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Maximizing farm resilience: the 
effect of climate smart 
agricultural adoption practices on 
food performance amid adverse 
weather events
Raza Ali Tunio , Dongmei Li * and Nawab Khan 

College of Management, Sichuan Agricultural University, Chengdu, China

Introduction: Global climate change (CC) significantly impacts sustainable 
food systems and the agricultural sector, primarily through increasing adverse 
weather events. This study aims to explore the adaptation strategies farmers 
use to address these challenges and evaluate the effectiveness of climate-smart 
agricultural (CSA) practices on food performance.

Methods: We collected data from 720 crop farmers located in three provinces 
of Pakistan using a random sampling method. To address potential biases, 
this study employed the endogenous switching regression (ESR) model. This 
model effectively addresses endogeneity and selection bias by considering both 
observable and unobservable characteristics.

Results: Study findings indicate that CSA practices substantially enhance net 
farm returns, reduce volatility, and mitigate downside risks. The analysis also 
highlights key features affecting the acceptance of CSA practices, including 
higher education, age, climate information, and availability of agricultural 
extension services.

Discussion: These insights are essential for policymakers, offering a framework 
for informed decision-making to tackle CC’s effects on food production, 
improve living standards, and enhance global food security.
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1 Introduction

About 80% of the world’s poorest people live in rural areas and depend on agriculture for 
their livelihoods and food security. This sector is the primary source of income for about 70% 
of the global poor and employs around 1.3 billion smallholder farmers (Food and Agriculture 
Organization, 2017; Agbenyo et al., 2022). However, with the world population expected to 
reach 9.7 billion by 2050 and surpass 10 billion by the century’s end, agriculture will play a 
crucial role in meeting the demands of this growing population (Godfray et al., 2010). As well, 
global warming trend, with average temperatures expected to rise by 0.2°C over the next three 
decades. The agricultural sector and its related activities make a sustainable contribution to 
the rising greenhouse atmosphere (IPCC, 2007; Arora et al., 2019). Climate change (CC) forces 
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agriculture to transition (Branca et al., 2011; Agbenyo et al., 2022). 
Farmers need to improve their capacity and stability in order to adapt 
effectively to the environment. It is important to note that while CC 
impacts all regions, its often-imperceptible influence on food 
production and agriculture poses a particularly severe threat to 
developing nations, especially in Asia and Africa. These areas have 
been characterized by high temperatures and slow development and 
are vulnerable to their impact (Hossain et al., 2019; Hussain et al., 
2020). Shifting temperatures and rainfall patterns pose a threat to 
agricultural development (Yildiz, 2019). These aforementioned 
changes are expected to have both instant and long-standing 
consequences for worldwide food stuff safety (Praveen and Sharma, 
2019). Crop failures, reduced yields, and soil degradation may 
exacerbate the challenges faced by local economies, worldwide 
product markets, and food security (Bitterman et al., 2019).

However, CC is a critical issue for global food sustainability (Mase 
et al., 2017). Extreme events related to CC have a devastating impact 
on the most impoverished populations, especially small farmers who 
are particularly vulnerable due to limited land holdings, financial 
resources, and lack of market access (Paris and Rola-Rubzen, 2018). 
According to Anuga et al. (2019), farmers in developing countries are 
more vulnerable to CC impacts. Nonetheless, agricultural systems are 
becoming increasingly vulnerable to the impacts of CC, demanding 
adaptations and alterations to present agricultural methods. For 
example, the food and agriculture organization has proposed the 
implementation of climate smart agricultural (CSA) methods. These 
techniques have the potential to mitigate the negative consequences 
of severe weather events connected with CC while also improving 
household well-being and agricultural production in emerging 
nations. This intensity is amplified when combined with the use of 
digital CC mitigation devices. Several prior lessons have highlighted 
the enormous effect of CC on farmers’ income (Huang et al., 2015). 
Furthermore, only a few experts have examined how adaptation to 
severe weather events affects hazard exposure and household welfare 
among climate-vulnerable rural farmers (Bouwer, 2019). According 
to research conducted by Ali and Erenstein (2017), CC has a negative 
influence on farming in Pakistan, but adjusting to it has beneficial 
implications. Some of the adaptation strategies, such as smart 
practices, frequently applied by small-scale growers in emerging 
economies comprise shifting the cropping calendar, changing the 
input mix, changing crop rotation, crop diversification, conserving 
water and soil, diversifying seed varieties, increasing irrigation 
efficiency, using improved seed, and income diversification 
(Abdulai, 2018).

According to the Shahzad and Abdulai (2020), severe weather 
events including excessive temperature, erratic perception, and 
climate-associated stressors (diseases of crops, dust cyclones, 
vegetation, and floods) had a substantial impact on Pakistan’s 
agricultural systems. The usual world temperature has improved by 
0.6 to 0.8°C over the past 10 years and is expected to keep rising 
quickly (The World Bank, 2012). Pakistan’s rainfall has become 
incredibly unpredictable and heavier over shorter periods. 
Consequently, farmers occasionally experience water shortages and 
even drought (Khan, 2015). These climatic changes increase the risk 
associated with farming operations, have a detrimental impact on 
geographic areas, and cause floods and a shortage of water (Shannon 
and Motha, 2015). Additionally, it appears that agricultural yields are 
decreasing due to these severe weather events (Bocchiola et al., 2019). 
The worldwide financial systems, farmers’ well-being, food supply, and 

availability of water are all pointedly impacted by these fluctuations 
(Field, 2012). According to CC forecasts, a local climatic hazard is still 
a problem (Planning Commission Government of Pakistan, 2010). 
While social and economic factors and agronomic inputs contribute 
to increasing agricultural yields, temperature and rainfall are crucial 
since they account for one-third of the adaptability in crop production 
(Ray et al., 2015). Depending on the crop type, extreme weather events 
tend to have an adverse effect on farming yield, with the range of crop 
yield variation being between 18 and 43% (Vogel et  al., 2019). 
Specifying these details, it is necessary to do an economic study of 
agricultural performance during situations of severe weather that have 
the potential to degrade agricultural output, lower farm net returns, 
and ultimately impact the welfare of families in rural Pakistan.

