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Farmed freshwater prawn (Macrobrachium rosenbergii) and black tiger shrimp 
(Penaeus monodon) comprise a significant portion of Bangladesh’s seafood exports, 
raising concerns about their environmental impacts. Freshwater prawn farms, which 
require a relatively high amount of feed supply, release 1.0 MT CO2-equivalents/year, 
equating to 18.8  kg CO2e/MT prawn, contributing significantly to global warming 
and climate change risks. Integrated Multi-Trophic Aquaculture (IMTA) offers an 
alternative farming method to conventional prawn farming systems, as it minimizes 
greenhouse gas (GHG) emissions and climate change impacts. Systematically 
reviewing 112 scientific articles on IMTA, this article offers recommendations for 
adopting IMTA to promote sustainable freshwater prawn farming in Bangladesh. 
IMTA is undergoing extensive experimentation and practice in many parts of 
the world, offering economic benefits, social acceptability, and environmental 
sustainability. In addition to native prawn species, various indigenous organic 
extractive freshwater mollusks, and inorganic extractive plants are available which 
can seamlessly be used to tailor the IMTA system. Extractive organisms, including 
aquatic mollusks and plants within prawn farms, can capture blue carbon effectively 
lowering GHG emissions and helping mitigate climate change impacts. Aquatic 
mollusks offer feed for fish and livestock, while aquatic plants serve as a dual food 
source and contribute to compost manure production for crop fields. Research 
on IMTA in Bangladesh was primarily experimented on finfish in freshwater ponds, 
with the absence of studies on IMTA in prawn farms. This necessitates conducting 
research at the prawn farmer level to understand the production of extractive 
aquatic mollusk and plants alongside prawn in the prawn-producing regions of 
southwestern Bangladesh.
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1 Introduction

Globally, aquaculture has steadily boosted the food production 
sector over the past decades, considered the “blue revolution” (FAO, 
2022; Engelhard et al., 2022; Khanjani et al., 2022; Thornber et al., 
2022). The aquaculture production reached a record high of 122.6 
million metric tons (MT) in 2020, contributing significantly to world’s 
nutrition and food security (FAO, 2022; Garlock et al., 2022). A total 
of 622 aquatic species are farmed across a variety of habitats and 
farming methods (Ahmed and Turchini, 2021). According to Jiang 
et al. (2022), since the late 1980s, there has been a 5-fold expansion in 
the global aquaculture production, and it has contributed significantly 
to the improvement of livelihood conditions, economic growth, job 
creation, and also the achievement of the United Nations Sustainable 
Development Goals (SDGs). Aquaculture production is projected to 
reach 140 million MT in 2050, to help meeting the world’s rapidly 
growing population and stagnation of capture fisheries (Ahmed and 
Turchini, 2021). Additionally, aquaculture is considered to have an 
enormous potential to make the world’s food systems more resilient 
in the face of climate change, rising demand for animal protein, and 
international trade (Troell et al., 2014). Despite its significance and 
rapid expansion, the aquaculture sector has globally raised serious 
environmental concerns (Haque et al., 2016; Yang H. et al., 2021). The 
negative impacts of aquaculture production include, among others, 
excessive water and energy use, habitat destruction (e.g., wetlands, 
agricultural fields, and mangroves), water pollution, eutrophication, 
disease and parasite transmission, biotic depletion, and greenhouse 
gas (GHGs) emissions (MacLeod et al., 2020; Ahmed and Turchini, 
2021; Alam et al., 2022). These negative impacts are expected to grow 
continuously as aquaculture becomes more prevalent and resource-
intensive over time, and it will continue to meet difficulties in terms 
of long-term environmental sustainability (Khanjani et al., 2022). Due 
to these expected adverse effects, the aquaculture industry has also 
been criticized in international media and by many non-governmental 
organizations (Alexander et al., 2016).

As the aquaculture industry intensifies the amounts of dissolved and 
solid effluents, such as fish feed waste, feces and other debris, increase 
(Irisarri et al., 2015; Kibria and Haque, 2018; Correia et al., 2020). These 
are high in nutrients, in particular phosphorus and nitrogen which once 
released into the environment can lead to the eutrophication of 
waterbodies (Troell et al., 2003; Zhou et al., 2006; Rosa et al., 2019; Tom 
et al., 2021). According to Avnimelech and Ritvo (2003), on average, only 
13% of the carbon, 29% of the nitrogen, and 16% of the phosphorus in 
feeds utilized in aquaculture ponds are retained by the farmed animals; 
the rest ends up in the water, and sediment as waste. For example, Wang 
et al. (2020) reported that in China, the aquaculture waste discharged 1.6 
MT/year of nitrogen and 0.2 MT/year of phosphorus into local 
freshwater and coastal regions between 2006 and 2017. The high 
biological density in intensive aquaculture systems leads to increased 
rates of respiration by crustaceans or fish in the ponds, but bacterial 
metabolism (respiration and methanogenesis by degradation of organic 
matter), also causes increased amounts of GHGs, such as CO2 (carbon 
dioxide), N2O (nitrous oxide) and CH4 (methane) emissions, resulting 
in adverse effects on climate change (Doney et al., 2012; Yang P. et al., 
2021; Zhang et al., 2022; Xu et al., 2022).

Bangladesh is ranked as the fifth largest aquaculture producer 
worldwide, accounting for approximately 57% of the country’s total 
fish production, and contributing significantly to food and nutrition 

security in a national context (Jahan et al., 2015; Alam et al., 2022; 
AftabUddin et  al., 2021; Haque et  al., 2021; Bell et  al., 2023). In 
Bangladesh, like other aquaculture producing countries, aquaculture 
is considered the fastest-growing animal protein generating industry, 
providing employment for about 18 million people (Alam et al., 2014; 
Haque et al., 2015; DoF, 2022). In total aquaculture production, finfish 
are sold domestically and consumed within the country, while 
shellfish, particularly freshwater prawn and black tiger shrimp, are 
primarily exported abroad (Ahmed et al., 2018). While the volume and 
production of freshwater prawn farming are relatively less than that of 
black tiger shrimp, the practice for farming freshwater prawns is 
relatively intensive. It involves cultivating freshwater prawn with other 
species of finfish, providing substantial amounts of feed, requiring 
significant manpower, and using various other inputs. According to 
the latest statistics by the Department of Fisheries (DoF), freshwater 
prawn and black tiger shrimp collectively account for 42 and 74% by 
volume and foreign currency earnings, respectively, of the total 
seafood export from Bangladesh (DoF, 2022). According to annual 
reports from DoF in Bangladesh, freshwater prawn and black tiger 
shrimp farming expanded sharply over the years due to their high 
nutritional value, good meat quality, high growth rate, and substantial 
international market demand. The farming area and yield of freshwater 
prawn and black tiger shrimp were 141,353 ha and 97,605 MT, 
respectively, in 2001–2002 (DoF, 2002), which have increased to 
257,888 ha and 270,114 MT in 2019–2020 (DoF, 2020), respectively. 
This indicates farming area and production of these species have 
increased by 1.82 and 2.77 times, respectively over the last two decades.

