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Rapid assessment and prevention of diseases caused by foodborne pathogens 
is one of the existing food safety regulatory issues faced by various countries, 
and it has received wide attention from all sectors of society. When the content 
of foodborne pathogens in food is higher than the limit standard and spreads in 
a certain way, it can cause disease outbreaks, which seriously threaten human 
health or life safety. Developing a novel method to detect foodborne pathogens 
accurately and rapidly is significant. Because of the limitations of complex 
steps, time-consuming, low sensitivity or poor selectivity of commonly used 
methods, a photoelectrochemical (PEC) biosensor based on electrochemistry 
is developed. Its advantages include a low background signal, fast response and 
simple operation. It also has broad application prospects for sensing, which has 
attracted wide attention. However, an organized summary of the latest PEC 
biosensors for foodborne pathogen sensing has not been reported. Therefore, 
this review introduces the recent advances in foodborne pathogen detection 
using PEC biosensors as follows: (i) the construction of PEC biosensors, (ii) the 
research status of PEC biosensors for the detection of foodborne pathogens 
and (iii) the direction of future development in this field. Hopefully, the study 
will provide some insight into developing more mature bio-sensing strategies to 
meet the practical needs of foodborne pathogen surveillance.
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1 Introduction

Foodborne pathogens are microorganisms that enter humans or animals via ingestion and 
cause infectious or toxic diseases (Schirone et al., 2019). Foodborne diseases are an ongoing 
and worldwide public health problem, seriously endangering human life. According to a report 
by the World Health Organization in June 2021, up to 600 million cases of foodborne diseases 
are reported every year. About one in 10 people get sick from eating contaminated food, and 
the situation of foodborne diseases is more severe in developing countries than in developed 
countries (Todd, 2020). Food safety has become a hot topic of common concern across the 
whole of society (Scharff et al., 2016). Although the government is highly concerned about 
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this issue, foodborne illnesses remain stubbornly high. The Centers 
for Disease Control and Prevention (CDC) estimates that one in six 
people in the United States are affected each year, and that up to 3,000 
die from eating contaminated food (Scallan et al., 2011).

Common foodborne pathogens include Listeria monocytogenes 
(Taylor et  al., 2019; Vongkamjan et  al., 2017; Capita et  al., 2019), 
Staphylococcus aureus (S. aureus) (Kümmel et al., 2016; Pollitt et al., 
2018; Argudín et al., 2012), Vibrio parahaemolyticus (Miles et al., 1997; 
Sun et  al., 2016; Li LingZhi et  al., 2019), Salmonella (Paniel and 
Noguer, 2019; Pye et al., 2023; Han et al., 2017) and Escherichia coli 
(E. coli) (Puligundla and Lim, 2022; Munekata et al., 2020; Lima et al., 
2017) (Table  1). These pathogens have different tolerance to the 
external environment, and the foods they contaminate also differ 
(Guldimann and Johler, 2018). The prevention of foodborne diseases 
is mainly achieved by washing food, and keeping raw from cooked 
foods separate (Todd, 2020; Palomino-Camargo et  al., 2018). 
Nevertheless, pathogenic bacteria can still enter processed foods at the 
packaging, transportation and marketing stages, making it challenging 
to eliminate contamination through these means. As a result, there is 
a need to focus on methods for rapid and early detection of pathogenic 
bacteria to significantly reduce the incidence of foodborne diseases.

Currently, traditional detection methods for foodborne 
pathogens include microbial and immunological detection 
(Rajapaksha et al., 2019; Xu et al., 2021). These methods can be used 
for the qualitative and quantitative detection of foodborne pathogens 
with reliable results. However, they are labor-intensive and time-
consuming (Hao and Wang, 2016). In recent years, many optical 
biosensors have been used for the detection of foodborne pathogens 
(Xu et al., 2021, 2023), such as fluorescent (FL) biosensors (Liu et al., 
2021), colorimetric (CL) biosensors (Zhu S. et al., 2021) and surface-
enhanced Raman scatting (SERS) biosensors (Chen et al., 2017). FL 
biosensors are highly sensitive, but the instrument is very expensive 
(Liu et al., 2022). CL biosensors enable rapid detection, while their 
sensitivity is easily limited by color changes (Acunzo et al., 2022). 
SERS biosensors are simple to operate, but SERS probes are easily 
affected by the environment, resulting in signal fluctuations (Zhu 
et  al., 2023). Compared with optical biosensors, electrochemical 
(EC) biosensors have the advantages of high sensitivity and low 
detection limits, and they have been increasingly used to detect 
foodborne pathogens (Wang J. et al., 2024; Yu et al., 2021; Wang 
B. et al., 2023). In particular, photoelectrochemical (PEC) biosensors 
developed based on EC biosensors have been widely explored in 