According to Eckstein et al. (2019), Pakistan is the number 7th 
most adversely affected nation globally by environmental degradation. 
Based on the Economic Survey of Pakistan (GoP, 2014), unfavorable 
climatic events cost the nation approximately 365 billion Pakistani 
rupees (PKR) annually due to insufficient water supply degraded soil, 
pollution, and deforestation. According to a study by Anache et al. 
(2018) hazards associated with extreme weather also affect soil 
deterioration, soil-water interaction, waterlogging, humidity, and soil 
nutrients. Therefore, managing farming fields via adaptation to harsh 
weather is a choice that growers exposed to hazard requirements 
make. Because agriculture makes up a more significant portion of the 
gross domestic product, it has a higher impact on diminished revenue 
in emerging nations including Pakistan. Agricultural productivity 
decline is producing ongoing poverty in farming communities and an 
overall insufficient food supply (Ali and Erenstein, 2017), in addition, 
environmental hazard management could play an important job in 
alleviating poverty in rural areas (Hansen et al., 2019). An economic 
analysis of risk vulnerability due to severe weather conditions reveals 
their significant impact on farmers’ well-being in the country. 
Implementing adaptation techniques in response to CC has been 
shown to increase agricultural output and revenue, based on insights 
from farming-level datasets (Arslan et  al., 2015). For instance, an 
investigation conducted by Iqbal et al. (2015) indicated that adaptation 
techniques had a favorable influence on net revenue, whereas an 
investigation by Abid et al. (2016) displayed that adaptation to CC has 
a valuable effect on grain production and net agricultural profits. 
Another survey indicated that producers who employ CC adaptation 
measures are more food sheltered and have low poverty levels (Ali and 
Erenstein, 2017). Considering the significance of adaptation to severe 
weather in terms of growers’ production and net profits that improve 
farm family well-being, assessing the adapting effect to adverse climate 
events on products like farm yield and hazard events of farm net 
returns can provide esteemed information on farming outcomes that 
may be utilized to design strategies for agricultural development.

Numerous lessons on coping with severe weather events have 
been highlighted by Nagy et  al. (1802), focusing on farmers’ 
experiences with climate variability, adaptation approaches, and the 
factors that drive or hinder adoption. While comparing production 
and well-being indicators between users and non-users can yield 
valuable insights, such analyzes often overlook confounding variables, 
including observable family and farm attributes, as well as unobserved 
factors. Another research employing econometric techniques, like 
propensity score matching, similarly fails to adequately address for 
these unobserved variables (Ali and Erenstein, 2017). These hidden 
characteristics can influence both adoption decisions and farm net 
revenue, leading to potential biases in estimating farm outcomes. 
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Self-selection may affect these estimates, as farmers with stronger 
fundamental skills may be  more likely to adopt new practices. 
Ignoring these variables can lead to conflicts regarding the true nature 
of farmers’ adoption decisions, which are influenced by both observed 
and unobserved variables (Ma and Abdulai, 2016). To address these 
challenges, our study employs an Econometric Selection Regression 
(ESR) approach that accounts for both observable and unobservable 
heterogeneity, enabling more accurate estimation of choice and 
outcome models. Additionally, this research examines a variety of 
crops, including wheat and maize, and analyzes growers’ cultivation 
techniques, unlike many previous studies that focus on a single crop. 
Thus, the primary objective of this study is to investigate how the 
adoption of climate-smart agricultural practices affects food 
production during adverse weather events.

The rest of this paper is organized as follows. Section 2 presents 
materials and methods. Section 3 presents results. Section 4 presents 
discussions, while conclusions, policy implication, limitations and 
future directions are presented in section 5.

2 Methodology

2.1 Description of study area

Punjab, Khyber Pakhtunkhwa (KP), and Balochistan are the three 
provinces of Pakistan, each with its own distinct topography and 
characteristics. The study areas were selected for several key reasons: 
(1) The three provinces represent a variety of agricultural systems, 
enabling a comprehensive analysis of CSA adaptations. (2) These 
regions are particularly affected by CC, experiencing extreme weather 
events like floods and droughts, making them ideal for studying CSA 
effectiveness. (3) The provinces significantly contribute to Pakistan’s 
agricultural output, making it essential to understand how farmers 
adapt to climate challenges for national food security. (4) The provinces 
vary in access to agricultural extension services and CC information, 
providing insight into factors influencing CSA adoption. (5) These 
regions have engaged farming communities and stakeholders, 
facilitating effective data collection and relevant findings for policy 
development. By focusing on these provinces, the study aims to 
provide valuable insights into farmers’ adaptation strategies in response 
to CC, informing policymakers and agricultural practitioners. Punjab 
is situated in the eastern part of the country and is known to be a key 
agricultural region. It accounts for 56% of Pakistan’s total arable land 
and accounts for 74% of the country’s total cereal production. KP, 
formerly known as the North-West Frontier Province, is located in 
northwestern Pakistan. The province is characterized by hilly terrain, 
with the Hindu Kush mountain range occupying the western part of 
the province. While KP is known for its breathtaking landscapes, it is 
also recognized as an important agricultural region (Figure 1).

The province contributes a noteworthy share to the country’s total 
cultivated area and plays a significant role in cereal production. In 
contrast, Balochistan is positioned in the southwestern part of 
Pakistan. It stands as the largest province in terms of land area but is 
sparsely populated. Balochistan is endowed with diverse landscapes, 
unique natural resources, and rich cultural diversity. The province is 
picturesque, fertile and plays an important role in tourism and 
agriculture. Furthermore, Balochistan’s strategic location along the 
border areas also adds to its importance. Overall, Punjab, Khyber, and 

Balochistan are integral provinces of Pakistan and each province in its 
own way contributes to the country’s agricultural sector, tourism and 
strategic importance.

2.2 Data collection

The current study used data from three provinces of Pakistan. In 
order to ensure that the sample is representative, a extensive sampling 
frame was developed by comprehensively considering various factors 
such as planting patterns, agricultural activities, land area, and climatic 
conditions in different regions. The selected regions exhibit diverse 
climatic conditions and cropping patterns, expanding the breadth of 
the study. Employing a multi-stage random sampling strategy, three 
provinces were initially chosen based on their climatic and agro-
ecological characteristics. Subsequently, two districts were randomly 
selected from each province, followed by the random selection of two 
tehsils and three villages from each district. Finally, twenty crop 
growers were sampled from each village, following in a total of 720 
growers participating in interviews for data collection (Figure 2). An 
organized questionnaire, pre-tested for reliability, was employed to 
conduct face-to-face interviews and gather farmers’ characteristics and 
information on farm level. The questionnaire covered various aspects 
including farmers’ socioeconomic factors, CSA practices, and other 
pertinent variables. The primary gathered data underwent through 
coding and editing utilizing Stata 14 software to ensure homogeneity, 
accuracy, completeness, and coherence before further analysis.

