carbon emissions under a singular scenario (Bofeng et  al., 2019; 
Dewen et al., 2024).

Based on Equation 11, it is known that the key drivers affecting 
carbon emissions are agricultural carbon emission intensity CIt , 
agricultural structural factorsSIt, the increase in agricultural unit 
output value ELt , technological progress At, capital stock Kt , and 
labor inputs Lt, respectively; therefore, in order to achieve the scenario 
analysis, the Monte Carlo simulation in this study applies the following 
Equations 20–27 (Dewen et al., 2024).

 CI CI bt t� � �� �1 1  (20)

 SI SI ct t� � �� �1 1  (21)

 EL EL dt t� � �� �1 1  (22)

 A A et t� � �� �1 1  (23)
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 K K ft t� � �� �1 1  (24)

 L L gt t� � �� �1 1  (25)
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a, b, c, d, e, f, and g represent the growth rate of total carbon 
emissions and carbon emissions from CI SI EL A K and Lt t t t t t, , , , ,  
respectively.

3 Results and discussion

3.1 Characterization of agricultural carbon 
emissions

Figure 3 illustrates a decreasing trend in total agricultural carbon 
emissions in Sichuan Province from 2010 to 2020. This trend is closely 
linked to the value of agricultural output, which saw Sichuan’s 
agricultural carbon emissions decrease from 40.03 million tonnes in 
2010 to 34.66 million tonnes in 2020—a 13.4% reduction or an average 
annual decrease of 1.2%. Concurrently, the agricultural output value 
in Sichuan increased 2.3-fold, from 205.9 billion Yuan to 470.2 billion 
Yuan. Industrial development is inevitably accompanied by energy 
consumption and pollution emissions; generally speaking, an increase 
in production value’s growth rate tends to bring about a rapid increase 

in carbon emissions. However, during the sample period, the value of 
agricultural production and agricultural carbon emissions in Sichuan 
showed an inverse relationship. This indicates a possible decoupling 
of carbon emissions from agricultural growth.

Different sources of agricultural carbon emissions in Sichuan 
Province exhibit significant variations in total emissions and growth 
rates. According to Table 4 in Supplementary material, the largest 
contributors to carbon emissions are livestock (60.4%), electricity 
(24.2%), and fertilizer use (5.7%), with other sources combining for 
9.7%. This distribution reflects Sichuan’s status as a major province for 
traditional livestock and poultry farming, with its pig and related 
industries positioned at the forefront nationally. The inefficient 
management and regulation of waste from livestock and poultry 
significantly contribute to these emissions. Figures  3, 4 indicate 
Livestock and poultry emissions as the primary source of carbon 
emissions in the sample period generally showed a downward trend, 
the growth rate in 2017 and 2018 briefly became positive and then 
became negative, the total carbon emissions in Sichuan Province in 
the same year from falling to rising.After 2018, pig farming plummeted 
due to African swine fever, resulting in the growth rate of livestock 
emissions turning negative again, with emissions growth approaching 
−20 percent in 2019. Carbon emissions from rural electricity use are 
the second largest source of total carbon emissions, with a growth rate 
of around 4%. The remaining sources of carbon emissions do not have 
a stable and uniform trend of change.

Currently, amidst efforts to ensure the supply of key agricultural 
products and expand livestock numbers, Sichuan faces challenges in 
reducing emissions and achieving carbon sequestration, given the 
annual production of approximately 210 million tonnes of livestock 
and poultry manure (Tengli et al., 2020), which poses a challenge to 
the achievement of agricultural emission reduction and carbon 
sequestration. Therefore, it is necessary to rigorously implement the 

FIGURE 3

Total agricultural carbon emissions and value added of agricultural production.
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‘one control, two reductions, and three basics’ strategy within the 
agricultural and animal husbandry industries. This involves 
controlling the total volume of water used in farming and its associated 
pollution, while simultaneously reducing the usage of chemical 
fertilizers and pesticides in the production process. Efforts should also 
focus on the resourcing, harmlessness, and comprehensive recycling 
of livestock and poultry waste.

