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Phytase-producing rhizobacteria 
enhance barley growth and 
phosphate nutrition
Wided El Ifa 1, Nibras Belgaroui 1,2, Naima Sayahi 1, Imen Ghazala 1 
and Moez Hanin 1*
1 Laboratory of Plant Physiology and Functional Genomics, Higher Institute of Biotechnology, 
University of Sfax, Sfax, Tunisia, 2 Centre for Modern Interdisciplinary Technologies, Nicolaus 
Copernicus University in Toruń, Toruń, Poland

Phosphorus (P) is the second most important macro-element for plant growth, 
and its low availability in soil is a major obstacle to crop production. Inorganic 
phosphate (Pi) is the least available form in the soil, while organic phosphate (Po) 
is the most dominant one, up to 80% of which exists as inositol hexakisphosphate, 
also known as phytic acid (PA) that cannot be absorbed by plant roots unless 
hydrolyzed by microbial phytases. Similar to phosphate-solubilizing bacteria, 
many plant growth-promoting rhizobacteria (PGPR) can play a relevant role 
in phosphate turnover. In our study, we screened a series of PGPR strains for 
phytase activities using PA as a sole source of P. Three strains (named C2, N4, 
and S10) with relatively high phytase activities ranging from 42.84 to 100.55 
Units g−1 were selected for barley growth assays. When barley plants grown in 
poor sandy soil and irrigated with a PA-containing solution were inoculated 
with each of these PGPR isolates, a significant growth enhancement was 
observed. This positive effect was well illustrated by an increase in root growth, 
plant height, and chlorophyll contents. In addition, the inoculated barley plants 
accumulated significantly higher Pi contents in leaves and roots compared to 
non-inoculated plants. Finally, the expression of a number of high-affinity Pi 
transporter genes (PHT1.1, PHT1.4, PHT1.8, and PHT1.6) in inoculated barley 
plants was downregulated especially in roots, compared to non-inoculated 
plants. This difference is most likely due to the bacterial phytases that change 
the P availability in the rhizosphere. In summary, these three strains can improve 
barley growth under phosphate-limited conditions and should be considered 
in developing eco-friendly biofertilizers as an alternative to conventional P 
fertilizers.
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1 Introduction

Phosphorus (P) is one of the most important nutrients needed for plant growth and 
development, and it has a direct effect on the yield and quality of crops. Two forms of P, 
namely, Pi and Po, can be found in the soil, but plants can take up only Pi, which is essential 
for major plant metabolic processes including photosynthesis, respiration, energy metabolism, 
and environmental stress response (Plaxton and Tran, 2011; Chien et al., 2018; Ham et al., 
2018). However, Pi is very lowly available in the soil, while Po is the most dominant form of 
which up to 80% represents phytic acid (PA) that cannot be absorbed by plant roots. Low Pi 
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availability is considered as one of the major limitations for agricultural 
production in many soils (Wang et al., 2010; Zhang et al., 2014). To 
cope with Pi deficiency, P fertilizers are used, but raw materials for 
their production are scarce and their effectiveness is severely limited 
as only 10–30% of the applied P is utilized by plants (Vance et al., 
2003). The remainder portion is rendered unavailable by the formation 
of insoluble complexes of P with cations such as aluminum, iron, or 
calcium, as well as by P adsorption by mineral surfaces and organic 
matter (Kochian et  al., 2004; López-Arredondo et  al., 2017). 
Consequently, an excessive application of P is often required to meet 
the plants’ needs, hence leading to serious water and soil pollution 
(Cordell et al., 2009; Kochian, 2012; Pan et al., 2019).

Plants have developed a series of strategies to increase soil P 
availability. These strategies include morphological and biochemical 
changes at the soil–root interface. For example, increased root growth 
and branching, root hair proliferation, and the release of root exudates 
can increase the plant’s access to Pi from otherwise unavailable sources 
(Raghothama, 1999). In addition, plant roots exhibit phytase activities 
capable of hydrolyzing soil PA. However, all these strategies remain 
insufficient for the effective utilization of Po (Richardson et al., 2000; 
Brinch-Pedersen et al., 2002).

In this context, the use of phosphate-solubilizing bacteria (PSB) is 
gaining importance by increasing the availability of insoluble P to 
plants, while maintaining environmental sustainability. Indeed, it has 
been reported that PSB act through different mechanisms such as 
rhizosphere acidification and/or phytase excretion, resulting in an 
enhanced plant P uptake (Turner et al., 2003; Yu et al., 2011; Manzoor 
et  al., 2017; Wan et  al., 2020; Chungopast et  al., 2021). Phytase-
producing rhizobacteria have been reported to belong to Bacillus, 
Geobacillus, Burkholderia, Enterobacter, Pseudomonas, Serratia, 
Staphylococcus, and Acinetobacter genera (Shedova et  al., 2008; 
Jorquera et al., 2018; Rix et al., 2022). It is worth noting that in the soil, 
many filamentous fungi are also known to produce active phytases 
capable of enhancing plant growth especially those produced by 
Aspergillus, Myceliophthora, Mucor, Penicillium, Rhizopus, and 
Trichoderma species (for review see Richardson et al., 2001; Dailin 
et al., 2019; Corrêa and Araújo, 2020).