In Bangladesh, farmers tend to grow prawn in polyculture systems, 
to optimize feeding efficiency and total pond biomass (Marques et al., 
2016). Prawns consume supplied commercial feed, but they also 
consume fish faeces and unused fish feed, while filter-feeding fish (i.e., 
carps, tilapia) can reduce the amount of phytoplankton and zooplankton 
and hereby help minimizing the risk of low dissolved oxygen levels at 
night (Santos and Valenti, 2002; Ibrahim et  al., 2015). Despite 
implementation of polyculture, there has been growing concern about 
the long-term environmental sustainability of prawn farming. It has 
been estimated that prawn farms release about 1.0 MT CO2-equivalents/
year (Islam et al., 2021), corresponding to 18.8 kg CO2e/MT prawn. In 
similar prawn production systems in Vietnam, only 9.6 kg CO2e/MT 
prawn is produced (Jonell and Henriksson, 2015) and in China, shrimp 
farmers only produce 3.1 kg CO2e/MT shrimp (Cao et al., 2011). Prawn 
farming in Bangladesh has a high GHG footprint due to the traditional 
farming systems, contributing to increased global warming and climate 
change risks (Al-Amin and Alam, 2016).

The Integrated Multitrophic Aquaculture (IMTA) could represent 
an alternative farming approach to common polyculture systems in 
Bangladesh, since this technique is known to produce lower GHGs 
emissions. The IMTA concept is based on co-culturing aquaculture 
species from different trophic levels and with complementary 
ecosystem functions. In this way, uneaten feed, waste, and by-products 
of one species are utilized as fertilizers, feed, and energy for the other 
crops, and can take advantage of synergistic interactions among the 
species (Chopin et  al., 2001; Troell et  al., 2003; Neori et  al., 2004; 
Chopin et al., 2008). A growing literature acknowledges that IMTA is 
an environmentally friendly and climate resilient technology compared 
to other forms of conventional aquaculture (Buck et al., 2018; Biswas 
et al., 2020). For example, in South Africa, the integration of seaweed 
into an abalone farm resulted in a reduction of GHG emissions from 
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350 to 290 MT CO2e/year (Nobre et al., 2010). This review explores the 
global evolution and principles of IMTA, its bioremediation capacity, 
and its role in sustainable aquaculture, focusing on how it reduces 
GHG emissions, enhances climate resilience, and addresses challenges 
to promote IMTA with prawn, with the goal of determining its 
applicability for improving prawn farming sustainability in Bangladesh.

2 Methodology: procedure of 
systematic review

2.1 Literature search and filtering

A systematic and extensive literature review was undertaken as 
recommended by Xiao and Watson (2019). The Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA) 
framework protocol was used to assure a transparent and scientific 
quality, systematic review. Two databases—Web of Science and 
Scopus—were searched, as recommended by Green et al. (2006) and 
carried out, e.g., by Gambelli et  al. (2019), and Anastasiou 
et al. (2023).

Only journal articles published in English-language after 2000 
meeting the eligibility requirements, were allowed with an emphasis 
on this review articles. The criteria for eligibility and exclusion in 
the study selection process are listed in Table 1. We used relevant 
keywords and Boolean operators to search for IMTA fields, followed 
by Viana et  al. (2022). The term “integrated multitrophic 
aquaculture” was searched in conjunction with the phrases “prawn 
farming,” “food safety,” “food security,” “productivity,” “profitability,” 

“sustainability,” “techniques,” “bioremediation,” “potentials,” 
“challenges,” “environmental consequences,” “GHG emissions,” and 
“climate change adaptation” for the literature selection in this 
review. Table 2 shows the search terms that were entered into each 
search engine. Accordingly, a total of 1,058 articles were retrieved 
and identified from the two databases through this process. A total 
of 883 studies were excluded due to duplication, language problems, 
and irrelevance to the research objectives. After the meticulous 
screening, 175 studies were identified and nominated for 
verification of appropriateness, among which another 61 articles 
were eliminated due to lack of full document access. Finally, 112 
empirical studies were included in the comprehensive analysis for 
this research.

In this review, two authors individually conducted the literature 
selection process based on the result of the search outcomes. To begin 
with, the outcomes of the search strategies were filtered to produce a 
list of relevant studies. The final selection of papers was made after 
careful reading and analysis of the titles and abstracts. Each article was 
categorized at every stage based on its applicability and eligibility for 
the study. Two other authors have looked at further ambiguous 
classifications of the studies to reach a consensus. The framework 
applied for study selection is illustrated in Figure 1.

2.2 Data synthesis and analysis

After filtering, a descriptive synthesis was carried out by reading 
the titles, abstracts, and full texts to condense information from the 
included reviews. The data on the number of studies were entered into 

TABLE 1 The study’s eligibility and exclusion criteria (followed by Gambelli et al., 2019).

Criterion Definition

Eligibility Exclusion

Timeframe After 2000 Before 2000

Type of language English Non-English

Type of literature Peer-reviewed literature Non peer-reviewed literature, conference proceedings, 

scientific reports, news items

Area of content IMTA-focused sustainable aquaculture Agriculture (Crop, Poultry, Livestock, Fisheries, etc.)

Publication status Published; available on-line Others; e.g., published but no available source

Geographic coverage Worldwide None

General topics Studies that provide a focus on IMTA-based prawn farming, minimizing harmful 

environmental effects, guaranteeing food security, mitigating GHG emissions, adapting 

to climate change, and encouraging the achievement of sustainability

None

Methodologies Socio-economic, production and sustainability assessment methodologies (i.e., social, 

economic, and environmental evaluation techniques)

None

TABLE 2 Search engines and queries that were used for the scope of this study.

Search 
engine

Website Query

Web of 

Science

www.webofscience.com TS = (integrated multitrophic aquaculture) OR TS = (IMTA) OR TS = (food safety) OR TS = (food security) OR TS = (prawn farming) 

OR TS = (sustainability) OR TS = (environmental impacts) OR TS = (climate change) OR TS = (potentials and challenges)

Scopus www.scopus.com TITLE-ABS-KEY (“integrated” AND “multitrophic” AND “aquaculture”) AND TITLE-ABS-KEY (“IMTA” OR “prawn farming” OR 

“shrimp farming” OR “food safety” OR “security” OR “bioremediation” OR “production” OR “sustainability” OR “climate change”)

https://doi.org/10.3389/fsufs.2024.1412919
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FIGURE 1

Use of the PRISMA workflow diagram throughout the study selection process.

a Microsoft Excel spreadsheet, analyzed using descriptive statistics, 
and presented in graphical form. The study’s findings were recorded, 
synthesized, and scrutinized to ensure correct interpretation. The 
analyzed outcomes are presented using tables and line diagrams. The 
first author extracted the data; the other authors then verified all of the 
data. Any discrepancies identified in this study were clarified by 
discussion among the entire research team.