pathogen detection due to their advantages of high sensitivity, 
simple apparatus, quick detection and low cost (Ding et al., 2021; 
Zhang Z. et al., 2021). Some reviews have focused on the progress in 
PEC bio-sensing technologies and their applications for detecting 
various analyzes, such as metal ions, tumor markers, nucleic acids 
and antibiotics (Shi et  al., 2022; Zhao et  al., 2016; Bettazzi and 
Palchetti, 2018; Dong et al., 2022). Although PEC biosensors have 
been successfully used for the detection of foodborne pathogens 
(Wang X. et al., 2024; Ma et al., 2023; Yang G. et al., 2020; Yang 
H. et al., 2020; Jiang et al., 2024; Zhao et al., 2024; Chen et al., 2024), 
as far as is known, there has been no review of PEC biosensors for 
monitoring foodborne pathogens. Accordingly, this paper reviews 
the application of PEC biosensors in detecting foodborne pathogens. 
As shown in Figure 1, this review introduces the principle of the 
PEC biosensor. It summarizes the research progress of the PEC 
biosensor in the detection of foodborne pathogens in recent years, 
including the design of photoactive materials (such as improving the 
photoelectric conversion efficiency of photoactive materials and 
broadening the spectral absorption of photoactive materials) and 
optimization of sensing strategies (such as interface regulation, 
signal amplification and dual-signal output). Meanwhile, the 
development prospects and challenges of the PEC biosensor in 
detecting foodborne pathogens have been discussed in detail. 
Hopefully, this review provides broad applications and beneficial 
insights for scientists in diverse fields, including food safety 
monitoring, drug detection, medical diagnosis and environmental  
monitoring.

2 Brief overview of PEC biosensors

2.1 The principle of photocurrent 
generation

The PEC method is an emerging analytical technique based on 
EC, which interfaces with many disciplines, such as optics, 
electrochemistry, surface science and solid-state physics (Zhao et al., 
2014; Sun et al., 2022; Zhao et al., 2015). It is generally believed that 
photoactive materials can absorb photons with sufficient energy to 
produce electron–hole pairs. The created carriers are then transferred 
to the electrodes, which generate an electrical signal in the electrolyte 
and convert energy through the redox reaction involved. These unique 

TABLE 1 Common foodborne pathogens and their distribution in possible food category.

Foodborne pathogens Species Food category References

Listeria monocytogenes Gram-positive bacterium
Aquatic products, dairy products, fruit and 

vegetable products

Taylor et al. (2019), Vongkamjan et al. (2017), 

Capita et al. (2019)

S. aureus Gram-positive bacterium Dairy products, meat product, cereal product
Kümmel et al. (2016), Pollitt et al. (2018), 

Argudín et al. (2012)

Vibrio parahaemolyticus Gram-negative bacillus Aquatic products, ready-to-eat seasoning
Miles et al. (1997), Sun et al. (2016), Li LingZhi 

et al. (2019)

Salmonella Gram-negative enterobacterium Dairy products, meat product, cereal product
Paniel and Noguer (2019), Pye et al. (2023), Han 

et al. (2017)

E. coli Gram-negative brevibacterium Meat product, fruit and vegetable products
Puligundla and Lim (2022), Munekata et al. 

(2020), Lima et al. (2017)
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properties of photochemistry have resulted in its widespread use in 
energy harvesting and environmental pollution mitigation (Lv et al., 
2022; Dong et al., 2020).

Notably, the PEC sensor is an innovative and promising 
technology that integrates PEC processes and sensing. Its underlying 
principle is that when the surface of the photoactive materials 
(semiconductor materials, organic photoelectric materials, noble 
metals with various nanostructures, etc.) is irradiated such that the 
energy of the exciting light is greater than or equal to the band gap 
width of photoactive material, photo induced electron transfer 
reaction will occur in the photoactive material (Ge et al., 2019). The 
separation of electron–hole pairs occurs when electrons transition 
from the valence band (VB) to the conduction band (CB). This makes 
the excited photogenerated electrons unstable, and some will 
be  transferred to the electrode surface or electrolyte. In contrast, 
others recombine the photogenerated holes of the VB. If the 
photogenerated electrons at the CB are transferred to the electrode 
surface, an anode photocurrent is generated. A cathode photocurrent 
is generated if the photogenerated electrons at the CB are transferred 
to the electrolyte and consumed by the electron acceptors in 
the electrolyte.

The generally accepted PEC mechanism consists of four successive 
steps: (i) the absorption of photons, (ii) the separation of electron–hole 

pairs, (iii) the migration and recombination of electron–hole pairs and 
(iv) the utilization of electron–hole pairs. This process involves the 
generation of electrical signals at the interface and active participation 
in redox reactions (Sivula and van de Krol, 2016; Zang et al., 2017). The 
cumulative effect of these processes determines both the photoelectric 
conversion efficiency and the strength of the output signal (Figure 2A). 
When the concentration of the target changes, the electrical signal will 
change accordingly, so the target can be  quantitatively detected 
through the change in the PEC signal. Current PEC sensors are 
basically amperometric biosensors (Wang et al., 2018). The presence 
of the analyte can cause a change in the photoactive material or 
electrolyte environment, which can affect one or more of the above 
processes. This results in a change in the PEC signal and facilitates the 
quantitative analysis process. Therefore, the detection signal can 
be processed by a variety of methods, which provide an effective way 
to detect different targets (Shu and Tang, 2019).