Hordeum vulgare (barley) is one of the earliest domesticated cereal 
crops, derived from its wild relative Hordeum spontaneum, with 
domestication occurring approximately 11,000 years ago in the Fertile 
Crescent (Badr et al., 2000). Today, barley is the world’s fourth largest 
cereal crop after maize, rice, and wheat and contributes significantly 
as a food and feed resource, to global food security (Geng et al., 2022). 
In addition, barley is known to contain valuable genetic diversity 
toward adaptation to various environmental constraints (Tao et al., 
2023). However, this does not preclude climate change, and its 
exacerbating effects on stress factors especially drought, high salinity, 
and mineral deficiencies in soil drastically limit global production 
(Sabagh et al., 2019). Moreover, drought results in an alteration of soil 
physiochemical properties and hence leads to reduced mobility and 
plant absorption of individual nutrients such as P (Amtmann and 
Blatt, 2009).

In the present study, a screening strategy was conducted to 
identify phytase-producing rhizospheric bacteria based on qualitative 
and quantitative assays. As a result, three strains exhibiting phytase 
activity and the ability to degrade PA were selected to assess their 
impact on barley seedlings grown in P-poor soil. Our physiological 
and molecular analyses reveal that these selected strains improve 

barley growth and P nutrition from PA as a sole phosphate source. 
Therefore, these phytase-producing strains could be  part of a 
sustainable approach to address low soil P availability for enhancing 
crop production.

2 Materials and methods

2.1 Plant material and growth conditions

The seeds of barley (Hordeum vulgare L. cv. Rihane) were provided 
by the “Institut National des Grandes Cultures, Tunisie.” First, barley 
seeds were surface-sterilized for 15 min in a commercial bleach 
solution containing 3% sodium hypochlorite, washed with sterile 
distilled water three times, and sown on Petri dishes with sterile filter 
paper for germination. One week after germination, seedlings were 
transferred into pots containing an autoclaved soil mixture of sand 
and peat (10:1, v/v) and moved in a growth chamber (at 22–24°C) 
under long-day conditions (16-h light/8-h dark) where growth and 
inoculation assays took place.

2.2 Screening for phytase-producing 
isolates

Thirteen previously isolated bacterial strains (Sayahi et al., 2022) 
were tested for their phytase activity. The screening method consists 
of dropping 10 μL of bacterial suspension (OD = 0.1) from fresh 
colonies on the National Botanical Research Institute’s phosphate 
(NBRIP); glucose (10 g/L), Ca3(PO4)2 (5 g/L); MgCl2W6H2O (5 g/L), 
MgSO4W7H2O (0.25 g/L); KCl (0.2 g/L); and (NH4)2SO4 (0.1 g/L) 
solid medium (Nautiyal, 1999) containing 0.5 mM sodium phytate 
(Na-InsP6, P-8810, Sigma) as a sole P source instead of Ca3(PO4)2 
and incubated for 72 h at 28°C. The strains displaying the ability to 
degrade phytate were discerned through the presence of a surrounding 
visible halo/zone on the agar plates. The solubilization efficiency (SE) 
can be calculated using the formula SE = (halo zone diameter/colony 
diameter) *100 (Nguyen et al., 1992). Subsequently, the surrounding 
halo zone was flooded with Murphy-Riley reagent which contains 
ammonium molybdate solution supplemented with ascorbic acid 
(10%) at room temperature for 5 min. The resulting blue staining 
corresponds to the Pi ions liberated as a result of phytate breakdown, 
and the colonies were considered according to Murphy and Riley 
(1962), as phytase-producing strains.

2.3 Quantitative assay for phytase activity

Among the 13 bacterial strains, 3 strains (named hereafter C2, 
N4, and S10) were selected to measure the phytase activity based 
on the determination of Pi released by the hydrolysis of sodium 
phytate as previously described by Engelen et al. (1994). In brief, 
500 μL of cell suspensions (OD = 0.1) of the selected strains was 
incubated with a buffer containing 4.5 mM sodium phytate in 
0.1 M Tris–HCl (pH 7.5 for S10 and pH5.5 for C2 and N4) 
supplemented with 2 mM CaC12 for 30 min at 30°C. The reaction 
was stopped by adding 750 μL of a 5% (w/v) trichloroacetic acid 
solution, and the released Pi was spectrophotometrically 
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quantified at 700 nm by following the production of 
phosphomolybdate with the color reagent (four volumes of 1.5% 
ammonium molybdate solution in 5.5% sulfuric acid and one 
volume of 2.7% ferrous sulfate solution). One phytase unit (U) is 
defined as the amount of enzyme capable of releasing 1 mmol of 
Pi from sodium phytate per minute under the above 
reaction conditions.

2.4 Inoculation of barley with the selected 
C2, N4, and S10 strains

2.4.1 Bacterial inoculum preparation
To prepare the inoculum, a fresh colony of each strain was 

suspended in 50 mL LB medium and incubated at 30°C under 
constant shaking (180 rpm/min) for 18 h. Then, centrifugation at 
6500 rpm for 20 min was performed, and the resulting pellets were 
washed three times with sterile distilled water and finally 
resuspended in sterilized water to reach a final concentration of 
109 CFU/mL.