3 Results and discussion

3.1 Brief history of IMTA development

IMTA is not a novel idea; its roots are originated in Asia (Chopin, 
2013; Alexander and Hughes, 2017) which can be  traced back to 
ancient civilizations thousands of years ago in China (Park et al., 2018; 
Nederlof et al., 2022). The integration of fish with aquatic plants and 
vegetable production is detailed in several Chinese and Egyptian 
documents from 2200 to 1070 BC (Chopin, 2013). Moreover, Park 
et  al. (2018) noted that Fan Li probably carried out IMTA-like 
approaches in China as earlier as 470 BC (Table 3). Several published 
papers documented that IMTA has long been practiced in Asia, 
especially in China, Japan, and South Korea, with the integrated 

cultivation of fish from various trophic levels and shellfish and 
seaweed1 (Kleitou et al., 2018). Lately, IMTA has been successfully 
practiced in Shangou Bay, China, since 1980 (Fang et al., 2016). Over 
time, it has become the world’s most extensive aquaculture practice 
(Zhou et  al., 2006), and has gained widespread acceptance. The 
number of publications focusing on IMTA has risen consistently since 
2006 (Figure 2).

Outside, Asia, the IMTA concept has also later been 
experimented in western countries, including Europe (Chopin 
et al., 2012; Kleitou et al., 2018). In the 1970s, John Ryther and his 
team at the Woods Hole Oceanographic Institution in the USA 
started research on land-based polyculture systems (Park et  al., 
2018; Strand et  al., 2019), initially calling it “Integrated Waste-
Recycling Marine Polyculture Systems”; hence, he is regarded as the 
grandfather of modern IMTA (Chopin, 2013). Since then, interest 

1 Seaweeds are autotrophic organisms of simple structure with little or no 

cellular differentiation and complex tissues, grow in the ocean as well as in 

rivers, lakes, and other water bodies, and being used in human consumption, 

hydrocolloids extraction, fertilizers, extracts for cosmetics and pharmaceuticals, 

biofuels and wastewater treatment (Müssig, 2009; Peñalver et al., 2020).

https://doi.org/10.3389/fsufs.2024.1412919
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in IMTA has grown in the Western world and has slowly being 
implemented from pilot studies to commercial scale systems 
(Nederlof et al., 2022). In 2006, IMTA was acknowledged as a study 
priority for the advancement of aquaculture practices at the joint 

European Aquaculture Society and World Aquaculture Society 
Conference in Florence, Italy (Barrington et al., 2009).

Globally, IMTA practice has experienced several modifications 
from 1970s in the last century to open water systems on a broader 

TABLE 3 The historical development of IMTA in the world.

Period Development References

470 BCE IMTA-like approaches presumably first emerged in China. Yang (2000), Park et al. (2018)

Early–1970s Marine IMTA systems began at the National Center for Mariculture in Eilat, Israel. Guerrero and Cremades (2012), Neori et al. (2017), 

Neori et al. (2019)

1970s Modern IMTA concept was first introduced by Ryther and his associates at Woods Hole 

Oceanographic Institution, USA.

Park et al. (2018), Strand et al. (2019)

1980s Fully operational IMTA techniques, launches in Shangou Bay, China, are currently acknowledged 

as the most widespread in the world.

Fang et al. (2016), Mahmood et al. (2016), 

Park et al. (2018)

1980s Initiation of IMTA research began in Chile. Buschmann et al. (2014)

Mid-1980s The experimental and theoretical research of macroalgae under the IMTA concept initiated and 

continues in Israel.

Shpigel et al. (2016), Neori et al. (2017)

1990s–2000s The integration of seaweeds with marine fish culture was researched and explored in Japan, Chile, 

Scotland, New Zealand, Canada, and the USA.

Troell et al. (2009)

2000s–present Massive advancement and expansion of IMTA on an experimental and commercial scale in 

Australia, Canada, South Africa, Europe, North America, and other countries.

Ridler et al. (2007), Barrington et al. (2009), 

Ren et al. (2012)

2001s IMTA approach was started by Atlantic salmon/kelp/blue mussel co-farming in the Bay of Fundy, 

Canada.

MacDonald et al. (2011), Irisarri et al. (2013), 

Buck et al. (2018)

2004s The term integrated multitrophic aquaculture was derived from integrated aquaculture and 

multitrophic aquaculture.

Chopin and Robinson (2004), Chopin (2013), 

Fang et al. (2016)

2006s An IMTA research project started in New Zealand Stenton-Dozey et al. (2021)

2006s IMTA was acknowledged as a serious study priority and a potential direction forward for 

aquaculture techniques at the joint conference of the European Aquaculture Society and the World 

Aquaculture Society in Florence, Italy.

Barrington et al. (2009), Buck et al. (2018)

2012s IMTA research was initiated in earthen ponds at Bangladesh Agricultural University, Mymensingh, 

Bangladesh.

Kibria and Haque (2018)

2012s First ever small-scale open-water IMTA exercise was conducted off the east coast of Korea. Park et al. (2015), Park et al. (2018)

FIGURE 2

The number of publications within the scientific literature per year of IMTA publication since 2006.
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https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Alam et al. 10.3389/fsufs.2024.1412919

Frontiers in Sustainable Food Systems 06 frontiersin.org

scale in the 21st century (Fang et al., 2016; Strand et al., 2019). Ahmed 
and Glaser (2016) noted that IMTA is operated in over 40 countries 
on an experimental and commercial basis, including China, Japan, 
Canada, the USA, Chile, and many European nations.

In Israel, the IMTA approach is being adapted to intensive multi-
species aquaculture in desert climates, focusing on water conservation 
and nutrient regulation (Strand et al., 2019). In Chile, land-based 
IMTA began in the late 1980s, integrating rainbow trout 
(Oncorhynchus mykiss), oyster (Crassostrea gigas), and seaweed 
(Gracilaria chilensis) (Buschmann et al., 2014). In Canada, an IMTA 
pilot experiment was carried out in the Bay of Fundy in 2001 using 
Atlantic salmon (Salmo salar), blue mussels (Mytilus edulis), and kelp 
(Saccharina latissima), and has since transitioned from research and 
development scale to a commercial scale of production (McVey et al., 
2002; Buschmann et al., 2008; MacDonald et al., 2011; Liutkus et al., 
2012). In South Korea, open-water IMTA practice started in 2012 and 
was conducted in small land-based systems (Park et al., 2018).

According to published literature, only two shrimp species, such 
as P. monodon and Litopenaeus vannamei, have been grown in IMTA 
with various extractive plant species at a pilot scale in India, 
Philippines, Taiwan, and Mexico (Yeh et al., 2017; Xiao and Watson, 
2019; Strand et al., 2019; Biswas et al., 2019; Arriesgado et al., 2022). 
The outcomes of these investigations have been proven productive and 
economically viable, and also have shown a positive environmental 
bio-remediation effect. In Bangladesh, IMTA has only recently been 
taken into consideration for research and development to diversify 
production, using combinations of carps (Catla catla, 
Hypophthalmichthys molitrix, Labeo rohita, and Cirrhinus cirrhosus), 
stinging catfish (Heteropneustes fossilis), snails (Viviparus bengalensis), 
and water spinach (I. aquatica). However, no documented reports of 
the IMTA systems with freshwater prawn farming exist, though it is 
becoming an increasingly important targeted species in Bangladesh 
and elsewhere, and there is in enormous demand for this prawn in the 
export market.