3.2 Drivers of emission

The LMDI decomposition, utilizing the time-varying parameter 
Cobb-Douglas (C-D) function, identifies the impact of various factors 
on the sources of agricultural carbon emissions in Sichuan Province 
from 2010 to 2020, as illustrated in Figure 5. Factors such as capital 
stock, energy intensity, and agricultural structure are identified as 
having a consistent driving influence on reducing emissions and 

enhancing carbon sequestration in agriculture. The contribution of 
other factors, however, warrants further investigation.

Capital stock has the greatest positive impact on carbon emission 
reduction in agriculture, decreasing emissions by approximately 
282.57 million tonnes over an 11 years. While Fixed asset investment 
plays a dual role in carbon emission reduction. On the one hand, 
investment in water conservancy projects, water-saving technology, 
and the elimination of high-energy-consuming equipment can 
promote the green transformation of the industry. Such investments 
can also lead to a positive spillover of technology, thereby indirectly 
reducing the carbon emissions per unit of output. On the other hand, 
fixed asset investment in agricultural infrastructure construction 
consumes a significant amount of energy in the early stages and 
increases carbon emissions (Grossman and Krueger, 1991), which 
hinders the goal of reducing carbon emissions. Therefore, when 
making fixed asset investments, it is crucial to emphasize the 
orientation towards green development. At the same time, efforts 

TABLE 4 Carbon emissions generated by various carbon sources (10,000 tons).

Year Electricity Fertilizer Pesticides Agro-
film

Irrigation Stalk Soil 
management

Rice 
production

Livestock 
emissions

2010 746.76 222.21 30.68 59.14 68.03 0.08 141.83 70.06 2664.40

2011 783.12 225.08 30.55 63.31 69.31 0.08 141.08 69.20 2555.90

2012 822.12 226.51 29.76 65.70 68.38 0.08 140.43 68.74 2507.45

2013 861.65 224.99 29.58 66.23 69.72 0.08 139.68 67.85 2456.01

2014 893.79 225.88 29.30 67.48 71.05 0.08 138.90 67.39 2407.87

2015 921.20 225.88 29.07 68.46 72.88 0.08 138.83 66.92 2353.59

2016 964.94 223.10 28.64 68.57 75.01 0.08 138.24 66.75 2244.11

2017 992.87 216.83 27.51 67.85 76.56 0.08 137.24 66.78 2265.14

2018 1046.62 210.74 25.30 62.26 78.15 0.08 136.40 66.75 2298.14

2019 1084.57 199.63 22.84 63.84 78.72 0.08 135.15 66.60 1902.15

2020 1085.09 188.88 20.79 61.55 79.74 0.08 134.43 66.46 1828.94

A B

FIGURE 4

Growth rate of carbon emissions from various carbon sources in agriculture.
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should be made to balance the increase in carbon emissions caused by 
engineering construction with the promotion of investment in 
agricultural infrastructure.

The positive impact of agricultural carbon emission intensity on 
reducing emissions has been growing annually. This metric, which 
excludes the effects of agricultural scale variations, offers a more 
objective measure of carbon emissions per unit of agricultural output 
in the region. Table 5 reveals that, from 2010 to 2021, Sichuan Province 
saw an average annual decrease in agricultural carbon emission 
intensity of 5.9%. This suggests a consistent improvement in resource 
utilization efficiency in agriculture each year. Notably, in 2019, the 
intensity of agricultural carbon emissions dropped to its lowest, 
leading to a reduction of 3.7 million tonnes in carbon emissions 
compared to the previous year. During the sample period, changes in 
agricultural structure and labor inputs were relatively stable. The 
proportionate contributions of the various agricultural 

subsectors—including agriculture, forestry, animal husbandry, and 
fisheries—are adjusting gradually in Sichuan Province, with an overall 
increase in the share of factor inputs. Based on this, facilitating cross-
sectoral mobility of production factors and enhancing their utilization 
efficiency represents a strategic approach to further refine the 
agricultural structure and capitalize on carbon emission 
reduction benefits.