2.4.2 Barley inoculation assays under Pi-limited 
conditions

Barley seedlings were transferred into plastic pots containing a 
soil mixture of sterilized sand and peat (Potgrond H-Klasmann) with 
a 10:1 proportion (v/v). These pots, containing two plants each, were 
then arranged into four distinct treatment blocks: 1: non-inoculated 
seedlings and irrigated with tap water; 2: seedlings inoculated with 
one of the selected strains C2, N4, and S10 and watered with tap water; 
3: non-inoculated seedlings watered with PA solution (0.33 mM); 4: 
bacterial- inoculated seedlings irrigated with PA solution. All 
treatments were performed in at least three individual replicates 
(n = 12). The inoculation was performed on the roots of each plantlets 
using 1 mL of cell suspension (109 CFU) as previously described 
(Sayahi et al., 2022). The irrigation with tap water or PA solution was 
repeated every 3 days for the first month and then once a week for the 
second month.

2.5 Measurement of root growth traits, Pi, 
and chlorophyll contents

2.5.1 Evaluation of root growth traits
Primary and lateral roots were characterized by measuring their 

length and number using the Optimas 6.1 image analysis software, as 
described previously (Belgaroui et al., 2022). Leaf and root surface 
area has been analyzed using Fiji software (Schindelin et al., 2012).

2.5.2 Pi contents in roots and leaves
Pi contents in roots and leaves were quantified using the 

molybdenum blue method (Murphy and Riley, 1962). In brief, ion 
extractions from weighed fresh leaves and roots (10–20 mg) were 
performed in water by incubation at 70°C for 30 min. Then, 300 μL of 
the diluted supernatant was mixed with 600 μL of ammonium 
molybdate solution and 100 μL of 10% ascorbic acid. In parallel, a 
standard curve with inorganic phosphate (K2HPO4) was prepared. 
The mixture was incubated at 45°C for 30 min, and absorbance at 
820 nm was measured.

2.5.3 Chlorophyll contents
Chlorophyll a (Chl a), chlorophyll b (Chl b), and total chlorophyll 

(Chl a + Chl b) were examined with a modified method of Arnon 
(1949). The barley leaf samples (0.1 g) were dipped in 80% acetone and 
kept in the dark at 4°C for the extraction of chlorophyll pigment. The 
homogenates were collected and centrifuged at 12000 rpm for 10 min. 
The absorbance of the obtained supernatants was measured using a 
spectrophotometer at 646 nm and 663 nm, and total chlorophyll content 
was calculated according to the following formula.

( )Chl a g / ml 12,7 x A663 – 2,69 x A645µ = .

( )Chl b g / ml 22,9 x A645 – 4,68 x A663µ = .

Total Chl Chla Chlb= +( ).

2.6 Quantitative RT-PCR

The expression levels of Pi deficiency responsive genes including 
the PHT1 family of high-affinity Pi transporters (PHT1.1, PHT1.4, 
PHT1.6, PHT1.8, PHO2, and PHR1) were evaluated in barley roots 
and leaves. Two-month-old barley plants were grown and treated as 
described above, and total RNA was extracted using the TRIZOL 
reagent according to the manufacturer’s recommendations and then 
treated with DNase (Invitrogen) to remove any contaminating genomic 
DNA. cDNA was synthesized from 2 μg total RNA using an oligo (dT) 
primer and M-MLV reverse transcriptase (Invitrogen). Quantitative 
PCR (qRT-PCR) was performed on CFX 96 Touch Real-Time PCR 
System (Bio-Rad) using SYBR Green SYBR® Premix ExTaq 
(TAKARA). The housekeeping gene (HvEF-1α) was used as an 
endogenous reference for expression data normalization (Janská et al., 
2013). The gene-specific primers (Supplementary Table S1) were 
designed from sequences of the respective genes downloaded from the 
National Center for Biotechnology Information (NCBI) using the 
Primer 3 software (version 0.4.0).1

2.7 Bioinformatic analysis

The BLAST search for phytase in the genomic sequences of each 
strain was carried out by using two phytase genes from Serratia 
marcescens KS10 (accession number NZ_CP027798.1) and PSB-15 
(accession number KR133277.1), as alignment queries. MaGe 
software2 was also used to browse the genomes of the strains C2, N4, 
and S10 for other phytase sequences. The Expasy Translate Tool3 was 
used to convert the genomic sequence into a protein sequence. 
Multiple sequence alignments of the deduced amino acid sequences 
with NZ_CP027798.1 or KR133277.1 were performed using the 

1 https://primer3.ut.ee/

2 https://mage.genoscope.cns.fr/microscope/metabolism/metabolicprofil.php?

3 https://web.expasy.org/translate/
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Clustal Omega program.4 HMMER5 analysis allowed the identification 
of the phytase-like domain.

2.8 Statistical analyses

Statistical analyses of the data were performed using a one-way 
analysis of variance (ANOVA) followed by Tukey’s test using 
GraphPad Prism6 software. Only differences with p-values <0.05 were 
considered significant.