3.2 Basic principles of IMTA

The principles of IMTA are based on nutrient recycling, whereby 
various complementary species at different trophic levels are grown in 
proximity, allowing the waste from one species to become the feed for 
another (Ellis and Tiller, 2019). Thus, IMTA involves raising organisms 
to enable one species’ uneaten feed, faeces and metabolic excretions, 
nutrients, and by-products to be recaptured and transformed into 
feed, fertilizer, and fertilizer energy for the development of the other 
species. FAO (2014) defines IMTA as “a practice in which by-products 
from one species are recycled to become inputs for another.” In a 
typical IMTA systems, finfish, shrimps or prawns are cultivated by 
allocation of feed, while extractive inorganic, such as aquatic 
vegetation or seaweeds, use the inorganic waste, and animals, e.g., 
mussels and oysters, utilize the organic waste materials (Ridler et al., 
2007; Chopin et al., 2012; Sri-uam et al., 2016; Biswas et al., 2020), as 
illustrated in Figure 3.

Globally, various organic and inorganic extractive species are 
co-cultured with different species of fish in IMTA systems, as shown 
in Table 4. Organic and inorganic extractive species drastically reduce 
waste materials emitted by feed material in IMTA. Earlier studies 
demonstrated that mussels and oysters had filter-feeding capacity to 

significantly reduce the organic effluents that were released from fish 
farming (Irisarri et al., 2015). Mussels and oysters are cosmopolitan 
species and general suspension feeders cultured in dense aggregations. 
Similar studies have reported that mussels and oysters grew faster 
when absorbing the organic waste when co-cultured with finfish or 
shrimps (MacDonald et al., 2011; Sarà et al., 2012). Cranford et al. 
(2013) noted that the large biofiltration capacity of suspended mussels 
provided a rationale for their use in IMTA systems. Dissolved nutrients 
are not taken up by mussels, but can be reduced by absorption in 
aquatic plants to fuel growth and biomass production in the IMTA 
system. In addition to the uptake of nutrients, aquatic plants may also 
provide shelter and shade for other organisms and release allelopathic 
chemicals to resist toxic algal blooms. Photosynthetic bacteria can 
concurrently decrease the amount of nitrogen and phosphorus in the 
system and provide food for suspension feeders (Samocha et al., 2015; 
Yeh et al., 2017). Consequently, IMTA increases the production of 
both seaweeds or other vegetation and provides a better environment 
for cultured aquatic animals (Wu et al., 2015).

In Bangladesh, freshwater prawn is naturally farmed together with 
an abundance of various species of mollusks and aquatic weeds. 
Various mollusks species including apple snails, freshwater snails are 
available in prawn farms, which are commercially important with 
good food sources for fish and livestock. Aquatic weeds, being 
emergent, floating anchored, free-floating or submerged, are also 
present in most prawn gher (modified rice fields to enable the culture 
of prawn, finfish together with rice), providing a food source, habitat, 
carbon dioxide removal and oxygen production through 
photosynthesis. Many of these organic and inorganic extractive 
species may be acceptable candidates for IMTA practices in coastal 
prawn farms in Bangladesh. However, their potential advantageous 
effects in integrated practices in research fields have remained mostly 
untouched and unexplored. To adequately ensure additional food 
production and multiple uses of the same land, extensive research is 
needed to select suitable candidate species of mollusk and aquatic 
plants for IMTA practices in coastal prawn farms.

3.3 IMTA for sustainable aquaculture

Sustainable aquaculture is a dynamic concept integrating three 
key pillars: i.e., economically profitable, environmentally friendly, and 
socially equitable (FAO, 2010; FAO, 2017). The concept of IMTA could 
meet most of these criteria including sustainable production as it 
focuses on a circular economy approach, minimization of energy 
losses and environmental deterioration (Pereira and Yarish, 2008). 
Recent literature reported that sustainable aquaculture also contributes 
to the achievement of the UN SDGs2 (Jiang et al., 2022). In particular, 
IMTA robustly supports the achievement of SDG 1 (no poverty), SDG 
2 (zero hunger) and SDGs14 (life below water) by helping to reduce 
poverty, provide food for people, and conserve sustainable use of the 

2 SDGs (Sustainable Development Goals), adopted by all UN Member States 

in 2015, serve as a blueprint for a sustainable future, targeting poverty 

eradication, inequality reduction, climate crisis mitigation, peace and justice 

promotion, and environmental protection, with all 17 interlinked goals to 

be achieved by 2030 to ensure that no one is left behind.
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oceans, but IMTA also indirectly achieves SDG 3 (good health and 
well-being) and SDG 13 (climate action) by providing rich proteins 
diets and maintaining a healthy weather (Naylor et al., 2021). IMTA 
contributes to environmental, economic, and social advantages 
through product diversification, possible price premiums, increased 
economic resilience, and nutrient cycling (Kumar et al., 2000; Chopin 
et al., 2012; Hughes and Black, 2016; Correia et al., 2020; Hossain 
et  al., 2022). Buck et  al. (2018) emphasize that extractive species 
absorb significant amounts of waste nutrients, control eutrophication, 
improve aquatic ecosystems’ health and stability, and promote an 
ecologically sound aquaculture practice and resource management 
through a balanced coastal ecosystem approach.

IMTA appears as an economically viable technique that reduces 
risks through crop diversification and production in different seasons 
(Chopin et al., 2012). Literature reveals positive prospects of cost-
effectiveness at the farm level and economic viability of IMTA systems 
through product diversification, faster production cycles, and higher 
product prices (Hossain et al., 2022). IMTA has been demonstrated to 
boost individual revenue in favorable market conditions and foster 
economic resilience in challenging times (Whitmarsh et al., 2006). 
Barrington et al. (2009) mentioned that Canadian consumers prefer 
IMTA products and are willing to pay an additional 10% for IMTA-
labeled products for better quality and food safety. Carras et al. (2020) 
observed that the yield of salmon in monoculture and with IMTA 
techniques with a combination of mussels and kelps was unchanged 
in Canada in an experimental setting; however, the extra production 
of the mussel and kelp increased the total biomass in IMTA systems, 
which aided to boost revenues by selling the mussel and kelp providing 
a higher net present value than salmon monoculture. Fraga-Corral 
et al. (2022) noted that the IMTA approach is best adapted to foster a 
circular economy based on the economic viability of integrated 
aquaculture species. Knowler et al. (2020) reported that the sale of 
seaweed generated an additional US$ 34,000  in annual revenue, 

corresponding to about US$ 0.28 per kg of fish, in salmon IMTA 
farms. They also demonstrated the economic viability of IMTA, since 
the NPV (net present value) for the IMTA system was 24% higher 
than the NPV of the monoculture operation, when assuming a 10-year 
period and a 5% discount rate. Fonseca et al. (2017) assessed IMTA 
farming with different combinations of species, including shrimp, 
oysters, and seahorses, and reported that it is economically feasible. In 
this system, the internal rate of return was 131.1% and payback period 
for the investment was <2.0 years.