2.2 Composition and characteristics of the 
PEC biosensor

The PEC detection system is shown in Figure 2B. This system 
consists of three parts: an excitation light source, a test device 

FIGURE 1

Summary and perspectives of PEC biosensors for monitoring foodborne pathogens.

https://doi.org/10.3389/fsufs.2024.1432555
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Dong et al. 10.3389/fsufs.2024.1432555

Frontiers in Sustainable Food Systems 04 frontiersin.org

TABLE 2 Characterization of PEC analytical properties based on different photoactive materials or signal amplification strategy for the determination of 
foodborne pathogens.

Foodborne 
pathogens

Photoactive materials Signal amplification 
strategy

Linear range 
(CFU/mL)

LOD 
(CFU/mL)

Ref.

S. aureus ZnS-Ag2S \ 1.0 × 101 ~ 1.0 × 106 2 Yang et al. (2020)

S. aureus ZnS/CdS/ITO \ 1.0 ~ 4.0 × 103 1 Yang et al. (2019)

S. aureus FePor-TPA dual-mode detection 1.0 × 101 ~ 1.0 × 108 8.73 Zheng et al. (2023)

Vibrio parahaemolyticus Bi2WO6 and Ag2S \ 3.2 × 102 ~ 3.2 × 108 40 Hou et al. (2021)

Vibrio parahaemolyticus Ho3+/Yb3+TiO2 with CdSe QDs \ 1.0 × 102 ~ 1.0 × 108 25 Hao et al. (2019)

Salmonella Au/Bi2MoO6/V2CTx \ 1.82 × 102 ~ 1.82 × 108 26 Jiang et al. (2024)

E. coli O157:H7 CdS/ITO
MnO2 acts as an interface 

regulator
1.0 × 101 ~ 5.0 × 106 3 Yang et al. (2020)

E. coli O157:H7 WO3/Bi2S3 \ 1.5 × 102 ~ 1.5 × 108 56 Zhao et al. (2024)

E. coli O157:H7 Au NPs/g-C3N4 \ 1.0 × 102 ~ 1.0 × 106 30.5 Chen et al. (2024)

(three-electrode system and electrochemical workstation) and a 
signal output device (Shu and Tang, 2019). Compared with EC 
biosensors, PEC biosensors have two key elements: (i) photoactive 
materials (Dini et al., 2016; Yan et al., 2021) and (ii) bio-recognition 
elements (Mitsubayashi et al., 2022; Cesewski and Johnson, 2020). 
Photoactive materials have a photoelectric conversion effect. 
Bio-recognition elements include enzymes, antibodies and 
nucleic acids.

In PEC detection, light is used as the excitation source to excite the 
photoactive substance, and the electrical signal generated by 
photoexcitation is the detection signal. Because the excitation signal and 
detection signal of the PEC process belong to different energy forms, 
the background of the sensing signal is lower than that of the traditional 
electrochemical method, and the high signal-to-noise ratio is conducive 
to further reducing the detection limit (Jiang et al., 2021). Due to the 
uniqueness of the bio-recognition elements, a specific biological 

reaction occurs with the target. The electrochemical workstation and 
signal output device are easy to integrate and miniaturise, so the 
technology has the numerous benefits of simple operation, fast response 
and portable equipment (Fu et al., 2020; Tao et al., 2023).

3 Construction of PEC biosensors for 
sensitive detection of foodborne 
pathogens

Establishing a rapid and sensitive PEC analytical method is one of 
the important means of ensuring global food safety and minimizing 
public health problems. Currently, most studies on the PEC detection 
of foodborne pathogens mainly focus on improving the performance 
of photoactive materials and optimizing sensing strategies, as shown 
in Table 2.