3 Results

3.1 Screening for bacterial strains exhibiting 
phytase activity

From a collection of soil PGPR isolates that showed P solubilization 
(Sayahi et al., 2022), we have developed here a screening method for those 
exhibiting phytase activity. Among 13 bacterial strains, six strains showed 

4 https://www.ebi.ac.uk/Tools/msa/clustalo/

5 https://www.ebi.ac.uk/Tools/hmmer/

clear halo zones around the colonies resulting from the solubilization of 
PA added as the sole P source on NBRIP-Pi agar (Supplementary Figure S1). 
Subsequent staining with the molybdate blue reagent revealed that all six 
strains were phytase-producing strains as the colonies turned blue, 
indicating the release of P ions (Figure 1). Three bacterial strains C2, N4, 
and S10 that showed intense blue color were selected. The P solubilization 
efficiency (SE) calculated by measuring the halo zones formed around 
phytase-producing colonies gave rise to the highest value of 70% for C2, 
followed by S10 (66.66%) and N4 (60%; Figure 1B).

To evaluate the phytase activity on the three selected strains, LB 
overnight liquid cultures were used to measure the released Pi from the 
sodium phytate solution at 30°C in a reaction buffer containing 2 mM 
CaCl2 and at pH ranging from 5.5 (for C2 and N4) to 7.5 (for S10). The 
assay conditions allowed us to register variable phytase activities among 
the three bacterial isolates, consistent with the qualitative assay performed 
above. The highest level of phytase activity was observed in C2 
(100.55 U/g) followed by N4 (69.10 U/g) and S10 (42.84 U/g; Figure 1C).

3.2 In silico analysis of the phytase 
sequences in the three selected strains

Genome sequence analysis revealed that the C2 strain belongs to 
Serratia sp. (BioSample SAMN38274870; Sayahi et  al., 2024). The 
genome sequencing has been also initiated for the two other strains, and 

FIGURE 1

Screening for phytase-producing bacterial isolates. (A) Solubilization of phosphate by plant growth-promoting bacteria isolates grown on NBRIP-Pi 
containing PA as sole P source. The blue color around the colonies indicates the released phosphate (Pi) detected with the molybdate blue staining test. A 
purified phytase phyUS417 from Bacillus subtilis was used as a positive control. (B) P solubilization efficiency of the selected isolates (C2, N4, and S10) 
determined based on the calculation of the halo zones formed. (C) Quantitative assay to determine the phytase activity of the selected isolates. The data 
represent the means of three biological and experimental replicates. Different letters indicate that values are statistically different at a p-value of <0.05.

https://doi.org/10.3389/fsufs.2024.1432599
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.ebi.ac.uk/Tools/hmmer/


El Ifa et al. 10.3389/fsufs.2024.1432599

Frontiers in Sustainable Food Systems 05 frontiersin.org

the retrieval of the corresponding 16S rDNA sequences from the draft 
genome allowed us to identify N4 (accession number PP621717.1) as 
Serratia marcescens and S10 as Citrobacter sp. species (accession number 
PP621716.1; Supplementary Figure S2). In addition, through genome 
browsing, we identified in each strain a gene sharing high homology 
with phytase-encoding sequences from Serratia marcescens KS10 
(accession number NZ_CP027798.1) or PSB-15 (accession number 
KR133277.1) strains. The gene size ranges between 1,362 (C2 and N4) 
and 1,365 bp (S10) giving rise to proteins of 453 and 454 a.a. The two 
proteins from N4 and S10 share a strong homology (94% identity) and 
are closely related to KR133277.1 (Supplementary Figure S3A), 
confirmed previously as phytase-secreting bacteria (Zhang et al., 2011; 
Kalsi et al., 2016), while the one from C2 is highly homologous to NZ_
CP027798.1 (Supplementary Figure S3B). In addition, the use of MaGe 
software allowed the identification in the genome of the N4 strain, of 
two other phytase sequences with open reading frames of 1,344 and 
1,362 bp, giving rise to proteins of 447 and 453 a.a belonging to esterase-
like activity of phytase family and phytase-like domain-containing 
proteins, respectively. Remarkably, the phytase-like domain-containing 
protein is 100% identical to the one identified in the C2 strain.

Moreover, protein analysis using HMMER software revealed the 
presence of a conserved phytase-like domain but only in the phytase 
sharing 100% identity between C2 and N4 strains. It should belong to 
the β_propeller class (according to Pfam Interpro) of phytases as the 
phytase-like domain (residues 34–371) is a repeated region that carries 
several highly conserved Glu and Asp residues that most likely 
incorporates the enzymatic activity of the PLC-like phosphodiesterase 
part of the proteins. In addition, the SignalP 6.0 server predicted the 
presence of signal peptides and the position of their cleavage sites in 

the phytase-like domain proteins of C2 and N4. The likelihood of the 
signal peptide was approximately 0.9986, and the location of the 
peptide cleavage site was predicted to be between positions 20 and 21, 
while the probability of the signal peptide for the esterase-like protein 
of the strain N4 was approximately 0.9989, and the location of the 
peptide cleavage site was predicted to be between positions 23 and 24.