2.3 Adaptation to adverse weather events 
selection

To establish an adoption criterion based on selection equation 
model discussed by Di Falco and Veronesi (2014) and Antle (1983), 
we denote yi∗ as the variance between projected net returns of farm 
utility when adopting E U i∂ ( )





π1  and when not adopting 
E U i∂ ( )





π 0 . In Equation 1a, grower i decides to adopt adverse 
weather events if yi∗ is greater than zero. As yi∗ can not be directly 
observed due to its latent variable, we  specify it as an observable 
components function within the following latent variable model:

 y Zi i i i
∗ = +β η  (1a)

The selection equation is then given by:

 
y if y

otherwise
i

i= >





∗
1 0

0  
(1b)

In Equation 1b, the variable yi signifies whether household i 
adopts a particular practice (yi = 1) or not (yi  = 0). It serves as a 
binary indicator for adoption status. Meanwhile, Zi encompasses a 
multitude of factors potentially shaping adoption decisions. These 
factors include environmental variables, such as extreme weather 
conditions (e.g., climate associated shocks, rainfall anomaly, and 
temperature anomaly), as well as long term climate patterns (e.g., 
rainfall and average temperature). Additionally, socio-economic 
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factors, like farmers’ personal attributes (e.g., education, age, and 
household size), farm related attributes (e.g., soil types, and farm 
size), and regional dynamics (e.g., ago-climatic regions like wheat, 
and maize), play a crucial role. Asset ownership, including number 
of animals, farm machinery, and infrastructure, also influences 
adoption choices. Furthermore, institutional and financial 
considerations, such as extension services, credit availability, and 
information on CC, are important determinants (Table 1). Lastly, 
individuals’ perceptions of extreme weather conditions, reflecting 
subjective assessments of risk and adaptation needs, contribute to 
adoption behaviors. The parameters βiare estimated to understand 
the relationship between these explanatory variables and adoption 
behavior, with the error term ηi  presumed to follow a normal 
distribution with a mean of zero and constant variance, capturing 
unobserved factors influencing adoption decisions.

2.4 Effects of adapting to severe weather 
events

In assessing the impact of adjustments to adverse weather, this 
study employs a moment-based approach inspired by Di Falco and 

Veronesi (2014) and Antle (1983), focusing on maximizing 
predictable utility for farm net returns E U i∂ ( ) π 1 . The analysis 
prioritizes optimizing relevant moments within the risk exposure 
distribution (e) based on input utilization. To quantify the risk 
associated with farm net returns, this study calculate residuals from 
the net returns function to derive key moments such as kurtosis, 
variance, and skewness for each farmer. These moments serve as 
critical risk indicators for farm net returns and grower welfare. 
Variance reflects the dispersion of net returns around the mean and 
serves as a measure of volatility. Skewness captures downside risk 
exposure, indicating the uncertainty of returns falling below 
expectations. Additionally, kurtosis identifies extreme deviations in 
returns, thereby highlighting increased risk exposure for farm 
households. To assess the influence of adopting CSA practices on net 
returns and associated risks in the context of adverse weather, we assume 
a linear relationship between these variables, expressed as follows:

 V X a yi i i i= + +ψ ε  (2)

In Equation 2, Vi represents a vector of various outcome variables, 
including farm net returns, downside risk exposure, volatility, and 
kurtosis. Similarly, Xi denotes another vector that comprises 

FIGURE 1

Map of the study areas. The selected three provinces and six district’s boundaries are shown in rad color.
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explanatory variables such as soil types (clay soil and loamy soil), 
farmer characteristics (education, age, family size, farm-related 
factors), and financial and institutional variables (access to credit and 
extension services). Additionally, yi is a binary dummy variable 
indicating the acceptance of CSA practices. The parameters α and ψ 
need to be estimated, while εi denotes the error term in the model.

2.5 Calculation and identification

Given our reliance on study data and the non-random nature of 
selection into adaptation, it is imperative to employ a method 
addressing selection bias. Consequently, we used the ESR method to 
balance selection bias emerging from both observable and 
un-observable heterogeneity within the sample, as discussed by Wu 
(2022). The ESR model is structured in two phases: first phase 
addresses the choice to use, as stated in selection (Equation 1b), 
we formulate separate equations for users and not users as outcome as 
outcome equations, as detailed below:

 Adopt :V X ai i i i
1 1 1= + µ  (3a)

 Non Adopt− = +:V X ai i i i
0 0 0µ  (3b)

In this context, Vi1 and Vi0 represent outcomes (e.g., kurtosis, net 
returns of farm, downside risk exposure, and volatility) for users 
and not users, correspondingly (Equation 4). Xi is a vector of 
explanatory variables supposed to affect these outcomes, with ai1 & 
ai0 as the parameters to be assessed. Ci denotes error term linked 
with outcome variables.

In assessment process, consideration is given to the potential 
overlap between Zi  in selection and Xi outcome formulas. Through, 

for proper model identification, it is vital that at minimum one 
variable present in Zi  does not appear in Xi. In this research, CC data 
and individuals’ perceptions of extreme weather conditions are used 
as instrumental variables to establish the model’s identification, with 
a focus on their exclusive impact on the adoption aspect without 
affecting the outcome variables.

ESR method addresses selection bias caused by unobservable 
factors, often referred to as the omitted variable issue. To mitigate this 
bias, two important components are introduced in Equations 3a, 3b: 
the inverse Mills ratio (denoted as λi ) and the two covariance terms 
σ i

1 = cov (η µi i,
1) and σ i

0 = cov (η µi i,
0).

 
V X a y V X a yi i i i i i i i i i i i i i
1 1 1 1 0 0 0 0

1 0= + + + = = + + +( ) ( )σ ξ σ λ ξλ if if

 
(4)

In this model, ξi
1 and ξi

0 represent error terms with conditional 
zero mean. Employing the full information maximum likelihood 
(FIML) technique outlined via Ojo and Baiyegunhi (2020), 
we measure both the selection and outcome equations concurrently. 
After applying the ESR model, correlation coefficients (labelled ρµ

1
 

and ρµ0 ) were calculated to evaluate the covariance between the 
selection and outcome equations. Statistical significance of ( ρµ

1
 or 

ρµ1 ) indicates the presence of selection bias due to unobservable 
factors. When (ρµ > 0), a positive selection bias occurs; when (ρµ > 0
), a negative selection bias occurs. If the signs of ( ρµ1  and ρµ0 ) are 
opposite, it indicates that the decision is influenced by comparative 
advantage. Instead, similar signs point to “hierarchical sorting,” 
whereby adopters achieve better outcomes than non-adopters 
regardless of acceptance decision.

2.5.1 Average treatment effects on the treated 
(ATT)

The ESR model estimates enable the calculation of the ATT. Using 
Equation 5, we can express the ATT as follows:

FIGURE 2

Distribution of samples.
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1 0 1 1

1 0 0 0
σ

σ σ σ

       + + − −
= − = + λ          λ λ          

i i i i i i
i i

i i i i i i

X a X a aATT X
a  

(5)

The selection equation highlights the possible endogeneity of 
variables for instance extension services and credit restrictions. The 
involvement of extension officers in providing information on extreme 
weather conditions can significantly affect growers’ choices to accept 
specific practices of CSA, thereby impacting farm production 

outcomes. Similarly, credit constraints, which may limit farmers’ 
ability to invest in adaptation measures, can be influenced by changes 
in farm productivity and income resulting from adaptation to 
dangerous weather situations. This interconnections suggests the 
possible endogeneity of extension services and credit constraints. 
Given the binary nature of these variables, this research utilizes the 
control function method, following Wooldridge (2015) approach, to 
address endogeneity concerns associated with extension services and 
credit restrictions. In this study, model endogenous variables solely 
based on other variables in the selection equation. Additionally, 
instrumental variables are introduced into the first-step assessment 
process to mitigate endogeneity concerns and enhance the robustness 
of analysis. These instrumental variables are carefully selected to 
ensure their relevance and validity in capturing the exogenous 
variation in extension contact and credit constraints, thereby 
improving the reliability of results.