FIGURE 2

(A) Electron–hole generation and transfer as well as possible recombination pathways on the photoelectrode: (i) photon absorption, (ii) electron 
transfer, (iii) electron–hole recombination. (iv) For n-type semiconductors, the electrons in the CB flow to the electrode and the photogenic holes in 
the VB oxidise the reducing substance in the electrolyte to produce the anode photocurrent. (v) For p-type semiconductors, the electrons of the 
electrode flow to the photogenerated holes in the VB and the photogenerated electrons in the CB reduce the oxidising substances in the electrolyte, 
resulting in the cathode photocurrent. (B) Composition of PEC detection system.

https://doi.org/10.3389/fsufs.2024.1432555
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Dong et al. 10.3389/fsufs.2024.1432555

Frontiers in Sustainable Food Systems 05 frontiersin.org

3.1 Improving the performance of 
photoactive materials

The critical part of a PEC biosensor is the photoelectric 
conversion unit. Therefore, selecting the photoactive material is a 
key factor in the sensing performance of a PEC sensor. To date, 
different types of photoactive materials with distinct energy levels 
have been effectively utilized to develop PEC biosensors. For 
example, inorganic semiconductor materials (metal oxides and 
metal sulphides, etc.) (Wang et al., 2018; Zhu et al., 2019; Shu et al., 
2018), organic small molecules, organic polymers and other 
common organic semiconductor materials (Zhu et  al., 2015; 
Haddour et  al., 2004; Zhou et  al., 2019), graphite-phase carbon 
nitride, metal–organic frameworks, perovskites, quantum dots 
(QDs) and other new photoactive materials (Yang X. et al., 2019; 
Zhang G. et al., 2018; Li et al., 2019; Shi et al., 2018) have attracted 
extensive research interest due to both their optical and electrical-
related properties. However, due to the shortcomings of a single 
photoactive material, such as a wide band gap, poor photon 
absorption ability or toxicity, it is challenging to meet the 
requirements for actual analysis and testing. Thus, it is necessary to 
improve the performance of photoactive materials to obtain high 
photoelectric conversion efficiency by speeding up electron transfer 
and broadening spectral absorption.

3.1.1 Improving the photoelectric conversion 
efficiency of photoactive materials

As mentioned above, to address these shortcomings of a single 
photoactive material, various strategies have been employed to 
improve the photoelectric conversion efficiency of individual 
semiconductors, such as doping heteroatoms or forming 
semiconductor heterojunctions (Sheng et al., 2020; Li et al., 2024). 
Element doping in the photoactive material effectively regulates the 
semiconductor energy band, reducing the band gap energy and 
inhibiting photogenerated electron–hole pair recombination (Raut 
et al., 2017). For example, Hou et al. (2021) combined rare earth-
doped Bi2WO6 and Ag2S as photoactive materials. The doped rare-
earth ions in the Bi2WO6 matrix can effectively inhibit the 
recombination of photogenerated electron–hole pairs and improve the 
photocurrent response of Bi2WO6, thereby developing a PEC 
aptasensor for the detection of Vibrio parahaemolyticus (Figure 3A). 
The constructed PEC aptasensor exhibited excellent specificity, 
stability and reproducibility. By co-doping TiO2 with Ho3+ and Yb3+, 
Hao et al. (2019) broadened the spectral response range of TiO2 to the 
infrared region, improved the photocurrent response of TiO2 and 
realized the sensitive detection of Vibrio parahaemolyticus. At the 
same time, building a heterostructure with two semiconductors is 
considered one of the most popular methods for obtaining 
photoelectrodes with the desired properties (Low et al., 2017). Band 

FIGURE 3

(A) Schematic diagram of photogenic electron transfer mechanism of aptamer sensor (Hou et al., 2021). (B) Illustration of the PEC detection of S. 
aureus (Yang H. et al., 2019). (C) Schematic of the PEC process on a GMS-modified electrode (Ge et al., 2022). (D) PEC response of UCNPs@SiO2@
Ag/C-g-C3N4 under NIR light (980  nm) and the fabrication process of a PEC sensor for the detection of E. coli (Yin et al., 2022). Ascorbic acid (AA), 
cysteine (Cys), rGO-MoS2 sheets (GMS), up-converting nanophosphors (UCNPs), bovine serum albumin (BSA).
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structure and energy level matching are the main considerations in 
constructing semiconductor–semiconductor heterojunctions (Long 
et al., 2021). Zhao et al. (2024) modified Bi2S3 through continuous ion 
layer adsorption and reaction on the WO3 electrode surface to form 
heterojunction, reduced electron–hole pair complexation and realized 
rapid detection of E. coli. Yang et al. (2019) synthesized ZnS/CdS 
heterojunction nanoparticles by electrodeposition on an ITO 
electrode in one pot, achieving the sensitive detection of S. aureus. The 
linear range of PEC detection for S. aureus is 1.0 ~ 4.0 × 103 CFU/mL 
under ideal circumstances. The detection of S. aureus in the milk and 
juice samples was effectively accomplished using the proposed method 
(Figure 3B). These results indicate that this is an effective strategy to 
enhance the photocurrent signal by element doping or forming a 
heterojunction. In addition, it is expected to further improve the 
performance of PEC biosensors by introducing new doping elements 
(such as lanthanide) (Arumugam et al., 2022) or constructing new 
heterojunctions (such as S-type heterojunctions) (Xiao et al., 2023).