3.3 Barley plants inoculated with the 
phytase-producing strains exhibited 
enhanced growth under Pi-limited 
conditions

To evaluate the capacity of the three phytase-producing strains (C2, 
N4, and S10) to promote barley growth under P-limited conditions, 
inoculation assays were performed on 1-week-old seedlings grown in 
pots containing poor soil (sand and peat) without any added P source. 
Barley seedlings were inoculated with one of the selected strains and 
then regularly irrigated either with water or with a PA solution.

Following 8 weeks of plant growth, we can see clearly that the 
three PGPR strains enhance barley growth in the presence of PA 
compared with the non-inoculated control plants. The positive effect 
of these strains on barley growth is best illustrated in root architecture, 
plant height, and leaf area (Figures 2, 3). When grown in the presence 
of PA, the inoculation with either of these three strains resulted in an 
increase of up to 32 and 190% in plant height and leaf area, respectively, 
compared to control plants. In addition, the inoculated barley exhibits 
more vigorous roots with a significant increase in primary root length 
ranging from 20 to 40% (Figure 3A), number of lateral roots (up to 

FIGURE 2

Effect of phytase-producing strains on barley growth under P-limited conditions. (A) Photographs of barley plants were taken after 8  weeks of post-
inoculation with the phytase-producing strains (C2, N4, and S10) and irrigated either with water (-PA) or with a 0.33  mM PA solution (+PA). (B,C) 
Measurements of the shoot height and leaf area of barley plants grown as in A. The data are mean  ±  SD of three individual replicates (n  =  12). Different 
letters indicate significantly different means at p  <  0.05, as determined by one-way ANOVA followed by Tukey’s multiple comparison test.
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45%; Figure 3B), lateral root length (up to 16%; Figure 3C), and most 
significantly in root surface area which was 3.4x higher (N4 strain) 
than that registered in non-inoculated plants (Figure 3D). All these 
observations strongly suggest that the selected phytase-producing 
strains can enhance barley growth in Pi-limited conditions.

3.4 The inoculated barley plants exhibited 
higher Pi and chlorophyll contents under Pi 
starvation

The difference observed at the phenotypic level prompted us to 
further investigate the effect of these three strains on the accumulation 
of Pi in the leaves and roots of barley plants grown under the inoculation 
conditions described above. A clear increase in Pi levels was observed 
in both roots and leaves of inoculated plants irrigated with PA compared 
to non-inoculated control plants or inoculated plants without PA supply 
(Figures  4A,B). For instance, the Pi content in the roots of plants 
inoculated with S10 and irrigated with PA was estimated to 
be 48.65 μmol g-1 FW which is 3.3x and 5x higher than those registered 
in the non-inoculated control barley (14.56 μmol g-1 FW) or barley 
inoculated without PA supply (9.48 μmol g-1 FW), respectively. Barley 
inoculated with N4 or C2 in the presence of PA also displayed a high 
root Pi accumulation reaching 47.25 μmol g-1 FW and 37.57 μmol g-1 
FW, respectively (Figure 4A). Similarly, in leaves, barley plants irrigated 
with PA and inoculated with S10, N4, or C2 strains displayed a higher 
Pi accumulation (25.24, 25.03, and 22.30 μmol g-1 FW, respectively) 
compared to non-inoculated (12.64 μmol g-1 FW) or inoculated control 
plants without PA supply (14.87, 15.29, and 10.17 μmol g-1 FW; 
Figure 4B). These results confirm the potential of these three PGPR 

strains in improving Pi availability most likely through their phytase 
activity on PA substrate, hence increasing Pi contents in barley.

Knowing the relevance of Pi in photosynthesis, we expected that 
the increase in leaf Pi content of inoculated barley could enhance 
photosynthesis efficiency. To confirm this hypothesis, we compared 
the chlorophyll contents between non-inoculated and inoculated 
barley plants in the presence of PA. As shown in Figure  4C, the 
inoculation of barley with either of the three PGPR strains led to a 
significant increase in chlorophyll contents reaching up to 2x higher 
in the presence of the C2 strain.

3.5 The expression of PHT1 transporters is 
downregulated in PGPR-inoculated barley 
under Pi deficiency

We were then interested in checking whether the growth 
promotion and the change in Pi contents observed in barley plants 
following inoculation with the C2, N4, and S10 strains, and 
utilizing PA as the sole source of Pi, can be  associated with a 
change in Pi transport and homeostasis. To this end, we performed 
expression analysis on a subset of barley genes involved in Pi 
transport and signaling. These genes include high-affinity Pi 
transporters belonging to the PHT1 family, acting in roots 
(PHT1.1, PHT1.4, and PHT1.8) or leaves (PHT1.1, PHT1.4, and 
PHT1.6), along with PHO2 (responsible for the root–shoot Pi 
translocation) and PHR1 transcription factor. Our results show 
that there is a significant difference in the expression of all Pi 
transporters (in roots and leaves) in inoculated barley plants grown 
on phosphate-poor soil compared with non-inoculated plants 