IMTA techniques have gained social acceptance and satisfied the 
key aquaculture stakeholders in many countries (MacLeod et  al., 
2020). Extensive literature has recognized that IMTA is a societally 
acceptable farming technique due to better management practices, 
improved regulatory governance, and appreciation of differentiated 
and safe products (Ridler et al., 2007; Troell et al., 2009; Chopin et al., 
2012; Correia et al., 2020). In North America, the IMTA method has 
achieved social acceptance over conventional fish monoculture as 
seafood produced using this system was regarded as better for the 
environment and animal welfare and, to a lesser extent, safer and 
healthier (Kibria and Haque, 2018).

Prawn farming (monoculture and polyculture) has several 
impacts on employment generation, food supply, export earnings, 
strengthened livelihoods and ultimate consequences for the economy 
of Bangladesh. The prawn cultivation has become a multimillion-
dollar business in coastal Bangladesh and is called “white gold” due to 
its international market export value (Islam, 2008; Alexander et al., 
2016; Sukhdhane et al., 2018). However, this growing industry faces 
various bottlenecks, such as dependency on the imported feeds 
ingredients, a lack of quality feeds and adulteration-free ingredients, 
hatchery-produced quality seed, water quality problems and high 
GHG emissions from the farms. If the IMTA approach is implemented 
into the prawn farming, this farming system can be a sustainable 
strategy the existing problems in the coastal aquaculture of Bangladesh.

FIGURE 3

Sketch of integrated multitrophic aquaculture technique with a combination of trophic levels [adapted with permission from Hossain et al. (2017) © 
The authors of Hossain et al. (2017)].
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3.4 Extraction/bioremediation capacity of 
species used in IMTA systems

This literature review demonstrated that many organisms may 
serve as extractive species, but some organisms are more efficient than 
others. In addition to extraction and bioremediation capacity, the 
most suitable organisms should ideally also serve as producers of 
valuable food in IMTA systems (Park et al., 2021; Hossain et al., 2022; 
Hargrave et  al., 2022). Efficient extractive species for organic and 
inorganic compounds are shown in Table  5. The most efficient 
extractive species for organic material in IMTA are mussels, oysters, 
and clams (Chopin, 2011; Diana et al., 2013). Sicuro et al. (2020) made 
a similar statement, describing bivalves to play a pivotal role in aquatic 
ecosystems due to their high filtration capacity and ability to recycle 
nutrients and mix sediments. Earlier studies reported that blue 
mussels (M. edulis) and other filter feeding bivalves (Diplodon 
chilensis, M. galloprovincialis) can uptake nitrogen, and reduce levels 
of chlorophyll a, phosphate, and ammonia (Hossain et  al., 2022; 
Hargrave et al., 2022). Bivalves may consume dissolved compounds 

(branchial and urinary losses), reducing the concentration of nutrients 
and preventing the overgrowth of phytoplankton (Papageorgiou et al., 
2023). Hargrave et al. (2021) observed that bivalves M. edulis, and 
Magallana gigas significantly reduced kelp3 biofouling by as much as 
50% in IMTA systems. The freshwater mussel, Sinanodonta woodiana 
is highly efficient for bioremediation since it has been shown to reduce 
seston (suspended particulate organic matter) loads and regulate 
eutrophication in waterbodies (Douda and Čadková, 2018). Moreover, 
in IMTA cultures, the two oyster species, C. gigas and C. rhizophorae 
efficiently utilized organic matter (fish feed waste and fish feces) and 
eliminated total suspended solids and chlorophyll-a contents from the 
waterbody (Ramos et al., 2009; Jiang et al., 2013).

3 Kelp is referred to as large cold-water brown algae of the family 

Laminariaceae, used as food, medicines, and various manufacturing processes 

(Fraser, 2012).

TABLE 4 Major fed and extractive species used in IMTA techniques.

Aquaculture 
species

Organic 
extractive species

Inorganic 
extractive 
species

Country Region References

Heteropneustes fossilis Viviparus bengalensis Ipomoea aquatica Bangladesh Asia Kibria and Haque (2018)

Chanos chanos Crassostrea angulata Gracilaria verrucosa Taiwan Yeh et al. (2017)

Sebastes schlegeli Crassostrea gigas Saccharina japonica South Korea Park et al. (2018)

Paralichthys olivaceus Crassostrea gigas Saccharina japonica China Strand et al. (2019)

Sparus aurata Haliotis discus Ulva sp. Israel Buck et al. (2018)

Penaeus monodon Crassostrea cuttackensis Ipomoea aquatica India Nobre et al. (2010)

Penaeus monodon Perna viridis Ulva fasciata Philippines Arriesgado et al. (2022)

Siganus spinus Stichopus hermanii Eucheuma cottonii Indonesia Putro et al. (2015)

Pagrus major Haliotis discus Ulva ohnoi Japan Yokoyama and Ishihi (2010)

Dicentrarchus labrax Paracentrotus lividus Ulva lactuca Portugal Europe Correia et al. (2020)

Oncorhynchus mykiss Mytilus edulis Saccharina latissimi England Biswas et al. (2020)

Salmo salar Saccharina latissima Norway Fossberg et al. (2018)

Sarpa salpa Mytilus galloprovincialis Saccharina latissima Spain Freitas et al. (2016)

Oncorhynchus mykiss Mytilus edulis Saccharina latissimi Denmark Marinho et al. (2015)

Dicentrarchus labrax Pinctada imbricata Holothuria polii Greece Chatzivasileiou et al. (2022)

Salmo salar Laminaria digitata Ireland Ratcliff et al. (2016)

Oncorhynchus mykiss Sinanodonta woodiana Aeromonas hydrophila Italy Sicuro et al. (2020)

Salmo salar Mytilus edulis Laminaria saccharina Canada North America Ridler et al. (2007)

Anoplopoma fimbria Mytilus trossulus Alaria esculenta Canada Chopin et al. (2012)

Lutjanus campechanus Venerupis philippinarum Agardhiella subulata USA Lohroff et al. (2021)

Litopenaeus vannamei Chione fluctifraga Mexico Strand et al. (2019)

Oncorhynchus mykiss Crassostrea gigas Gracilaria chilensis Chile South America Buck et al. (2018)

Rachycentron canadum Perna perna Kappaphycus alvarezii Brazil Hossain et al. (2022)

Haliotis midae Ulva lactuca South Africa Africa Robertson-Andersson et al. (2008)

Holothuria scabra Kappaphycus striatus Tanzania Kunzmann et al. (2018)

Oncorhynchus tschawytscha Perna canaliculus Ecklonia radiata New Zealand Oceania Stenton-Dozey et al. (2021)

Salmo salar Mytilus planulatus Ecklonia radiata Australia Cheshuk et al. (2003)
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Seaweeds are widely used in IMTA systems due to their high 
affinity for nutrient absorption, reducing eutrophication and 
contributing to bioremediation (Wu et al., 2015; Kang et al., 2021; 
Hargrave et al., 2022). Macchiavello and Bulboa (2014) discovered 
that the seaweeds, G. chilensis and U. lactuca, in an IMTA system 
absorbed almost 100% of ammonia (NH3), nitrate (NO3), and 
phosphate (PO4