3.1.2 Widening the optical absorption range of 
photoactive materials

Up to now, plenty of efforts have been devoted to investigating 
photosensitive materials. Most current PEC sensors are excited by 
ultraviolet–visible (UV–Vis) light (Chen et al., 2020), which hampers 
their future applications in bioanalysis (e.g., in vivo detection) due to 
the intrinsic limitation of short penetration of UV/Vis light. The 
efficient utilization of sunlight, especially wavelengths in the near-
infrared (NIR) region, is particularly important for PEC biosensors, 
as NIR light accounts for the largest proportion of sunlight, at nearly 
50% (Hsieh et al., 2020). In contrast to UV light, NIR light exhibits 
minimal phototoxicity and is highly compatible with living organisms. 
This advantageous biocompatibility makes NIR light an ideal choice 
for PEC biosensors that involve the detection of biological 
macromolecules (Lv et al., 2020). NIR PEC sensing materials have 
mainly been divided into direct NIR photoactive materials and 
indirect NIR photoactive materials (Yang et al., 2021). Direct NIR 
photoactive materials were constructed using narrow-bandgap 
photoactive materials, and indirect NIR photoactive materials were 
constructed using up-conversion nanomaterials.

The semiconductor bandgap directly affects the light efficiency of 
a photocatalysis reaction. A semiconductor with a wider bandgap can 
absorb higher-energy photons. As the semiconductor absorbs short 
wavelengths of light with high photonic energy, it can take advantage 
of only the smaller range of the solar spectrum concentrated in the UV 
region. Conversely, a semiconductor with a narrower bandgap can 
absorb lower-energy photons. Narrow-bandgap semiconductors 
absorb long wavelengths of light, thus utilising the solar spectrum 
from the Vis region to the NIR region (Feng et al., 2022). Therefore, 
controlling the narrow bandgap of semiconductors benefits the 
absorption of NIR light. Ge et al. (2022) reported an NIR-response 
PEC immunosensor for the ‘on’ analysis of E. coli O157:H7 under 
980 nm light irradiation (as shown in Figure 3C). The form of narrow-
band gap MoS2 is regulated by rGO to promote carrier generation and 
migration. On the sensing platform, E. coli O157:H7 was detected in 
concentrations ranging from 5.0 ~ 5.0 × 106 CFU/mL, and the LOD 
was only 2.0 CFU/mL. Subsequently, this research group combined 
NIR-responsive materials with polar-flipping strategies in their 
follow-up work, expanding the scope of application of NIR-responsive 
PEC materials (Ge et al., 2023).

The construction of the indirect NIR PEC sensor is based on the 
inverse Stokes effect of the up-conversion material, which converts 
incident light with long wavelengths into emitted light with shorter 
wavelengths (Sakamoto et al., 2022). Due to its long luminous life, 
strong optical stability and large anti-Stokes displacement, the 
up-conversion material can be introduced from FL to the PEC sensing 
field as a light source converter (Wang G. et al., 2023). Combining it 
with appropriate PEC active materials can establish an indirect NIR 
PEC sensing platform. Yin et  al. (2022) established an NIR PEC 
sensing platform for the ultra-sensitive detection of E. coli O157:H7 
by assembling a flexible conducting paper electrode with core-shell 
up-converting nanophosphors (UCNPs)@SiO2. As shown in 
Figure 3D, the presence of Ag nanoparticles significantly boosted the 
up-conversion luminescence of the UCNPs, promoting the separation 
and transport of photoelectrons through local surface plasmon 
resonance effects. The NIR PEC sensor successfully detected E. coli 
O157:H7 with a detection limit as low as 2.0 CFU/mL. It was effectively 
utilized to determine the presence of E. coli O157:H7 in contaminated 
pork, cabbage and milk samples. In the past two decades, the PEC 
analysis has received extensive attention and has made significant 
progress. However, research on NIR PEC sensing is still in its initial 
stage. Future research could focus on developing new NIR light-
responsive materials and miniaturized photoelectrodes and further 
applying them to foodborne pathogen analysis.

3.2 Optimising the sensing strategy

In addition to preparing photoactive materials, the design of the 
sensing strategy is another key aspect that determines the performance 
of a constructed PEC sensor. At present, in the construction of various 
PEC biosensors, sensing strategies can be divided into three categories: 
(i) interface regulation, (ii) signal amplification strategy and (iii) signal 
output mode.