 β= + θ + ζi i i i iG Z I  (6)

In this model, Gi denotes potential endogenous variables, while Ii 
represents instrumental variables and ζi accounts for random error in 
(Equation 6). To ensure proper identification, we have integrated the 
distance to the extension department as an instrumental variable. This 
variable influences access to services of extension without directly 
influencing adaptation to extreme weather conditions. To address 
potential endogeneity arising from credit constraints, this research 
utilized the presence of a personal relationship in a credit institution 
as an instrumental variable. It is crucial to note that instrumental 
variables would not associate with others utilized for ESR method 
identification. To effectively tackle endogeneity, we  integrated 
observed standards of possible endogenous variables and assessed 
residuals into the selection equation as follows:

 β ϕ∗ = + + Φ +i i i i i iy Z G R ø v  (7)

Within this framework, Ri signifies the residuals vector derived 
from Equation 7, which pertains to the endogenous variables. These 
residuals play a crucial role as a regulatory tool in the subsequent 
estimation stage, ensuring a dependable assessment of the endogenous 
variables. Utilizing this approach enables us to perform a rigorous 
regression-based Hausman test to assess the exogeneity of variables 
that might be  endogenous, and consistent with the prescribed 
framework (Wooldridge, 2015).

3 Results

3.1 Descriptive statistics of weather-related 
agricultural practices

Results in Table 2, show that nearly 46% of farmers in the region 
have adopted CSA practices. This reflects a growing awareness of 
sustainable farming methods among the agricultural community. 
Over the past 35 years, the region has experienced an average daily 
temperature of 27 degrees Celsius, accompanied by average daily 
precipitation of approximately 1  mm. Notably, the mean rainfall 
anomaly indicates positive rainfall shocks, suggesting periods of 

TABLE 1 Categories, selected variables names, and their descriptions.

Category and 
variable name

Descriptions

Socio-economic factors

Education Formar education (years)

Household size Total household members

Age Participant’s age

Farm-related attributes

Farm size Farm size (acres)

Animal Number of animals

Machinery Farm machinery ownership (1 if yes, 0 if no)

Environmental variables

Clay soil Clay soil type (1 if yes, 0 if no)

Loamy soil Loamy soil type (1 if yes, 0 if no)

Long-term climate patterns

Average rainfall Mean daily rainfall (mm)

Average temperature Annual average temperature (°C)

Extreme weather conditions

Rainfall anomaly Deviation from baseline rainfall

Temperature anomaly Deviation from baseline temperature

Climate shock Climate shock experience (1 if yes, 0 if no)

Regional dynamics

Wheat zone Resides in wheat zone (1 if yes, 0 if no)

Maize zone Resides in maize zone (1 if yes, 0 if no)

Institutional factors

Extension services Contact with extension agent (1 if yes, 0 if no)

Climate change information Climate change information availability (1 if yes, 0 

if no)

Financial factors

Credit constraint Liquidity constraint (1 if yes, 0 if no)

Perceptions

Climate perception Extreme weather perception (1 if yes, 0 if no)

Adoption indicator

Adaptation Climate change adaptation (1 if yes, 0 if no)

Outcome variable

Variance Net returns of farm variance

Net returns of farm Annual revenue minus costs per acre (PKR)

Kurtosis Net returns of farm (kurtosis)

Skewness Net returns of farm (skewness)
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increased precipitation that could benefit crop production. Conversely, 
the mean temperature anomaly reveals negative temperature shocks, 
which may pose challenges for agricultural sustainability. Additionally, 
the average farm size in the region is 7.42 acres, indicating a 
predominance of small-scale farming households. These households 
typically comprise 6–8 individuals, underscoring the social and 
economic dynamics that influence farming practices. Agricultural 
extension agents have engaged with approximately 55.11% of the 
farms, highlighting the role of extension services in promoting CSA 
adoption and supporting farmers. Despite these positive indicators, 
about 25% of farmers report facing financial resource limitations, 
which can hinder their ability to invest in CSA practices. This financial 
barrier is critical, as it may affect the long-term viability of sustainable 
agricultural methods in the region. The findings indicate a significant 
portion of farmers actively embracing CSA practices, which is 
encouraging given the increasing climate variability. The positive 
rainfall shocks observed could be  instrumental in facilitating this 
adoption, as they may provide the necessary moisture for crops. 
However, the negative temperature shocks present a substantial 
challenge, as they can lead to heat stress on plants and reduce yields.

Table 3 presents the different characteristics between individuals 
who have adopted CSA practices and those who have not. Particularly, 
adopters tend to possess greater affluence and manage larger-scale 
farms compared to their non-adopter counterparts. The adopters also 
exhibit higher livestock holdings and a propensity to invest in 
agricultural machinery, indicative of their economic prosperity. 
Furthermore, they benefit from enhanced access to CC knowledge, 
maintain closer ties with extension workers, and are more attuned to 
dangerous weather events. However, in terms of climate-related 
attributes, there is minimal divergence between adopters and 
non-adopters. The subsequent section reveals disparities in alteration, 
kurtosis, skewness, and net returns. Notably, adopters farmers report 
significantly greater net returns in compare to non-adopters. While 
risk measures such as alteration and kurtosis of farmhouse net returns 
do not exhibit substantial differences between the two groups. It is 
essential to emphasize that these statistics only capture average 
distinctions and do not consider other variables or farmer-specific 
attributes. Therefore, to mitigate potential selection bias and 
comprehend the diverse influence of adopters and non-adopters, the 

current study employed an ESR technique to model the process of 
adaptation to challenging weather conditions.

3.2 Factors influencing adaptation to 
severe weather events

In Tables 4–7, the consistent use of identical variables provides a 
clear insight into the research findings. The temperature anomaly 
coefficient stands out prominently, recording a positive value of 74.670, 
indicating a strong correlation with CSA practices adoption. This 
underscores the importance of temperature anomalies in driving farmers 
to embrace adaptive measures in response to extreme weather variations. 
Conversely, the rainfall anomaly coefficient presents an intriguing 
observation, displaying a negative value of −0.506. This suggests that 
heavy rainfall may hinder CSA practices’ adoption, potentially 
diminishing the perceived necessity for adaptive measures among 
farmers. Furthermore, the age of farmers emerges as a significant factor 
positively associated with CSA practices adoption. This aligns with the 
notion that education and experience influence farmers’ willingness to 
adopt innovative practices. The education further reinforces this trend, 
highlighting the crucial role of knowledge in fostering adaptation efforts. 
Agricultural extension services are found to play a pivotal role in serving 
CSA practices adoption, as evidenced via consistently positive 
coefficients across all specifications. Extension agents significantly 
facilitate adaptive measure adoption among farmers. Previous change 
connected shocks increase the likelihood of CSA practice acceptance, 
reflecting firsthand experience’s impact on adaptive behaviors. Location, 
especially in crop-growing regions, positively influences adaptation, 
suggesting better coping mechanisms for adverse weather.