The increase in agricultural carbon emissions is primarily 
attributed to the levels of economic development and technological 
inputs, which is consistent with the findings of previous studies (Qian 
et  al., 2024). From 2011 to 2021, these factors contributed 59.6% 
(166.16 million tonnes) and 40.4% (112.71 million tonnes) to the total 
agricultural carbon emissions, respectively, compared to 2010. 
Specifically, as China pursues its “peak carbon” goal, the rapid 
economic expansion plays a crucial role in escalating total carbon 
emissions. Variations in economic growth strategies significantly 

BA

FIGURE 5

Decomposition results of carbon emission drivers in Sichuan Province.

TABLE 5 Carbon emission intensity and rate of reduction from 2010 to 2020.

Year Value of agricultural production Carbon intensity of agriculture Deceleration

2010 2059.33 0.81 -

2011 2454.26 0.76 7.02

2012 2764.90 0.72 4.70

2013 2886.48 0.69 3.80

2014 3068.61 0.66 4.09

2015 3315.51 0.63 5.73

2016 3701.64 0.59 6.30

2017 4004.20 0.56 3.91

2018 4153.71 0.55 2.57

2019 4395.04 0.44 14.16

2020 4701.88 0.44 6.72
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impact emission fluctuations, underscoring the need for a 
development path that harmonizes carbon emission reduction with 
agricultural economic progress. The impact of technological inputs on 
increasing emissions is also notable, potentially exacerbated by the 
rebound effect of technological advancement. The widespread 
mechanization and modernization of agricultural production have 
boosted overall production capacity. However, the extensive 
deployment of large agricultural machinery and the development of 
modern agricultural parks have led to higher emissions. Moreover, 
“non-clean” agricultural technologies contribute to greater carbon 
release compared to “clean” technologies. Consequently, steering 
agricultural production towards a low-carbon, recyclable direction 
necessitates active research and development of eco-friendly, green 
technologies that enhance carbon sequestration. Emphasizing the 
broad-scale energy efficiency and emission reduction of agricultural 
machinery, alongside hastening the retirement of outdated equipment, 
is crucial.

3.3 Decoupling dynamics and reasons

Table 6 shows the results of the degree of decoupling of carbon 
emissions from the growth of each industry in Sichuan Province in 
2010–2020. Collectively, the province experienced oscillation between 
states of strong decoupling and weak negative decoupling regarding 
carbon emissions and industrial growth. Periods of strong decoupling 
were observed in 2011–2012, 2015–2016, and 2019, characterized by 
a substantial increase in agricultural value added and a minor 
difference in carbon emissions value added. Essentially, these periods 
saw enhanced economic growth accompanied by a reduction in 

carbon emissions. Conversely, the years 2013–2014, 2017–2018, and 
2020 were marked by weak negative decoupling, attributed mainly to 
the deceleration in agricultural value added, which did not curb the 
rise in carbon emissions in 2017–2018, despite the pronounced carbon 
reduction impact of technological advancements. Throughout the 
analysis period, capital stock exhibited a consistent pattern of weak 
negative decoupling. This trend may be attributed to the provincial 
focus in recent years on developing high-standard farmland and 
water-saving initiatives. Specifically, the strategy aimed for the 
cumulative achievement of 44.3 million mu of high-standard farmland 
in Sichuan by 2020. The extensive scale of these construction projects 
contributed to elevated carbon emissions during the period 
under review.

Severely curtailing carbon emissions at the cost of impeding 
economic growth could adversely affect the agricultural sector’s 
development in Sichuan. Hence, it is imperative to establish a 
dynamic equilibrium between economic advancement and the 
pursuit of energy conservation and emission mitigation. As 
delineated in Table  7, capital stock, carbon intensity, and the 
structure of agriculture significantly contribute to the decoupling 
between carbon emissions and the development of the agricultural 
industry. Recent trends indicate that economic development is 
shifting from hindering to facilitating decoupling, where capital 
stock has been the main facilitator of decoupling. An in-depth 
analysis reveals that, during the observed period, investments in 
agricultural fixed assets in Sichuan Province remained below 
baseline levels, thus sustaining a state of weak negative decoupling. 
However, its comparative effectiveness in curbing carbon emission 
increases is particularly notable, suggesting considerable potential 
to enhance the decoupling of economic development from carbon 

TABLE 6 Decoupling index values and decoupling dynamics by factors from 2010 to 2020.