3.2.1 Interface regulation
The interface interaction in the PEC analysis was directly correlated 

with the performance of the PEC system. Precisely regulating the 
interface holds significant importance in achieving accurate detection, 
mainly through the control of the sensor recognition interface and the 
photoelectric conversion interface of the sensor (Kuang et al., 2017). 
For the recognition interface of a sensor, selecting a suitable 
immobilisation technique is crucial in the preparation of a sensor 
(Naresh and Lee, 2021). Bio-recognition elements in conventional PEC 
biosensors are mainly fixed to the electrode surface by attaching 
reagents. However, this approach may increase non-specific adsorption, 
leading to reduced sensitivity and limiting the ability to detect targets 
(Li et al., 2018). This adverse effect can be avoided by modifying the 
components (e.g., adding groups) or enhancing specific adsorption 
(e.g., designing photoactive materials with abundant active sites). Hao 
et al. (2019) detected Vibrio parahaemolyticus by sensitizing Ho3+/Yb3+ 
TiO2 with CdSe QDs. The antibody was immobilized by a coupling 
reaction between the -COOH group of the CdSe QDs and the -NH2 
group of the antibody of Vibrio parahaemolyticus (Figure  4A). 
Chemical bonds resulted in orderly and firm binding of the antibody. 
The detection limit of the constructed PEC immunosensor was as low 
as 25 CFU/mL, and the detection range was as wide as 
1.0 × 102 ~ 1.0 × 108 CFU/mL. Generally, the PEC sensing interface is 
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affected by interfacial charge recombination and interfacial reaction 
kinetics (Xin et al., 2022). Therefore, designing photosensitive materials 
with different component interfaces in close contact and abundant 
active sites may be an effective method to accelerate charge transfer. 
Given the homogeneously distributed pores, good biocompatibility 
and rich functionality, covalent–organic frameworks (COFs) are widely 
utilized as platforms for fabricating biosensors to sensitively analyze 
various analytes. Huo et  al. (2023) established a novel Cu2O-
constrained photoactive COF network as a sensitive and selective 
platform for the PEC detection of E. coli (Figure  4B). The COF 
synthesized using 1,3,5-tris(4-aminophenyl)-benzene (TAPB) and 
1,3,5-triformylphloroglucinol (Tp) as building blocks acted as the 
scaffold for encapsulating Cu2O nanoparticles (denoted as Cu2O@
TAPB-Tp-COF). Given the high photoelectric conversion efficiency, 
large porous structure, rich functionality and encapsulation ability 
towards metal nanoparticles of Cu2O@TAPB-Tp-COF, the 
manufactured PEC aptasensor exhibited an ultralow detection limit of 
2.5 CFU/mL within a range of 1.0 × 101 to 1.0 × 104 CFU/mL toward 
E. coli. In PEC sensing, the recognition and photoelectric conversion 
interfaces play a crucial role in charge recombination and transfer 
dynamics. Therefore, it is necessary to explore electrode interfaces 
with more active sites and more effective biological 
stationary technology.

3.2.2 Signal amplification
For PEC detection, quantitative detection is usually achieved by 

photoelectron transfer at the electrode/electrolyte interface and 
photocurrent response after interface changes (Shu and Tang, 2019). 
However, due to the influence of substrate in food, it is challenging to 
achieve sensitive detection of trace objects. Signal amplification 
strategies are essential in developing a highly sensitive PEC 
immunoassay system. Moreover, gaining a profound understanding 
of PEC signal amplification strategies will significantly enhance the 
development of advanced sensors. Standard signal amplification 
strategies include enzyme-mediated catalytic precipitation (Song et al., 
2023) and DNA amplification (Yuan et al., 2020).

Enzyme-mediated catalytic precipitation is a simple and effective 
method of producing insoluble products on the electrode surface, 
resulting in changes in the photocurrent signal (Zhuang et al., 2015). 
However, natural enzymes have some problems, such as poor stability, 
high cost and harsh storage conditions. To overcome these 
shortcomings, nanozyme, a nanomaterial with enzyme-like properties, 
has emerged as the most promising alternative due to its good stability 
and low cost (Chi et al., 2024; Wang et al., 2020). Luo et al. (2022) used 
a single layer of Cu-C3N4 nano-enzyme as the signal amplifier for the 
highly selective and ultra-sensitive detection of S. aureus through the 
steric hindrance effect. The Cu–C3N4@Apt nanozyme acted as a 

FIGURE 4

(A) Schematic illustration of the proposed PEC biosensor fabrication procedure and electron-transfer mechanism of CdSe QDs–sensitised Ho3+/Yb3+-
TiO2 PEC sensor in AA electrolyte (Hao et al., 2019). (B) fabrication of the Cu2O@TAPB-Tp-COF-based PEC aptasensor for the detection of E. coli (Huo 
et al., 2023). 1,3,5-tris(4-aminophenyl)-benzene (TAPB), 1,3,5-triformylphloroglucinol (Tp), covalent–organic framework (COF).
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peroxidase to catalyze the oxidation of 4-chloro-1-naphthol (4-CN) 
to produce an insoluble precipitate on the electrode surface and 
resulted in a significant decrease in photocurrent. Based on the signal 
amplification of Cu-C3N4@Apt nanozyme, a PEC sensor was 
successfully constructed to detect S. aureus (Figures  5A–C). The 
sensor had a linear range of 1.0 × 101 ~ 1.0 × 108 CFU/mL with LOD as 
low as 3.4 CFU/mL. Additionally, the ability of the sensor to detect 
S. aureus that had been added to orange juice and milk was also 
verified, and the recovery rate was 91% ~ 113%. Enzyme-mediated 
catalytic precipitation has been employed as an effective and simple 
signal amplification strategy owing to its inhibition effect on interfacial 
mass and electron transfer. However, most enzyme-mediated catalytic 

precipitation reactions belong to the signal-off mode, resulting in 
limited signal variation.