FIGURE 3

Effect of phytase-producing strains (C2, N4, and S10) on barley root architecture. (A) Primary root length. (B) Number of lateral roots. (C) Mean lateral 
root length. (D) Root surface area. All measurements were performed on barley plants grown in soil under P-limited conditions 8  weeks after post-
inoculation with the selected strains (C2, N4, and S10). The barley plants were irrigated either with water (H2O) or with a 0.33  mM PA solution (PA). The 
data shown represent the mean  ±  SD of three independent experiments (n  =  12). Different letters indicate significantly different means at p  <  0.05, as 
determined by one-way ANOVA followed by Tukey’s multiple comparison test.
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(Figures 5A,B). Notably, the expression of PHT1.1, PHT1.4, and 
PHT1.8 was significantly downregulated in barley roots grown in 
the presence of PA when inoculated with either of the three PGPR 
strains, compared to non-inoculated barley plants (Figure 5A). 
Similarly, the downregulation of the PHT1.1 and PHT1.4 genes, 
although less significant, was also recorded in the leaves of 
inoculated barley (Figure 5B). This downregulation of the high-
affinity Pi transporters should result from the increased availability 

of Pi in the phosphate-poor soil, following the phytase-mediated 
hydrolysis of PA by the different PGPR strains C2, N4, and S10.

4 Discussion

Phosphorus is essential for plant growth and development. In 
many soils, the predominant phosphorus fraction is organic P, 

FIGURE 4

Inorganic phosphate content in roots and leaves and chlorophyll content in leaves of barley plants. (A) Pi levels in roots. (B) Pi levels in leaves. 
(C) Chlorophyll (Chla+b) content in leaves. Measurements were conducted on barley plants grown in soil under P-limited conditions 8  weeks after 
post-inoculation with the selected strains (C2, N4, and S10) and irrigated either with water (H2O) or with a PA solution (PA). Values are means ± SE of at 
least three biological replicates (n  =  12). Different letters indicate significantly different means at p  <  0.05, as determined by one-way ANOVA followed 
by Tukey’s multiple comparison test.

FIGURE 5

Expression profiles of phosphate transporters genes in shoots and roots of barley tissues after the application of the selected strains (C2, N4, and S10). 
qRT-PCR analysis of the HvPHT1.1, HvPHT1.4, HvPHT1.6, HvPHT1.8, PHO2, and PHR1 genes was carried out on roots (A) and shoots (B) collected from 
barley plants grown in soil under P-limited conditions 8  weeks after being post-inoculated with C2, N4, or S10 strain. The barley plants were irrigated 
either with water (H2O) or with a PA solution (0.33  mM PA). HvEF-1α was used as the reference gene for expression data normalization. Abundance of 
gene transcripts was normalized against their respective expression in control (non-inoculated plants). Data are mean  ±  SD of at least three biological 
replicates (n  =  12). Asterisks indicate a statistically significant difference (p  <  0.05), ANOVA.
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ranging from 50 to 95% (Gerke, 2022). This organic form poses 
a challenge for plant utilization since it cannot be  absorbed 
directly by plant roots. The solubilization of PA, which constitutes 
up to 80% of soil organic P, has attracted significant attention for 
improving P-use efficiency since it can lead to higher yields while 
reducing the amounts of chemical fertilizers, thereby reducing 
environmental impact through minimized P runoff into surface 
water (Raboy, 2020). PA is dephosphorylated by a special class of 
phosphatases such as phytases and acidic/alkaline phosphatases, 
before being assimilated by plants (Tarafdar and Claassen, 1988; 
Tarafdar and Rao, 1996; Richardson et  al., 2001; Yadav and 
Tarafdar, 2003; Richardson et  al., 2009). In the rhizosphere, 
various fungi and bacteria play a crucial role in hydrolyzing this 
organic form of phosphorus (Rodriguez and Fraga, 1999; Singh 
and Satyanarayana, 2011).

Over the last decade, there has been an increased focus on 
isolating and identifying rhizobacteria beneficial to plants for use 
as inoculants (Saharan and Nehra, 2011; Karnwal, 2017; Lihan 
et al., 2021). The present study demonstrates that three PGPR 
strains exhibit relatively high phytase activity and can hydrolyze 
PA when used to inoculate with barley under P deficiency leading 
to improved P nutrition and plant growth. In an initial screening 
of a soil PGPR collection for phytase-producing strains, 
we  employed PA as the sole source of P on the NBRIP agar 
medium. Our results indicate that solubilization halos 
surrounding bacterial colonies were observed in less than half of 
the tested strains. Additional staining with ammonium molybdate 
reagent confirmed that these bacteria have a phytase activity able 
to break down PA, releasing Pi into the growth medium 
(Figure 1A). Three strains (C2, N4, and S10) were selected for 
further analyses because of their relatively high phytase activity 
ranging from 42.8 to 100.55 U/g (Figure 1C).

Genome sequencing of the selected strains revealed that C2 
and N4 should belong to the Serratia genus and S10 is affiliated 
with the Citrobacter genus. In previous studies, several Serratia 
and Citrobacter strains were reported as phytase-producing 
bacteria. The phytases found in Citrobacter (Kim et  al., 2006; 
Patel et al., 2010; Tkachenko et al., 2021) harbor the conserved 
motifs (N-terminal RHGXRXP and the C-terminal HD) 
characteristic of the active center of phytases of the histidine acid 
phosphatase (HAP) family (Van Etten et al., 1991; Wodzinski and 
Ullah, 1996; Kumar et al., 2012). The majority of HAP members 
exhibit optimum catalytic efficiency at approximately pH 4.0–5.5, 
while most of the β-propeller phytases exhibit optimal activity 
within the neutral pH (6 to 8; Oh et al., 2001; Jang et al., 2018). 
In Serratia sp. TN49, two phytases were reported: One belongs to 
HAP and one to β-propeller phytase families with two β-propeller 
phytase domains (Zhang et al., 2011).