Year D (C,G) Decoupling 
state

D (C,K) Decoupling 
state

D (C,L) Decoupling 
state

D (C,A) Decoupling 
state

2011
−0.01 Strong decoupling 0.05 Weak negative 

decoupling

2.84 Recessive decoupling −0.01 Strong decoupling

2012
−0.07 Strong decoupling 0.04 Weak negative 

decoupling

2.06 Recessive decoupling −0.02 Strong decoupling

2013
0.04 Weak negative 

decoupling

0.03 Weak negative 

decoupling

2.37 Recessive decoupling −0.06 Strong decoupling

2014
0.08 Weak negative 

decoupling

0.03 Weak negative 

decoupling

3.04 Recessive decoupling −0.02 Strong decoupling

2015
−0.13 Strong decoupling 0.05 Weak negative 

decoupling

5.90 Recessive decoupling −0.02 Strong decoupling

2016
−0.40 Strong decoupling 0.08 Weak negative 

decoupling

11.32 Recessive decoupling −0.03 Strong decoupling

2017
0.06 Weak negative 

decoupling

0.09 Weak negative 

decoupling

17.80 Recessive decoupling 0.10 Weak negative 

decoupling

2018
0.05 Weak negative 

decoupling

0.05 Weak negative 

decoupling

−7.08 Strong decoupling 9.73 Recessive decoupling

2019
−0.15 Strong decoupling 0.25 Weak negative 

decoupling

−14.20 Strong decoupling −0.05 Strong decoupling

2020
−0.06 Weak negative 

decoupling

0.44 Weak negative 

decoupling

−9.23 Strong decoupling −0.03 Strong decoupling
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emissions. This potential is likely due to Sichuan’s transition from 
traditional to modern agriculture, with a yearly increasing 
proportion of investments directed towards agro-ecological 
energy-saving initiatives. Such investments mitigate the adverse 
effects of energy consumption, amplify carbon emission reduction 
impacts, and facilitate the modernization of agricultural 
development. Conversely, the technological level has detracted 
from the decoupling contribution during the same period, 
primarily because agricultural technological inputs in Sichuan 
Province have surged compared to the baseline period. The dual 
nature of technological advancement has precipitated a carbon 
emission rebound effect (Brännlund et al., 2007). Technological 
progress has both improved agricultural output and increased 
carbon emissions by lowering the price of factor inputs. This price 
reduction causes producers to change their input strategies and 
expand factor inputs, leading to further carbon emissions. 
Therefore, in the short term, relying solely on technological 
progress may not significantly reduce carbon emissions 
in agriculture.

3.4 Monte Carlo analysis and Monte Carlo 
result discussion

Based on the current status of agricultural carbon emissions 
in Sichuan Province from 2010 to 2020, and in light of previous 
studies (Dewen et al., 2024), we have developed four scenarios to 
predict greenhouse gas emissions from 2021 to 2035, after 
categorizing the factors influencing carbon emissions: the Baseline 
scenario, the Regulatory scenario, the Loose scenario, and the 
Special scenario. The Baseline scenario reflects the carbon 
emissions trends observed in Sichuan Province over the recent 
decade, incorporating variables such as carbon intensity, 
agricultural structure, economic development, labor input, capital 
stock, and technology level. The Regulatory scenario, building 
upon the baseline, aims to reduce agricultural carbon emissions 
by decreasing the growth rate of the influencing factors by 2%. 
Conversely, the Loose scenario increases the growth rates of these 

factors by 2%, differing from the Regulatory approach. The 
Special scenario, informed by prior analysis, targets the factors 
most effective in reducing carbon emissions. It proposes a 5% 
decrease in carbon emissions intensity compared to the baseline 
scenario, alongside a 2% increase in the growth rates of other 
influencing factors.