3−) that was generated by red abalone (Haliotis 
rufescens) in the IMTA. Similarly, Marinho-Soriano et  al. (2009) 
showed that the red seaweed G. birdiae had high biofiltration capacity 
and substantially reduced concentrations of PO4

3−, NH4
+, and NO3

− in 
IMTA cultivation. Mao et al. (2009) demonstrated that the red alga 
G. lemaneiformis had a high nutrient assimilation and bioremediation 
efficiency and assimilative capacity and served efficiently in an IMTA 
techniques by reducing ammonium and phosphorus loading. When 
the seaweed S. latissima was co-cultivated with the bivalves Chlamys 
farreri, the concentration of nitrate and ammonium was significantly 
reduced (Hargrave et al., 2021). A similar effect was observed for the 
macroalgae, Agardhiella subulata which in different IMTA systems 
significantly decreased the concentration of dissolved inorganic 
nutrients in the water, such as NH3, NO3

−, NO2
−, and PO4

3− (Lohroff 
et  al., 2021). According to Biswas et  al. (2019), water spinach, 
I. aquatica, may have an important role in bioremediation and 
removal of inorganic nitrogenous (NO2-N, NO3-N, and TAN) and 
phosphate-phosphorus (PO4-P) from organically polluted waters. 
Supporting this, water spinach has also been used to treat aquaculture 
wastewater successfully. For removal of mainly ammonium from 
wastewater, the application of Ulva spp. in the IMTA systems is also 
widely practiced and may be combined by recirculation of valuable 
elements to save pumping costs (Neveux et  al., 2018). Yang et  al. 

(2005) highlighted that G. lemaneiformis had multiple effects on pond 
IMTA systems; it reduced turbidity and phytoplankton biomass, and 
it provided a substantial reduction of nutrients by assimilation of 
NO2

−-N, PO4
−3-P.

Mollusks may also be important in IMTA in Bangladesh. Potential 
mollusk species in prawn farms and coastal waterbodies in Bangladesh 
include various mussels (M. edulis, C. gigas, Perna viridis), clams (Pila 
globosa, Viviparous bengalensis, Meretrix meretrix), and the oysters 
C. madrasensis (Shahabuddin et al., 2010; Ahmed and Glaser, 2016). 
These mollusks are considered ecosystem engineers with the potential 
to create, modify or maintain habitats and ecosystem processes 
(Hossain et al., 2013). For extraction of inorganic nutrients, various 
freshwater and brackish water aquatic weeds grow in prawn ghers. 
Ahmed and Taparhudee (2005) identified seven potential seaweeds in 
coastal areas of Bangladesh suitable for IMTA practices (genera: 
Caulerpa, Enteromorpha, Gelidiella, Gelidium, Halymenia, 
Hydroclathrus, Hypnea, and Sargassum). The mollusk and aquatic 
weed industries in Bangladesh are still at the infancy stage. However, 
these species in IMTA practices are highly promising in coastal 
Bangladesh due to suitable habitats, their high capacity to remove 
nutrients, improve water quality, and provide better economic return 
during co-culture with fish and other aquatic animals.

3.5 Contribution to food safety and 
security

Global food security is a dynamic concept evolving over decades with 
its definition and policy implementation (Sultana et al., 2023). IMTA 

TABLE 5 Extractive/bioremediation capacity of organic and inorganic species in IMTA systems.

Extractive species Extractive/bioremediation compounds References

A. Organic species

Diplodon chilensis Mitigate chlorophyll a, phosphate, and ammonia Hargrave et al. (2022)

Mytilus edulis Absorb fish feed, metabolic excretions and naturally occurring particles MacDonald et al. (2011)

Crassostrea gigas Remove suspended organic and inorganic particles and effectively control eutrophication Cunha et al. (2019)

Crassostrea madrasensis Remove dissolved nitrogen, phosphorous concentrations, and control eutrophication. Viji et al. (2014)

Chione fluctifraga Decrease chlorophyll a and TAN Biswas et al. (2019)

Crassostrea gasar Remove microorganisms and total suspended solids Costa et al. (2021)

Mytilus galloprovincialis Absorb unused feed, faces and detritus Chatzivasileiou et al. (2022)

Crassostrea virginica Remove carbon and nitrogen Park et al. (2021)

B. Inorganic species

Saccharina latissima Reduce ammonia concentration load Freitas et al. (2016)

Agardhiella subulata Decrease nitrogen and carbon concentrations Lohroff et al. (2021)

Ulva lactuca Remove TAN (total ammonia N, NH3, NH4
+) Chopin et al. (2008)

Gracilaria spp. Remove dissolved nitrogen and phosphate Kim et al. (2014)

Ulva lactuca Decrease oxytetracycline medicines in waterbody Rosa et al. (2019)

Gracilaria chouae Decrease dissolved nitrogen and phosphorus concentrations Samocha et al. (2015)

Eucheuma denticulatum Absorb ammonia and nitrate concentrations Largo et al. (2016)

Feneropenaeus indicus Remove ammonia, nitrate, and phosphate concentrations Sukhdhane et al. (2018)

Gracilaria lemaneiformis Reduce ammonium, phosphorus and control eutrophication Mao et al. (2009)

Laminaria digitata Absorb heavy metals (copper, manganese and vanadium) Ratcliff et al. (2016)

Venerupis philippinarum Remove carbon-dioxide and nitrogen discharges Park et al. (2021)
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systems contribute significantly to food and nutrition security through a 
diversified production of fish and crustaceans, and besides they deliver 
valuable products at different trophic levels, including oysters, mussels, 
clams, and seaweed. These extractive species, being bivalves and seaweeds, 
have high food, nutritional and economic value. Among important 
organic extractive species are mussels due to their high content of proteins 
and essential polyunsaturated fatty acids, such as eicosapentaenoic acid 
and docosahexaenoic acid that appear beneficial for healthy human 
development and prevention of diseases (Orban et al., 2002; Carboni 
et al., 2019). Mussels also contain other vitamins and minerals than most 
other meat-based protein sources, such as vitamins B and trace minerals 
(Venugopal and Gopakumar, 2017). Subasinghe et al. (2019) noted that 
the oyster C. madrasensis is an ideal source of omega-3 fatty acids and is 
rich in protein and low in calories and fat. The freshwater mussels 
Anodonta pseudodopsis and Unio tigridis may also have healthy properties 
due to their content of mono- and polyunsaturated fatty acids (Şereflişan 
and Ersoy-Altun, 2018). Moniruzzaman et al. (2021) determined that the 
apple snail P. globosa contain 50% protein and 3% lipid, which means that 
it represents a good source of protein for human consumption.