3.3 Net returns of farms’ volatility

Table 4, the estimated values for farm net return volatility shed light 
on the influence of various factors on income stability in agriculture. 
Notably, for non-adopters, the coefficient associated with average 
rainfall stands out at 0.023, signifying that average rainfall inclines to 
raise income volatility among this group, leading to greater uncertainty 

TABLE 2 Descriptive statistics analysis.

Variables name Mean (SD) Variables name Mean (SD)

Education 6.4314 (4.4954) Credit constraint 0.2340 (0.4245)

Household size 6.0741 (3.2044) Climate shock 0.2436 (0.4355)

Age 46.009 (11.382) Clay soil 0.1250 (0.3257)

Farm size 7.4211 (8.1971) Loamy soil 0.1189 (0.3123)

Adaptation 0.4650 (0.4998) Wheat zone 0.3430 (0.4615)

Average rainfall 0.6599 (0.5551) Maize zone 0.3211 (0.4610)

Average temperature 27.8872 (1.0676) Climate perception 0.4592 (0.4987)

Rainfall anomaly 1.4339 (0.9204) Climate change information 0.4907 (0.5003)

Temperature anomaly −0.0139 (0.0141) Variance 0.1575 (0.0338)

Animal 3.3841 (1.8290) Net returns of farm 55,560.20 (19,455.20)

Extension services 0.5410 (0.4442) Kurtosis 0.0016 (0.0080)

Machinery 0.1602 (0.4741) Skewness −0.0005 (0.0151)
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in earnings. Conversely, adopters display a different pattern, with an 
average rainfall coefficient of 0.002, signifying a diminishing in the net 
returns of farm volatility. However, this reduction lacks statistical 
significance, indicate that the effect of average rainfall on volatility for 
adopters may be  less pronounced compared to non-adopters. 
Moreover, the temperature anomaly variable shows a highly significant 
negative coefficient of −0.926, indicating that adopters achieve greater 
income stability by adapting to extreme temperature fluctuations, 
thereby enhancing resilience to climate-related risks. Additionally, for 
non-adopters, the coefficient for precipitation incongruity is adverse 
−0.007 and substantial, indicating a decrease in farm net return 
volatility in response to rainfall anomalies. This suggests potential 
predictability and income shock mitigation within this group. 
Furthermore, the farm size variable exhibits a positive coefficient of 
0.001, suggesting that larger farms tend to experience higher net return 
volatility. This positive association between farm size and income 
instability may be attributed to operational and logistical challenges.

3.4 Exploring downside risks exposure and 
kurtosis

Table  5 illuminates the influence of adapting to severe weather 
events on the skewness of net returns of farms, providing invaluable 
insights into the dynamics of downside risk in agriculture. While average 

rainfall and temperature show minimal impact on skewness, anomalies 
in both variables significantly affect skewness levels. Temperature 
anomalies emerge as pivotal factors shaping the risk profiles of both 
adopters and non-adopters. Adopters experience an optimistic effect of 
temperature anomalies 0.488, indicating reduced risk of crop failure in 
extreme temperature conditions. Conversely, non-adopters face adverse 
effects −0.550, suggesting increased vulnerability to crop failure due to 
temperature extremes. This highlights the critical role of adaptation 
strategies in managing risks associated with extreme temperatures. 
Furthermore, rainfall skewness demonstrates a significant correlation 
with skewness for non-adopters 0.004, underscoring the impact of 
excessive rainfall on downside risk. Additionally, farm size negatively 
affects skewness for non-adopters 0.001, likely due to operational 
efficiencies leading to a higher likelihood of crop failure on larger farms. 
Soil type also plays a significant role, with sandy loam soil benefiting 
adopters but posing risks for non-adopters −0.005, particularly in wheat 
and maize zones. Additionally, non-adopters in crop zones exhibit 
higher exposure to downside risk equated to those in other cropping 
zones, emphasizing the advantages of inter-crop growing in reducing 
downside risk and promoting diversified agricultural practices. These 
conclusions underline the requirement for tailored adaptation strategies 
to effectively manage downside risk in varying agricultural contexts.

The investigation in this study expanded specifically focusing on 
growers’ responses to adverse weather events to derive the kurtosis 
function coefficients, as documented in Table  6. For adopters, the 

TABLE 3 Analyzing adopters and non-adopters: a comparative examination with descriptive statistics and mean–variance analysis.

Variable name Adopters Non-adopters Mean variances

Age 46.4708 0.7027 45.5219 0.6938 2.9587⁎⁎⁎ 0.9821

Household size 6.2081 0.2642 5.7185 0.2841 1.4898⁎⁎⁎ 0.3679

Educatrion 7.3005 0.1387 5.8201 0.1272 0.5005⁎⁎⁎ 0.1838

Farm size 13.7715 0.6651 6.0405 0.3278 6.9309⁎⁎⁎ 0.6520

Adaptation 0.6861 0.0349 0.6357 0.0315 0.0501 0.0450

Average rainfall 26.7342 0.0673 26.9199 0.0639 −0.0859 0.0930

Average temperature 1.4275 0.0576 1.4501 0.0558 0.0127 0.0810

Rainfall anomaly −0.0141 0.0008 −0.0144 0.0008 0.0005 0.0015

Temperature anomaly 4.1240 0.1343 2.8130 0.0817 1.3817⁎⁎⁎ 0.1562

Animal 0.8473 0.0222 0.3129 0.0279 0.5343⁎⁎⁎ 0.0351

Extension services 0.2405 0.0265 0.1043 0.0184 0.1361⁎⁎⁎ 0.0320

Machinery 0.0954 0.0182 0.3669 0.0290 −0.2715⁎⁎⁎ 0.0347

Credit constraint 0.4618 0.0309 0.0576 0.0139 0.4042⁎⁎⁎ 0.0321

Climate shock 0.1450 0.0213 0.1763 0.0217 0.0312 0.0290

Clay soil 0.0739 0.0163 0.1720 0.0199 −0.0884*** 0.0288

Loamy soil 0.3435 0.0294 0.3237 0.0281 0.0198 0.0406

Wheat zone 0.3092 0.0286 0.3525 0.0287 −0.0434 0.0405

Maize zone 0.8435 0.0225 0.0971 0.0178 0.7464⁎⁎⁎ 0.0295

Climate perception 0.8625 0.0213 0.1403 0.0209 0.7123⁎⁎⁎ 0.0288

Climate change information 0.0161 0.0022 0.0019 0.0215 −0.0008 0.0230

Variance 74,711.47 1249.47 61,012.96 1240.93 12,489.57⁎⁎⁎ 2298.328

Net returns of farm 0.0017 0.0006 0.0013 0.0005 0.0005 0.0008

Kurtosis 0.0006 0.0012 −0.0015 0.0009 0.0020⁎ 0.0441

Significance levels signified as *** (1%), ** (5%), and * (10%).
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temperature anomaly exhibits a noteworthy negative coefficient of 
−0.277, and outcome is statistically substantial at the 5% level. This 
finding aligns with the observations on variance and implies that 
temperature anomalies serve to reduce the kurtosis of adopters’ farm 
net returns. In essence, it indicates that adaptation measures taken by 
adopters help mitigate the extremeness of their net benefit distribution, 
resulting in a smoother and less risky distribution. In contrast, the 
temperature anomaly coefficient for non-adopters is significant at 0.051, 
indicating that, while the effect is not as pronounced as with adopters, 
temperature anomalies do contribute to an elevation in the kurtosis of 
non-adopters. This suggests that non-adopters are more susceptible to 
experiencing extreme variations in their farm net returns due to 
temperature anomalies. Additionally, an intriguing observation is made 
concerning farming technology ownership. It significantly decreases the 
adopters’ kurtosis. This implies that having access to farming equipment 
has dampening impact on the tails of the distribution of net returns for 