Utilizing predetermined scenarios for the average annual rate 
of change, we  performed 500,000 simulations via Python to 
generate stochastic data and establish probability distributions, as 
illustrated in Figure 6. The results indicate that under the Baseline 
scenario, carbon emissions are expected to reach approximately 
20 million tons by 2030, aligning with the historical trend of 
agricultural carbon emissions in Sichuan Province. In contrast, 
the Regulatory scenario predicts a more rapid reduction in carbon 
emissions by 2025, with emissions anticipated to decrease to 10 
million tons by 2030. Conversely, the Loose scenario demonstrates 
an accelerated increase in carbon emissions. In the Special 
scenario, carbon emissions exhibit a rise followed by a decline, 
peaking in 2025 at an estimated 45 million tons, and subsequently 
decreasing more swiftly. When comparing the Special scenario to 
the Loose Scenario, it becomes evident that reducing carbon 
emission intensity offers significant potential for carbon emission 
mitigation. This finding corroborates earlier analyses and 
underscores the crucial importance of controlling carbon emission 
intensity to optimize carbon emission reduction efforts.

4 Conclusions and recommendations

This study analyses the dynamics of agricultural carbon emissions 
in Sichuan Province, China, from 2010 to 2020 using panel data 
combined with an improved LMDI model and Tapio decoupling 
based on a time-varying C-D production function. The conclusions 
of the study are as follows:

 1. The overall total agricultural carbon emissions show a 
decreasing trend, with livestock and poultry emissions as the 
main source. In terms of numerical size, agricultural carbon 

TABLE 7 Contribution of carbon emission factors to decoupling elasticity from 2010 to 2020.

Year Emission 
intensity

Agricultural 
structure

Economic 
development

Labour 
input

Capital 
stock

Technological 
progress

Synergistic 
effect

dCI dSI dEL dL dK dA D

2011 −0.03 −0.06 −0.27 0.00 −0.21 0.04 −0.52

2012 −0.08 −0.14 0.03 −0.01 −0.44 0.12 −0.51

2013 −0.29 −0.38 2.19 −0.02 −2.20 0.47 −0.23

2014 −0.27 −0.28 1.08 −0.01 −1.90 0.40 −0.97

2015 −0.19 −0.17 0.18 0.00 −0.72 0.26 −0.65

2016 −0.27 −0.21 0.35 0.00 −0.78 0.26 −0.65

2017 −0.96 −0.57 4.36 −0.01 −1.53 0.94 2.23

2018 −0.60 −0.32 1.71 0.00 −0.78 0.61 0.62

2019 −0.28 −0.12 0.05 0.00 −0.32 0.21 −0.47

2020 −0.16 −0.09 −0.11 0.00 −0.10 0.11 −0.35

2011–2020 −3.14 −2.34 9.57 −0.04 −8.98 3.42 −1.51
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emissions in Sichuan Province decreased from 40.03 million 
tonnes to 34.66 million tonnes between 2010 and 2020, a 
reduction of 13.4%, with livestock and poultry emissions 
(60.4%), electricity use (24.2%) and fertilizers (5.7%) 
contributing to a larger portion of the carbon emissions; in 
terms of the overall trend, the total amount of livestock and 
poultry emissions has declined in recent years, while 
emissions from electricity use have shown a sustained 
upward trend, and the remaining carbon emission sources 
have unstable changes.

 2. Disparities are evident in the influence exerted by various 
sources of agricultural carbon emissions on the mitigation of 
carbon emissions. From a horizontal perspective, capital 
stock, emission intensity, and agricultural structure manifest 
as the most significant suppressors of agricultural carbon 
emissions, collectively accounting for a reduction of 282.57 
million tonnes, 118.07 million tonnes, and 82.69 million 
tonnes in carbon emissions, respectively. Moreover, the 
efficacy of carbon emission reduction continues to intensify. 
Conversely, the level of economic development in agriculture 
and technological investments predominantly enhance 
agricultural carbon emissions, though recent measures have 
begun to curb this trend. Analyzing the situation vertically, 
there is a general decline in the total volume of carbon 

emissions, alongside a reduction in carbon emission 
intensity. Within this context, the share of carbon emission 
reduction attributable to capital stock has experienced a 
decrease. In contrast, the contributions of emission intensity 
and agricultural structure to carbon emission reduction have 
seen considerable expansion.