To detect trace or even trace objects, a DNA amplification strategy 
was introduced into the construction process of the PEC biosensor. 
Currently, the DNA amplification strategy applied in the PEC 
biosensor mainly includes hybridization chain reaction (HCR) (Zong 
et al., 2024) and rolling circle amplification (RCA) with nuclease-
assisted recycling amplification (Zhang K. et al., 2018). Generally, 
these strategies amplify photocurrent signals by expanding DNA 
fragments, thus enhancing the number of sensitisers and mimetic 
enzymes. Zhu et  al. (2021) constructed a PEC aptasensor using 
exonuclease I–assisted amplification and the initial identification of 

FIGURE 5

Schematic diagram showing (A) synthesis of Cu–C3N4–TiO2. (B) preparation of Cu–C3N4@Apt. (C) construction of PEC sensor and detection of  
S. aureus (Luo et al., 2022) and (D) working mechanism of the sensors (Zhu L. et al., 2021). Glutaraldehyde (GLD), F-doped Tin Oxide (FTO).
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aptamers. As shown in Figure 5D, WO3 was used as the photoactive 
material. In contrast, the sensitization effect of CdTe QDs and the 
shear impact of exonuclease I  were used to amplify the signal, 
achieving highly sensitive detection. The LOD was 45 CFU/mL in the 
concentration range of 1.3 × 101 ~ 1.3 × 107 CFU/mL. This construction 
strategy provides a novel approach for the identification of Listeria 
monocytogenes. The DNA amplification strategy can effectively 
improve the sensitivity of the PEC biosensor, but several deficiencies 
still hinder its further development, such as its complicated operation 
and high cost.

3.2.3 Dual-mode detection platform
The PEC method has unique advantages and characteristics 

(Zhao et  al., 2015). However, with the increasing demand for 
sensitivity and accuracy in detecting foodborne pathogens, single-
mode biosensors are susceptible to various factors, such as different 
manual operation, unstable experimental environments and 
differences in substrate morphology and loads from batch to batch. 
Therefore, a new output signal is introduced, and dual-mode 
biosensors are developed. This can simultaneously introduce dual-
channel detection into the recognition system, allowing multiple 
response signals to be  output under the same or different test 
conditions. In this case, each signal was independent and free from 
interference. Therefore, the experimental results can be mutually 
verified, further improving the accuracy. In the case of a difference 
in the sensitivity of the two detection modes, the detection range of 
the analytes can be broadened, thus realizing the primary screening 
and sensitive detection of the samples (Zhang J. et al., 2021). Zhang’s 
team built a CL and PEC dual-mode biosensor for S. aureus assay 
based on Porphyrin-Based Porous Organic Polymer (FePor-TPA) 
(Zheng et al., 2023). As shown in Figure 6A, on the one hand, the 2D 
FePor-TPA thin film shows a sensitive photocurrent response and 
outstanding catalase catalytic activity, which can decompose H2O2 
to O2. The produced O2 as an electron donor further improved the 
photoelectric signal of the 2D FePor-TPA thin film. On the other 
hand, under acidic conditions caused by gluconic acid, FePor-TPA 
showed excellent peroxidase activity, which can oxidize TMB 
(Tetramethylbenzidine) to a chromogenic product. Then, a 
CL-detecting platform was realized. During the detection process, 
more targets generated more H2O2 and gluconic acid. As a result, a 
‘signal-on’ and dual-mode detection platform with high sensitivity 
and selectivity was constructed for detecting S. aureus. Liu et al. 
(2023) combined PEC and SERS to construct a dual-mode biosensor. 
A photoactive heterostructure was formed by combining C3N4 and 
MXene via simple electrostatic self-assembly, as they possess well-
matched band-edge energy levels. Subsequently, in situ growth of 
gold nanoparticles on the formed surface resulted in better PEC 
performance and SERS activity because of the synergistic effects of 
surface plasmon resonance and the Schottky barrier (as shown in 
Figure  6B). Experimental results revealed that the effective 
combination of PEC and SERS was achieved for amplification 
detection of S. aureus with a detection range of 5.0 ~ 1.0 × 108 CFU/
mL (PEC) and 1.0 × 101 ~ 1.0 × 108 CFU/mL (SERS) and a detection 
limit of 0.70 CFU/mL (PEC) and 1.35 CFU/mL (SERS), respectively 
(Figure 6C). Dual-mode biosensors were beneficial to compensate 
for the shortcomings of single-mode biosensors, such as large assay 
consumption, less information acquisition and poor results accuracy. 
The construction of more types of dual-mode biosensors by 

combining PEC with other analytical methods (FL, EC, etc.) has 
received increasing attention.