adopters, making their income distribution more stable and less subject 
to extreme values. This may reflect the efficiency and productivity gains 
associated with the mechanization of farming processes.

3.5 Farm net returns

Table  7 provides a revealing comparison of the effects of 
temperature anomalies on adopters and non-adopters. Adopters 
experience a marked advantage, with a temperature anomaly 
coefficient of 8.161%, compared to non-adopters at −8.031%, both 
statistically significant. This indicates that embracing measures to 
tackle extreme temperatures leads to higher net returns of farms for 
users. Conversely, not all users seem to benefit from rainfall anomalies, 
as evidenced by the positive coefficient for rainfall variance of 0.044%. 
This suggests that surplus rainfall helps sustain income for 

TABLE 4 Factors influencing adaptation to adverse weather events and their effects on net return of farm volatility.

Variables name Selection equation Variance (volatility)

Adopters Non-adopters

Age 0.018⁎ 0.011 0.001⁎⁎ 0.000 0.000 0.022

Education 0.148⁎⁎ 0.059 0.001 0.001 −0.000 0.009

Household size 0.096 0.074 0.002⁎ 0.001 0.001 0.001

Farm Size 0.011 0.020 −0.000 0.000 0.001⁎⁎ 0.014

Average rainfall 0.022 0.884 −0.002 0.015 0.023⁎ 5.474

Average temperature −0.346 0.346 0.008 0.007 0.006 0.039

Rainfall anomaly −0.507⁎⁎ 0.214 0.000 0.004 −0.007⁎⁎ 0.176

Temperature anomaly 74.661⁎⁎ 34.678 −0.926⁎ 0.529 0.566 0.044

Animal 0.269⁎⁎ 0.128 0.001 0.002 −0.005⁎⁎ 0.013

Extension services 1.746⁎⁎ 0.837 0.005 0.007 0.000 0.070

Machinery −0.122 0.351 −0.011⁎⁎ 0.005 −0.002 0.440

Credit constraint 0.738 2.095 0.006 0.008 −0.001 0.062

Climate shock 0.967⁎⁎⁎ 0.312 −0.003 0.005 0.018⁎⁎ 0.044

Clay soil −0.484 0.399 −0.006 0.005 −0.003 0.029

Loamy soil 2.151** 0.454 0.016*** 0.010 0.029*** 0.107

Wheat zone 1.298 1.081 −0.024 0.018 0.013 0.081

Maize zone 2.556⁎⁎⁎ 0.826 −0.010 0.012 0.027⁎⁎ 0.065

Climate perception 2.385⁎⁎⁎ 0.303 – – – –

Climate change information 1.883⁎⁎⁎ 0.270 – – – –

Res_credit −0.277 0.889 – – – –

Res_ext −0.089 0.307 – – – –

Constant 2.674 8.961 −0.2341 0.182 −0.169 1.193

rμ 0.218 0.373 0.366⁎⁎ 0.156

ρμ 0.2142 0.356 0.3505⁎⁎⁎ 0.136

σμ 0.0322⁎⁎⁎ 0.001 0.283⁎⁎⁎ 0.001

lnσμ −3.395⁎⁎⁎ 0.044 −3.566⁎⁎⁎ 1.218

Wald χ2 66.93⁎⁎⁎

LR test of indep. Eqs. 4.29⁎⁎

Log-likelihood 1145.75

Significance levels signified as *** (1%), ** (5%), and * (10%).
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non-adopters grappling with water scarcity challenges. Education 
emerges as a pivotal factor influencing net returns of farms for both 
users and not users amidst adverse weather events. Substantial 
coefficients highlight the role of knowledge in maximizing the benefits 
of CSA practices. However, farm size exhibits negative coefficients for 
both groups, implying that larger farms tend to yield lower net returns 
of farms compared to smaller ones. Conversely, a higher number of 
animals within a household shows positive coefficients, suggesting 
that animal husbandry is allied with increased returns for users and 
not users. Sandy load soil presents negative coefficients, but extension 
facilities play a significant role for both. This underscores the positive 
impact of agri-extension facilities on farm net benefits for both 
groups. Furthermore, prior climate-related shocks significantly reduce 
returns for not users, highlighting the adverse effect of such shocks on 
net returns of farms and emphasizing the need for improved coping 
mechanism to alleviate the impact of adverse weather events.

3.6 Effect of smart practices adoption 
on-farm risk and net profit

Table  8 presents the ATT, which addresses selection bias and 
evaluates disparities between adopters and non-adopters of smart 
practices. The ATT for farm net returns is significantly positive at 0.225, 
indicating a 2% increase in net returns attributable to the adoption of 
smart practices in response to challenging weather conditions. This 
adaptation not only reduces production risks substantially but also 
enhances overall farm profitability. The counterfactual analysis shows a 
notable negative ATT of −0.009 for the variance in farm net returns, 
suggesting a significant 33% reduction in volatility. This leads to a 
remarkable 126% decrease in downside risk exposure and crop loss. The 
mean skewness further illustrates this transformation, shifting from 
−0.005 to 0.001. Additionally, the ATT for kurtosis is also negative at 
0.0001, maintaining high significance at the 1% level, which reflects a 

TABLE 5 Factors affecting adaptation to adverse weather events and their effect on downside risk exposure.