 3. In Sichuan Province, the relationship between carbon emissions 
and industrial development manifests in two distinct states: 
strong decoupling and weak negative decoupling. These states 
were observed during the periods of 2011–2012, 2015–2016, and 
2019 for strong decoupling, and 2013–2014, 2017–2018, and 2020 
for weak negative decoupling. The facilitation of decoupling is 
primarily attributed to elements such as capital stock, the intensity 
of carbon emissions, and the configuration of the agricultural 
sector, whereas the advancement of technology primarily hinders 
this decoupling process. Notably, the reduction of carbon 
emissions through capital stock emerges as the most potent 
factor, offering substantial contributions towards the 
disassociation of economic growth from carbon emissions.

 4. The level of agricultural carbon emissions in Sichuan Province 
was modeled under four different scenario settings. Under the 
baseline scenario, carbon emissions are expected to continue 
their decreasing trend over the next decade. In a particular 
scenario that emphasizes the reduction of carbon intensity, 

FIGURE 6

Projected agricultural carbon emission scenarios for Sichuan Province from 2021 to 2030.
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total carbon emissions are projected to peak in 2025, with a 
continuous downward trend thereafter. Consequently, it is 
crucial to focus on controlling carbon intensity to prevent its 
increase and support the ongoing reduction in emissions.

Based on the above conclusions, the following policy 
recommendations are put forward:

 1. Enhanced Management of Livestock and Poultry Manure to 
Facilitate Green Agricultural Practices: Given that emissions 
from livestock and poultry represent the predominant 
contributors to agricultural carbon emissions within Sichuan 
Province, it is crucial to refine the layout and structure of 
livestock and poultry farming across the region. This entails 
advancing towards scaled, standardized, and industrialized 
farming practices. It is recommended to adapt pollutant 
treatment infrastructures to local conditions, amplify 
regulatory oversight, and bolster prevention and control 
measures. Moreover, there is a call for the enforcement of 
corporate ecological stewardship responsibilities, alongside 
incentivizing farmers to adopt green, scalable farming 
methodologies. Such strategies should incorporate the 
resourceful utilization of fecal waste and transition towards a 
model where farmers are motivated to proactively engage in 
fecal waste management, shifting from a predominantly 
government-led approach to a farmer-initiated one.

 2. To foster sustainable growth in fixed assets and optimize the 
returns on investment, decisive measures are essential from our 
government. These measures encompass the enactment of 
structural reforms within the agricultural sector’s supply side, 
aimed at facilitating economic and technological spillovers 
resulting from fixed investments. Furthermore, it is imperative 
for the government to regulate both the aggregate and the 
intensity of agricultural carbon emissions, to establish 
platforms that innovate and nurture entrepreneurship in 
low-carbon initiatives, and to deter the proliferation of 
agricultural projects characterized by high energy 
consumption, significant emissions, and minimal innovation. 
Conversely, the promotion of investments should be directed 
towards the construction of large to medium-sized biogas 
facilities, the standardization of breeding practices, and the 
advancement of the low-carbon seed industry, among similar 
ventures. To realize these objectives, it is advisable to 
strategically allocate existing funds to steer investments toward 
these prioritized areas.

 3. Maximize the Constructive Impact of Technological 
Advancements and Enhance Resource Utilization Efficiency. 
The quest for agricultural carbon emission mitigation extends 
beyond mere reliance on technological advancements. It is 
crucial to harness the full potential of technological progress in 
bolstering carbon emission reduction efforts by enhancing 
resource utilization efficiency, thereby diminishing carbon 
emission intensity. On one hand, systemic and mechanistic 
reforms in agriculture should pave the way for innovating 
management mechanisms dedicated to the development of 
clean technologies. This involves fostering a competitive and 
integrated market system for clean technologies and 

establishing a low-carbon technology innovation consortium 
encompassing enterprises, academic institutions, and research 
organizations within the province. Such initiatives aim to 
stimulate the research and development of economically viable 
low-carbon technologies applicable to agriculture and forestry, 
alongside showcasing the centralized application of these 
technologies. On the other hand, technological advancements 
should be leveraged to judiciously refine the energy utilization 
structure and augment energy efficiency. This entails 
broadening the adoption of clean energy, phasing out outdated 
and energy-intensive agricultural machinery, and ultimately 
curtailing carbon emission intensity.
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