4 Conclusion and perspective

Over the past few decades, methods for detecting foodborne 
pathogens have developed rapidly. With the continuous 
exploration of photoactive materials and sensing strategies, PEC 
biosensors with strong specificity and high sensitivity have 
gradually attracted increasing attention. This review summarizes 
the progress of the PEC biosensor in detecting foodborne 
pathogens in recent years. The main focus is on the design of 
photoactive materials (improving the photoelectric properties of 
materials and expanding the spectral absorption range of 
materials) and the construction of sensing strategies (realizing the 
effective fixation of target objects and signal amplification). The 
PEC biosensor has reached very low detection limits for some of 
the major foodborne pathogens in food, such as S. aureus and 
E. coli. Moreover, the capability and accuracy of actual sample 
analysis and its application in detecting foodborne pathogens have 
been demonstrated. Compared to the results of traditional 
techniques, the PEC biosensor exhibits good accuracy, confirming 
the effectiveness of this method for real sample detection. 
Importantly, this method will provide an ideal alternative for the 
rapid, ultra-sensitive and selective detection of foodborne 
pathogens in food.

Compared with traditional approaches to electrochemical and 
spectral analysis, PEC sensing technology is still in the initial stage 
of development due to its short history. The following strategies 
may provide new possibilities for the detection of 
foodborne pathogens.

4.1 Dual-photoelectrode self-powered PEC 
biosensors

Traditional PEC sensors are mostly single-photoelectrodes, which 
have certain limitations. For example, the photoanode may react with 
reducing substances in the sample, and the photocathode photoelectric 
response is poor. To solve these problems, developing dual-
photoelectrode self-powered sensors has become an attractive strategy 
that eliminates the effect of reducing substances and enables 
sensitive detection.

4.2 High-throughput detection

It is common to perform PEC sensing on a single interface for 
single analyte detection, which limits detection efficiency and is not 
suitable for rapidly screening mass samples. Selective and sensitive 
quantification of multiple analytes in a system can significantly reduce 
the cost of detection and improve the efficiency of analysis. It is highly 
desired in practical application. Designing sensing arrays coupled with 
the light-addressing strategy is an effective method. For this strategy, 
the concentration of different targets can be easily detected in turns by 
merely moving the light source from one sensing area to another. At 
the same time, a higher throughput can be conveniently obtained by 
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FIGURE 6

(A) Principle of the constructed dual-mode immunosensor for S. aureus detection and performance of the biosensor (Zheng et al., 2023). 
(B) Schematic illustration of the dual-mode sensing platform and performance of the biosensor (Liu et al., 2023). Porphyrin-based porous organic 
polymer (FePor-TPA), vancomycin (Van), antibody (Ab).
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merely enlarging the size of the substrate electrode and increasing the 
number of separated sensing zones.

4.3 Portable commercialization

The ultimate goal of all developed PEC bio-sensing devices is to 
achieve commercialization. However, most current efforts are being 
conducted in laboratory settings, with limited exploration in real-
world settings. Portable PEC analyzers have great potential for 
environmental monitoring and have attracted widespread attention. 
Developing split-type PEC biosensors and integrating PEC bio-sensing 
with arrays, microfluidics and chips would contribute to high-
throughput and automation. Additionally, PEC sensors are used in 
combination with mobile phones to enable intelligent detection. In 
summary, with the rapid development of nanotechnology and 
biotechnology in recent years, PEC analysis will play a more critical 
role in the field of food safety in the future.
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Glossary

AA ascorbic acid

BCP biocatalytic precipitation

CDC Centers for Disease Control and Prevention

CB conduction band

COP covalent–organic polymer

COF covalent–organic framework

CL colourimetric

E.coli Escherichia coli

EC electrochemical

FL fluorescent

HCR hybridisation chain reaction

ITO Indium tin oxide

LOD limit of detection

N-GQDs Nitrogen-doped graphene quantum dots

NIR near-infrared

NC nanocluster

PEC photoelectrochemical

FePor-TPA Porphyrin-Based Porous Organic Polymer

QDs quantum dots

RCA rolling circle amplification

rGO Reduced Graphene Oxide

S. aureus Staphylococcus aureus

SERS Surface-enhanced Raman scatting

TMB tetramethylbenzidine

TAPB 1,3,5-tris(4-aminophenyl)-benzene

TAPT 2,4,6-Tris(4-aminophenyl)-1,3,5-Triazine

Tp 2,4,6-trihydroxy-1,3,5-benzenetricarbaldehyde

UV–Vis ultraviolet–visible

UCNPs up-converting nanophosphors

VB valence band

4-CN 4-chloro-1-naphthol
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