Variables name Selection equation Skewness (downside risk)

Adopters Non-adopters

Age 0.016 0.010 0.000 0.000 0.000 0.000

Education 0.144⁎⁎ 0.061 −0.001⁎⁎ 0.000 0.000 0.000

Household Size 0.087 0.074 −0.001⁎⁎ 0.001 −0.001⁎ 0.001

Farm Size 0.014 0.021 −0.000 0.000 −0.001⁎⁎⁎ 0.000

Average rainfall −0.138 0.874 0.005 0.008 0.001 0.006

Average temperature −0.411 0.345 −0.003 0.003 −0.002 0.002

Rainfall anomaly −0.415⁎⁎ 0.195 −0.001 0.002 0.004⁎⁎ 0.002

Temperature anomaly 68.718⁎⁎ 33.822 0.487⁎ 0.266 −0.550⁎⁎ 0.230

Animal 0.261⁎⁎ 0.132 0.001 0.001 0.002⁎⁎ 0.001

Extension services 1.599* 0.844 −0.003 0.002 0.002 0.003

Machinery −0.121 0.353 0.003 0.003 0.000 0.003

Credit constraint 0.585 2.138 0.001 0.004 −0.002 0.002

Climate shock 0.996⁎⁎⁎ 0.303 0.002 0.002 −0.003 0.004

Clay soil −0.0333 0.304 0.001 0.006 0.003 0.004

Loamy soil 1.088⁎⁎ 0.499 0.007** 0.005 −0.006* 0.004

Wheat zone 1.145 1.085 0.013 0.008 −0.020⁎⁎ 0.007

Maize zone 2.287⁎⁎⁎ 0.779 0.010⁎ 0.006 −0.017⁎⁎⁎ 0.005

Climate perception 2.347⁎⁎⁎ 0.302 – – – –

Climate change information 1.922⁎⁎⁎ 0.265 – – – –

Res_credit −0.221 0.902 – – – –

Res_ext −0.075 0.315 – – – –

Constant 4.817 8.858 0.077 0.092 0.043 0.062

rμ – – −0.032 0.225 −0.331⁎⁎ 0.142

ρμ – – −0.032 0.236 −0.317⁎⁎⁎ 0.126

σμ – – 0.161⁎⁎⁎ 0.002 0.012⁎⁎⁎ 0.002

lnσμ – – −4.121⁎⁎⁎ 0.045 −4.321⁎⁎⁎ 0.044

Wald χ2 – – 47.03⁎⁎⁎ – – –

LR test of indep. Eqs. – – 3.13⁎ – – –

Log-likelihood – – 1441.03 – – –

Significance levels signified as ***(1%), ** (5%), and * (10%).
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5.90% reduction in kurtosis. This reduction indicates that adapting to 
severe weather conditions decreases the likelihood of extreme outcomes, 
thereby contributing to greater stability in farm net returns among 
adopters. Overall, these findings highlight the positive impact of 
adopting smart practices on farm net revenues, volatility reduction, and 
the mitigation of downside risk exposure during adverse weather events. 
This underscores the importance of proactive adaptation strategies in 
promoting agricultural productivity and resilience.

4 Discussion

Severe weather events, for instance, high temperatures and heavy 
rainfall, along with climate-related fluctuations, pose a significant risk 
to crop production. To mitigate these challenges, risk-averse farm 
households in Pakistan employ CSA practices. These practices involve 

various strategies, including the use of drought-resistant and 
genetically modified seed varieties, as well as high-yielding regional 
varieties tailored to specific farm environments. The adoption of CSA 
practices offers promising technical solutions to alleviate climate-
related risks in Pakistan. It not only diminishes the exposure to 
hazards but also enhances farm net returns, ultimately improving the 
farmers’ welfare. Though, implementing emerging technologies like 
conservation farming, which incorporates CSA practices, presents 
several challenges due to complex, interconnected issues. Access to 
proper guidance and instruction on these techniques is limited, 
particularly in impoverished nations, hindering their adoption.

While CSA practices can stabilize farmhouse net returns and 
mitigate the impact of adverse weather and climate variability to some 
extent, they may not fully protect against extreme weather events like 
floods and droughts. In such cases, an index-based policy, as suggested 
by Lybbert and Carter (2015), could be  employed to provide 

TABLE 6 Factors that influence adaption to severe weather events and their influence on Kurtosis.

Variables name Selection equation Kurtosis

Adopters Non-adopters

Age 0.017⁎ 0.010 0.000⁎⁎ 0.000 −0.000 0.000

Education 0.141⁎⁎ 0.059 0.000 0.000 −0.000 0.000

Household Size 0.085 0.074 0.001⁎ 0.000 0.000 0.000

Farm Size 0.010 0.020 −0.000 0.000 0.000⁎ 0.000

Average rainfall −0.111 0.872 −0.000 0.004 0.005⁎ 0.003

Average temperature −0.407 0.344 0.002 0.002 0.002 0.001

Rainfall anomaly −0.416⁎⁎ 0.194 −0.000 0.001 −0.001 0.001

Temperature anomaly 70.517⁎⁎ 33.888 −0.277⁎⁎ 0.132 0.051 0.107

Animal 0.260⁎⁎ 0.127 0.000 0.000 −0.001⁎⁎⁎ 0.000

Extension services 1.606** 0.759 0.003 0.003 0.002 0.002

Machinery −0.126 0.352 −0.003⁎⁎ 0.001 −0.000 0.001

Credit constraint 0.583 2.110 −0.000 0.002 −0.000 0.001

Climate shock 0.987⁎⁎⁎ 0.302 −0.001 0.001 0.001 0.002

Clay soil −0.476 0.303 −0.001 0.001 −0.001 0.002

Loamy soil 1.184** 0.452 0.006*** 0.003 0.003*** 0.002

Wheat zone 1.213 1.086 −0.007 0.004 0.002 0.004

Maize zone 2.348⁎⁎⁎ 0.771 −0.002 0.003 0.004 0.002

Climate perception 2.364⁎⁎⁎ 0.301 – – – –

Climate change information 1.930⁎⁎⁎ 0.267 – – – –

Res_credit −0.204 0.890 – – – –

Res_ext −0.103 0.309 – – – –

Constant 4.558 8.848 −0.073 0.045 −0.042 0.029

rμ – – −0.012 0.179 0.265⁎⁎ 0.128

ρμ – – −0.012 0.179 0.259⁎⁎

σμ – – 0.008⁎⁎⁎ 0.000 0.006⁎⁎⁎ 0.000

lnσμ – – −4.822⁎⁎⁎ 0.044 −5.071⁎⁎⁎ 0.043

Wald χ2 51.39 – – – – –

LR test of indep. Eqs. 2.30 – – – – –

Log-likelihood 1826 – – – – –

Significance levels signified as *** (1%), ** (5%), and * (10%).
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compensation for the severity of these extreme conditions. Another 
strategy to mitigate drought impact is to supply farmers with drought-
resistant seed varieties. This study findings underscore the efficiency 
of CSA performs in managing severe weather events and climate 
hazards. Growers’ choices to accept or not accept CSA practices are 
affected via self-selection and are subject to substantial selection bias. 
Factors such as climate-associated conditions, socioeconomic 

variables, and farm-specific attributes significantly influence adoption 
rates. Current study analysis reveals that the implementation of CSA 
practices reduces the farm net returns volatility, stabilizing farm 
output and improving the well-being of farm households in Pakistan.

Furthermore, this research demonstrates that CSA practice 
adopters adjust their crop schedule to mitigate temperature 
unpredictability, which reduces the risk for non-adopters. Additionally, 

TABLE 8 The effects of adaptability to adverse weather events on profits of net farm volatility and risk of downside exposures.

Variables name Mean outcome ATT Differences 
percentage

Coef. St. Err. Coef. St. Err.