Based on phytase quantitative assays, the three PGPR strains 
exhibit optimal in vitro activities at pH 7.5 for S10 and pH 5.5 for 
C2 and N4 strains, in the presence of 2 mM Ca2+, which is 
required for the catalytic activity of all known β-propeller 
phytases (Fu et al., 2008; Jang et al., 2018). Therefore, our results 
confirm that the three strains have a phytase activity that 
effectively hydrolyzes PA under the tested conditions (Figure 1).

The genome analysis of the three PGPR strains studied here 
revealed the presence between one and three putative phytase 
genes that are highly homologous to phytase-encoding sequences 

from Serratia marcescens KS10 (accession number NZ_
CP027798.1) and PSB-15 (accession number KR133277.1) 
strains. Among those, the same phytase sequence of 1,362 bp was 
found in C2 and N4 (the latter has two other phytase genes). The 
corresponding protein of 453 a.a. harbors a phytase-like domain 
(residues 34–371) carrying several highly conserved Glu and Asp 
residues typical of the β_propeller class of phytases that are 
known to have a preference for hydrolyzing every second 
phosphate from its PA substrate (Kerovuo et  al., 2000). This 
phytase is most likely a secreted one as a peptide cleavage site 
(position 20–21) was predicted with a very high probability 
(0.9986).

On the other hand, numerous studies have revealed that 
transgenic plants secreting microbial-origin phytases can 
effectively utilize phytate when cultivated under laboratory 
conditions (Brinch-Pedersen et al., 2000; Ponstein et al., 2002; 
Hong et  al., 2004; Lung et  al., 2005; Bilyeu et  al., 2008; Wang 
et al., 2013; Belgaroui et al., 2016). However, more sustainable 
approaches based on co-cultivating plants with bacteria that 
synthesize and secrete phytases or adding purified microbial 
phytases have shown their effectiveness in improving P plant 
nutrition and growth (Hayes et al., 2000; Li and Zhang, 2001; 
Idriss et al., 2002; Vessey, 2003; Fuentes-Ramirez and Caballero-
Mellado, 2006). In this study, we investigated whether the action 
of phytase-producing strains, used to inoculate barley plants, 
influences growth. As far as we know, such an investigation was 
never reported on barley. Through inoculation assays, we aimed 
to mimic natural plant growth conditions by using poor soil 
where Pi is not or lowly available, and instead, we supplied PA as 
a Po source. The inoculation tests provided insights into the 
impact of each strain on plant morphology, physiology, and 
molecular processes. Our data indicated that the inoculation of 
barley plants with the three PGPR strains, when PA is present as 
the sole source of P, resulted in enhanced growth in the aerial 
part (Figure  2) and especially in terms of root development 
(Figures 2, 3). In a previous study, we have demonstrated that the 
addition of the purified phytase phyUS417 from Bacillus subtilis 
(used here as a positive control in our screening assays of 
phytase-producing bacterial isolates) enhanced the growth of 
Arabidopsis seedlings on P-low medium, with an increase of five 
times in shoot and root biomasses (Belgaroui et  al., 2014). 
Therefore, one would expect that the plant inoculation with this 
phytase-producing strain may enhance growth in soil under 
P-limited conditions.

The modifications in the root architecture, including changes 
in primary root length, lateral root system, and root hair 
structure, are a major strategy adopted to enhance mineral 
acquisition in different plant species (Bates and Lynch, 2000; 
Péret et al., 2011; Smith and De Smet, 2012; Kong et al., 2019; Li 
et al., 2019; Sun et al., 2019). Here, the overall improvement in 
barley root growth (Figures  3A–D) can help in a better 
exploitation of low-fertility soils. In this regard, amending the 
soil with phytase-producing bacteria should be  further 
investigated for setting sustainable cropping practices. 
Interestingly, the improvement of the root growth correlates with 
the presence of the phytase-producing strains and leads to a 
higher P accumulation in roots and leaves (Figures  4A,B). 
Consistently, the increase in P leaf contents was translated into 
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higher chlorophyll contents indicating that the inoculated barley 
plants (especially with C2 strain) are able to maintain relatively 
higher photosynthetic capacity under Pi deficiency (Figure 4C). 
Previous studies have shown that Pi deficiency inhibits 
photosynthesis in barley, soybean, maize, tomato, and other crops 
(Giersch and Robinson, 1987; Jacob and Lawlor, 1992; 
Frydenvang et  al., 2015; Chu et  al., 2018). A recent study has 
demonstrated that Pi deficiency resulted in a decrease in 
phospholipid contents in leaf cell membranes, caused the 
peroxidation of membrane lipids, disrupted the ultrastructure of 
chloroplasts, and further inhibited photosynthesis (Li et  al., 
2022). Photosynthetic rate is of high relevance, especially in flag 
leaves of cereals, which are the main source of carbohydrates for 
grain filling and thus impact significantly the final yield (Fabre 
et al., 2016).