For seaweeds, Barbier et al. (2020) reported that they are viewed 
as promising, sustainable and healthy food sources and can contribute 
to achieving future policy goals related to blue growth and food 
security. Seaweeds contain essential nutrients, including proteins, 
lipids, vitamins, and minerals for human growth and development 
(Mahadevan, 2015). Yang H. et  al. (2021) reported that humans 
consume seaweeds worldwide because of their nutritional value and 
abundance of proteins, vitamins, minerals, and other organic 
compounds. According to Shannon and Abu-Ghannam (2019), the 
red seaweed Porphyra tenera contains high-protein contents, 
accounting for approximately 47% protein in dry weight. The available 
literature reported numerous essential fatty acids in seaweed; 
approximately 50% are polyunsaturated fatty acids (Dembitsky et al., 
2003). Eicosapentaenoic and arachidonic acids are abundant in 
Rhodophyta and Phaeophyta, whereas oleic, hexadecatetraenoic, and 
palmitic acids are prevalent in Chlorophyta, such as Ulva pertusa 
(Ortiz et al., 2006). Mišurcová et al. (2011) reported that seaweeds 
contained abundant water-soluble and fat-soluble vitamins, including 
thiamine, riboflavin, cobalamin, ascorbic acid, folic acid, and its 
derivatives, tocopherols, and carotenoids. Furthermore, seaweeds have 
low lipid and carbohydrate content, contain essential amino acids and 
are rich in carotenes, vitamin C and vitamin B12 (Rajapakse and Kim, 
2011; Slegers et al., 2021).

IMTA has arisen as an efficient method for safe production of 
high-quality food production through biological elimination of waste, 
improvement of water quality, maintenance of ecological services, 
diversification of the production, and maximization of resource uses 
(Kim et al., 2022). Hargrave et al. (2022) demonstrated the advantage 
of integrating seaweeds alongside blue mussels in IMTA systems 
rather than in monoculture to benefit both yields and quality (Irisarri 
et al., 2015; Moniruzzaman et al., 2021). Therefore, in Bangladesh 
comprehensive research on integration and combination of species 
and their nutritional value can accelerate the production and 
economic significance of IMTA systems. In prawn farms, IMTA 
practices may increase the total pond biomass through a diversified 
production of prawn, fish, mollusks and aquatic plants. Although 
some tribal people consume bivalves, most farmers extensively use 
bivalve meat, mainly snails, for feed in freshwater prawn farming in 
the southwest of Bangladesh (Baby et al., 2010). Currently, fish feed in 

Bangladesh mainly depends on imports because most feed ingredients 
come from international feed markets. If mollusk farming can 
be practiced sustainably in an IMTA approach, the import pressure of 
fish feed on prawn farming can be  reduced to a greater extent 
(Mamun-Ur-Rashid et al., 2013).

3.6 Reduction of GHG emissions

While aquaculture contributes to resolving food crises, it does also 
generate GHGs emissions (Alam et al., 2022; Chen et al., 2023), and 
this has attracted negative attention from scientists, researchers, 
organizations and the public worldwide (Ziegler et al., 2013). Carbon 
dioxide, methane, and nitrous oxide are three major GHGs, which are 
increasingly generated from the intensified aquaculture (Xu et al., 
2022). It is not uncommon that aquaculture farmers apply a large 
volume of industrial feed during intensive farming, resulting in 
addition of unutilized feed, semi-digested feed, excretions of 
metabolites, and mucous into the water. This organic matter stimulates 
microbial degradation that potentially trigger methane and nitrous 
oxide production that eventually generate GHGs (Yang et al., 2019; 
Zhao et  al., 2021; Pu et  al., 2022). Earlier studies confirm that 
aquaculture intensification may lead to eutrophication, causing 
depletion of the oxygen in the water and correlating positively with 
methane and carbon dioxide emissions (Li et al., 2021; Malyan et al., 
2022). Thus, the global and rapid expansion of aquaculture has 
become a critical driver of global warming and climate change 
(Ahmed and Turchini, 2021; Xu et al., 2022).

IMTA has been documented as a potential solution to adapt and 
mitigate GHG emissions through nutrient absorption and blue 
carbon4 sequestration (Abisha et al., 2022). Combining shellfish, i.e., 
mussels and oysters, and seaweeds in IMTA techniques significantly 
enhances aquatic ecosystems functions by sequestering CO2 and 
removing it by fixing carbon in solid form and hereby minimizing 
GHG emissions (Ahmed et al., 2017a; Macreadie et al., 2017; Fodrie 
et al., 2017; Ye et al., 2022). Shellfish serve as an important carbon sink 
and can help sequester blue carbon (SARF, 2017). Ahmed et  al. 
(2017b) reported that the estimated global mollusk production was 
16.1 million MT in 2014, potentially sequestering 0.97–1.93 million 
MT of blue carbon each year. Seaweed farming is a global mitigation 
approach to combat carbon emissions and promote blue growth 
initiatives (Froehlich et al., 2019). In the latest scientific literature, 
seaweeds are highly regarded elements in a potential blue carbon 
adaptation strategy, because they aid in controlling ocean acidification 
and deoxygenation and contributes to carbon sequestration, coastal 
safety, and serve as a carbon sink (Turan and Neori, 2010; Chung et al., 
2013; Jagtap and Meena, 2022; Farghali et al., 2023).

In freshwater prawn farms, farmers typically apply artificial feeds 
that retain a large quantity of organic matter from residual feed to 
feces into the pond water, generating a higher GHG footprint than 
traditional aquaculture systems. This enlarged GHG footprint is not 

4 Blue carbon is an integral part of the global carbon cycle. It refers to organic 

carbon absorbed and deposited by the oceans and coastal ecosystems, 

especially vegetated coastal ecosystems, such as seagrass meadows, tidal 

marshes, and mangrove forests (Ahmed et al., 2017a; Macreadie et al., 2019).

https://doi.org/10.3389/fsufs.2024.1412919
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Alam et al. 10.3389/fsufs.2024.1412919

Frontiers in Sustainable Food Systems 11 frontiersin.org

only a challenge to Bangladesh, it also affects export options to global 
markets that demand not only high animal welfare, ecolabelling and 
food safety, but also a sustainable production of farmed seafood, 
including prawns (Ahmed et  al., 2018). Therefore, adaptation 
strategies must be developed to cope with the challenges. The IMTA 
approach is a potential solution to resolve environmental and climate 
change problems by inclusion of different extractive species together 
with prawn. Priorities should focus on a comprehensive research 
investigation to determine the amount of carbon that can 
be sequestered by various mollusks, bivalves and aquatic plants in 
farms to make the farming of prawns sustainable and ensure a reduced 
emission of GHG.