Differences 0.017 0.001 0.024 0.001 −0.009*** 34.32

Net returns of farm 11.180 0.016 10.966 0.041 0.225*** 0.204

Kurtosis 0.0015 0.000 0.0017 0.000 −0.0001*** 05.90

Skewness 0.001 0.002 −0.005 0.023 0.005*** 126.00

Significance levels are signified as *** (1%).

TABLE 7 Factors that affect the adaption to adverse weather events and its effect on the net returns of a farm.

Variables name Selection equation Net returns of farm

Adopters Not adopters

Age 0.016 0.011 0.001 0.001 −0.001 0.001

Education 0.137⁎⁎ 0.058 0.041⁎⁎⁎ 0.006 0.051⁎⁎⁎ 0.007

Household Size 0.079 0.071 −0.003 0.006 −0.018⁎ 0.008

Farm Size 0.015 0.020 −0.012⁎⁎⁎ 0.002 −0.022⁎⁎⁎ 0.003

Average rainfall −0.172 0.870 0.037 0.093 0.084 0.080

Average temperature 54.896⁎ 33.253 8.161⁎⁎ 3.192 8.031⁎⁎ 3.159

Rainfall anomaly −0.385⁎⁎ 0.187 −0.008 0.022 0.044⁎ 0.021

Temperature anomaly 0.272⁎⁎ 0.131 0.047⁎⁎⁎ 0.010 0.052⁎⁎⁎ 0.014

Animal 1.593⁎ 0.836 0.094⁎⁎ 0.040 0.061⁎⁎ 0.028

Extension services −0.073 0.355 0.004 0.030 0.040 0.039

Machinery 0.482 2.131 0.020 0.046 −0.086⁎⁎⁎ 0.027

Credit constraint 1.027⁎⁎⁎ 0.303 0.037 0.028 −0.134⁎⁎⁎ 0.052

Climate shock −0.448 0.399 −0.001 0.043 0.116⁎⁎⁎ 0.037

Clay soil 1.259⁎⁎⁎ 0.463 −0.132⁎⁎ 0.052 0.300⁎⁎⁎ 0.037

Loamy soil 0.818 1.082 0.233⁎⁎ 0.109 −0.440⁎⁎⁎ 0.114

Wheat zone 2.036⁎⁎⁎ 0.746 0.115 0.072 −0.263⁎⁎⁎ 0.072

Maize zone 2.327⁎⁎⁎ 0.286 – – – –

Climate perception 1.833⁎⁎⁎ 0.268 – – – –

  Res_credit −0.141 0.900 – – – –

  Res_ext −0.080 0.305 – – – –

  Constant 4.334 8.863 10.562⁎⁎⁎ 1.096 11.290⁎⁎⁎ 0.859

  rμ – – 0.205 0.183 −0.322⁎ 0.181

  ρμ – – 0.2018 0.175 −0.3117⁎ 0.016

  σμ – – 0.1954⁎⁎⁎ 0.009 0.1839⁎⁎⁎ 0.008

  lnσμ – – −1.633⁎⁎⁎ 0.044 −1.694⁎⁎⁎ 0.043

  Wald χ2 371.41⁎⁎⁎ – – – – –

LR test of indep. Eqs. 3.69⁎ – – – – –

Log-likelihood 53.42 – – – – –

Significance levels signified as *** (1%), ** (5%), and * (10%).
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increased rainfall lowers irrigation costs and benefits water-intensive 
crops. Adopters also alter crop planting schedules to avoid temperature 
spikes, reducing uncommon fluctuations in farm net returns. It is 
essential to acknowledge that the choice to accept CSA practices is not 
random but influenced by self-selection, leading to selection bias. To 
address this issue, present research employ the ESR method, which 
simultaneously guesstimates outcome and selection equations using 
the FIML technique. This approach accounts for unobservable features 
affecting adaptation to adverse climate events. However, it is worth 
noting that the ESR model has limitations, as it aggregates 
unobservable heterogeneity, which can vary among individuals.

5 Conclusions and policy implications

5.1 Conclusion

This study explores the CSA practices adoption and its influence 
on food crop production in Pakistan, focusing on factors influencing 
growers’ decisions during severe weather events. The analysis of 
questionnaire data from 720 randomly selected farmers in three 
provinces reveals substantial variances between CSA practices 
adopters and non-adopters in terms of farm net returns and hazard-
associated variables. Employing an ESR model, the research findings 
indicate that CSA practices adoption reduces risk exposure and 
enhances the stability of farm net returns. Specifically, it leads to a 34% 
reduction in farm net return volatility, a 126% decrease in downside 
risk exposure, and a 5.90% decline in kurtosis. Preparing for extreme 
weather events results in a 2% boost in agricultural net returns. These 
outcomes highlight the potential of CSA practices adoption to improve 
the well-being of rural households, reduce poverty, and enhance farm-
household production in Pakistan. The study identifies education, 
temperature anomalies, livestock ownership, access to agricultural 
extension services, and prior climate-associated experiences as 
significant factors positively influencing CSA practices adoption. 
Education also positively impacts weather adaptability, emphasizing 
the importance of education accessibility in rural areas. Livestock 
ownership increases the possibility of adopting CSA practices in 
unfavorable climate circumstances, and extension services play a 
favorable and significant role in both adoption and farmhouse revenues.

5.2 Policy implications

The study suggests potential benefits of CSA practices adoption in 
increasing farmhouse revenues and reducing downside hazard 
exposure. Policymakers are encouraged to implement supportive 
policies, such as subsidies or grants, to assist agricultural families in 
adopting CSA practices. Financial assistance can offset initial investment 
costs and incentive more farmers to adopt these practices. Strengthening 
agricultural extension services is crucial for disseminating knowledge 
about CSA practices, and policymakers should invest in these services 
to provide farmers with accurate information. Additionally, 
policymakers should prioritize developing and implementing risk 
management strategies to enhance climate resilience among agricultural 
households, including improving weather forecasting capabilities, 
promoting crop diversification, encouraging the use of climate-resilient 
seeds and breeds, and providing access to tailored insurance schemes.

5.3 Limitations and future directions

While the study provides valuable insights, limitations and future 
research directions should be  considered. The exclusive focus on 
agricultural families limits the broader applicability of findings. Future 
research should explore CSA practices adoption in diverse agricultural 
contexts worldwide. The study’s use of cross-sectional data and an ESR 
model does not establish causation, and future investigations could 
employ experimental designs to establish causal links. Exploring 
alternative measures or frameworks for understanding factors influencing 
CSA practices adoption is recommended. Longitudinal data would 
enhance comprehension of the long-term effects of adoption, and 
investigating external factors like government policies, market conditions, 
and technological advancements can offer valuable insights. A deeper 
exploration of contextual factors specific to the Pakistani agricultural 
sector can reveal barriers and facilitators of adoption, providing a more 
nuanced understanding. Addressing these limitations and pursuing these 
research directions can advance the understanding of CSA practices’ 
adoption implications for agricultural communities worldwide.
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