Taken together, our findings clearly demonstrate the ability 
of the three phytase-producing strains to increase the Pi 
availability (via PA hydrolysis enabled by bacterial enzymes) 
which results in higher P nutrition, photosynthetic capacity, and 
growth of barley under Pi-limited conditions. However, the 
exploitation of these strains under field conditions to enhance 
crop production remains a significant challenge as their 
effectiveness may be  influenced by interactions with other 
microorganisms and environmental factors (Hameeda et  al., 
2008; Gontia-Mishra et al., 2017). Recently, it has been shown 
that applying biochar enhances crop productivity by increasing 
soil nutrient supply and microbial activity (Hussain et al., 2017). 
Moreover, biochar seems indeed to enhance soil quality and 
fertility and exert stimulating effects on the soil microbial 
biomass and respiration, which might result in higher grain yield 
(Nasiri et  al., 2023). Remarkably, the application of Serratia 
odorifera, in combination with biochar, was shown to be more 
effective in increasing soil fertility and barley growth under 
drought stress, compared to the use of this PGPR strain alone 
(Gul et al., 2023). Therefore, a future soil amendment with the 
phytase-producing PGPR characterized here in combination with 
biochar can be an attractive approach to monitor barley growth 
not only in poor quality soil but also under drought conditions.

It is noteworthy that Pi uptake is particularly dependent on 
the high-affinity Pi/H+ symporters of the PHT1 (phosphate 
transporter 1) family (Shen et al., 2011). Members of this family 
play a critical role in Pi acquisition from soil solution and 
remobilization throughout plant development. Nine members of 
the PHT1 gene family have been found in the Arabidopsis genome 
(Mudge et al., 2002), 13 in rice (Oryza sativa; Paszkowski et al., 
2002), and eight PHT1 genes in barley (Smith et al., 1999). Under 
P limitation, several PHT1 genes are rapidly induced as they all 
have a P1BS-like cis-element in their promoter, which is 
associated with the response to P-starvation (Rubio et al., 2001). 
In addition, they are under the control of a common 
transcriptional regulatory mechanism, governed by the MYB 
transcription factor PHR1 (for review, see Gojon et al., 2009). In 
this context, we decided to test the impact of barley inoculation 
with these three PGPR on the expression of a number of 
transporters of the PHT1 family. A significant downregulation of 
HvPHT1.1, PHT1.4, and PHT1.8 genes was registered in the roots 
of barley when inoculated with the three PGPR strains 

(Figure 5A), providing further evidence for the increase of Pi 
available in the soil, after PA hydrolysis by the bacterial phytases. 
A similar scenario was reported by Pacak et  al. (2016) where 
HvIPS1, HvPHT1;1, HvPHT1;4, HvPHT1;6, and MIR399c exhibit 
a clear response to Pi deprivation. Following Pi replenishment, a 
reduction in the expression levels of these genes was observed. It 
has been demonstrated that PHO2 [PHOSPHATE2, ubiquitin-
conjugating E2 enzyme (UBC24)] works with nitrogen limitation 
adaptation (NLA) protein, and they are both responsible for 
PHT1;4 degradation via the 26S proteasome (Park et al., 2014). 
PHO2 is involved in defining cellular Pi homeostasis and is 
responsible for the ubiquitin transfer to the protein substrate via 
the E3 enzyme (ubiquitin-protein ligase; Smalle and Vierstra, 
2004). Furthermore, PHO2 is implicated in the degradation of the 
PHT1;1, PHT1;2, PHT1;3, PHT1;4, PHO1, and PHOSPHATE 
TRANSPORTER TRAFFIC FACILITATOR1 (PHF1; Liu et al., 
2012; Huang et  al., 2013). Therefore, it serves as a negative 
regulator of Pi uptake. However, we noticed that the expression 
of PHO2 was not significantly affected in the inoculated barley 
(Figure 5). It is known that Arabidopsis PHO2 exhibits ubiquitous 
expression, and it is only weakly affected by Pi status (Bari et al., 
2006). Similarly, Pacak et  al. (2016) showed that, in the later 
stages of barley development, Pi re-supply did not significantly 
alter the level of PHO2 expression, despite the expression of 
pri-miR399 and, consequently, mature miR399 was strongly 
decreased. PHR1 expression seems also to be unchanged in both 
barley roots and shoots (Figure 5) following inoculation with the 
three PGPR strains. This result is expected and agrees with a 
previous report where PHR1 expression appears to be constitutive, 
regardless of plant P status (Sega and Pacak, 2019). Overall, the 
observed growth promotion and downregulation of high-affinity 
Pi transporters in barley grown in the presence of PA demonstrate 
that Pi could be  the end product of PA degradation by the 
bacterial phytases.

5 Conclusion

The present study reports the positive role of phytase-producing 
PGPRs in improving barley growth and phosphate nutrition. Our data 
clearly show that the phytase activity produced by the three PGPR strains 
is capable to solubilize PA and increase Pi availability for barley grown in 
Pi-limited conditions. This beneficial effect should be leveraged in using 
phytase-producing PGPR to improve soil P fertility and hence to reduce 
the use of conventional P fertilizers, especially in cereal production.
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