3.7 IMTA on climate change resilience

Climate change is a global challenge and has substantially 
impacted aquaculture and mariculture production, including hatchery 
operations, through temperature fluctuation, erratic rainfall, sea-level 
rise, salinity intrusion, hypoxia, and ocean acidification (Fraga-Corral 
et al., 2022; Siddique et al., 2022a; Siddique et al., 2022b; Mahalder 
et  al., 2023). In recent years, the impacts of climate change on 
sustainable aquaculture have drawn attention since they threaten 
global food security, nutrition supplement, and livelihood status 
(Maulu et al., 2021). IMTA provides potential solutions and adaptation 
options for sustainable aquaculture in the context of climate change 
(Ahmed et al., 2017a; Tan and Zheng, 2020). Thus, as mentioned 
above, IMTA can improve the marine environments by diminishing 
ocean acidification, deoxygenation, and reduction of carbon emissions 
(Ye et al., 2022). In IMTA, bivalves like oysters can act as “ecosystem 
engineers,” by reducing negative environmental impacts directly or 
indirectly. They do this through carbon sequestration, enhancing 
nutrient removal from eutrophic areas, and contributing to habitat 
formation for other species (Mcleod et al., 2011; Fuentes-Santos et al., 
2021). Oyster shells act as carbon sink, playing vital role in mitigating 
the effects of climate change, particularly by reducing ocean 
acidification (Papageorgiou et al., 2023). Oysters are crucial to global 
ocean ecosystems, providing shelter and habitat for various estuarine 
species, filtering and purifying water, preventing bank erosion, and 
serving as buffers against extreme climatic events (Grabowski and 
Peterson, 2007). Aquatic plants in IMTA reduce carbon dioxide levels 
and mitigate the effects of global warming and climate change over the 
long term (Farghali et al., 2023). Sultana et al. (2023) reviewed how 
seaweed can reduce the concentration of pCO2 (partial pressure of 
carbon dioxide) in seawater by converting dissolved inorganic carbon 
through photosynthesis. Carbon sequestration via seaweed culture 
can potentially contribute significantly to global warming and climate 
change mitigation (Duarte et al., 2017). Farghali et al. (2023) noted 
that one MT of dry seaweed biomass can absorb approximately 960 kg 
of carbon dioxide during culture period. Seaweed can also fix 
phosphorus, potassium, and nitrogen in IMTA approaches, 
minimizing ocean acidification and increasing oxygen levels to 
revitalize and restore water habitats (Yong et al., 2022). Duan et al. 
(2019) reported that seaweed farming of G. lemaneiformis removed 
approximately 1,192 MT, 15.89 MT, and 128.10 MT of carbon, 
phosphorus, and nitrogen, respectively, from Yantian Bay, China.

In conclusion mollusks and aquatic plants are sustainable, climate-
friendly elements in aquaculture production and they serve as 

nutrient-rich protein for human consumption (Jones et al., 2022). In 
addition, neither mollusks nor plants depend on feeds, like fish or 
prawn do, meaning that they reduce land-based emissions from 
agricultural products, such as fish feeds. It should be emphasized that 
the inclusion of extractive species together with fed species (e.g., 
prawn or fish) do not exacerbate climate change, including floods, sea 
level rise, salinity intrusion, and mangrove deforestation, rather they 
represent proactive climate-friendly practices that will help create 
sustainable environmental, social and economic solutions. Therefore, 
available mollusk and aquatic plants in prawn farms used in the IMTA 
approach can provide strong resilience to climate change in coastal 
Bangladesh by sequestering blue carbon and reducing CO2 emissions.

3.8 IMTA for prawn farming in Bangladesh

IMTA is an environmentally friendly aquaculture approach as 
by sequestering blue carbon it tackles climate change mitigation. 
The main advantage of IMTA is its flexible and versatile nature as 
it can be practiced in land-based freshwater, coastal and marine 
water adopting several species combinations (Chopin and Sawhney, 
2009). Seaweeds and bivalves comprise about half of all aquaculture 
production globally, and their production have high market and 
non-market economic value (van der Schatte Olivier et al., 2020). 
Open ocean IMTA has also been recently practiced where seaweed 
was integrated together with fed species. This technique might 
attract an increased economic interest once high-value seaweed 
species can be cultivated and serve as novel human food products. 
The IMTA approach aligns with EU (European Union) directions 
for blue growth and the blue economy, and it works well within the 
global ambition of circularity in food production (Papageorgiou 
et al., 2023). Expansion of the IMTA approach with prawn farming 
in coastal areas could boost the blue economy, which is the top 
priority sector of Bangladesh government. Prawn farming with 
IMTA technique could ensure a safer and more sustainable 
production accelerating the export potential of freshwater prawns 
from Bangladesh to the global market. Locally available freshwater 
mollusks (e.g., P. globosa, V. bengalensis, Bellamya dissimilis, etc.) 
can be  farmed in IMTA system due to their potential role to 
sustainable diversification of food production and extensive 
ecosystem benefits, including nutrient remediation, and carbon 
sequestration (Seitz et  al., 2013; van der Schatte Olivier et  al., 
2020). These mollusk species can inhabit various niches in prawn 
farms, including the floating water column, substrates, and the 
bottom of the waterbodies. Similarly, locally available aquatic 
plants (e.g., I. aquatica, Oxalis corniculate, Azolla pinnata, Lemna 
minor, etc.) have the potential to be cultured in IMTA alongside 
freshwater prawn. These plants can then be  used as feed for 
livestock, replacing expensive protein sources and helping to 
reduce the overall cost of meat and milk production (Froehlich 
et al., 2019).

3.9 Challenges of IMTA approach within 
prawn farms in Bangladesh

Despite the more sustainable side compared to monoculture and 
climate change adaptability, some drawbacks are becoming evident as 
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IMTA is experimented more widely in the world (Troell et al., 2009; 
Khanjani et  al., 2022). Scaling up the IMTA technique in coastal 
prawn farms is likely to face some technological and environmental 
challenges. Adopting IMTA in prawn farms in coastal areas could 
result in various social problems, such as theft, robbery, and vandalism 
due to valuable produces in a small area (Ahmed and Glaser, 2016). 
The number of appropriate species used for the IMTA system may 
be  minimal in some coastal waterbodies (Rosa et  al., 2020). The 
selection of the most appropriate species to co-culture with freshwater 
prawn is a great challenge; therefore, one of the priorities to implement 
IMTA is the need for extensive research to identify the most 
appropriate aquatic plant and mollusk species to evaluate the densities 
and circumstances for optimum revenues (Granada et  al., 2016). 
Achieving consumer acceptance of aquatic weeds and mollusk will 
be a big challenge because these are entirely new food items for the 
local people. Another challenge is making aquatic plants and mollusk 
produced in IMTA affordable and available to the domestic and export 
markets (Biswas et  al., 2020; Sultana et  al., 2023). An important 
limitation to IMTA notably in Bangladesh is the lack of farmer level 
research, technical knowledge, experience, and training in operational 
practices to prawn farmers. Facilities, including action research 
opportunities, extension services, technical aid, credit support, 
marketing promotion of the produces, are required for the farmers to 
adopt IMTA practices. The government and non-government 
organizations, particularly the Bangladesh Fisheries Research Institute 
(BFRI) and WorldFish, other research local and international research 
institutes, and the Department of Fisheries and relevant extension 
agencies together, can assist by implementing action research at the 
farmers level and providing extension service and technical support 
to promote IMTA technique in the prawn farming region.

4 Conclusion

Freshwater prawn farming is the export oriented farming in 
coastal areas of Bangladesh by virtue of extensive polyculture and 
integration with rice/vegetables. Freshwater prawn has established a 
strong global trade, particularly in the European Union and the 
United  States of America. Despite having broader economic 
advantages, traditional prawn farming raises concerns about long-
term environmental sustainability due to GHG emissions. Prawn 
farming with IMTA represents an eco-friendly method under a 
circular economy approach, minimizing energy losses, environmental 
degradation, GHG emissions, and can alleviate negative effects of 
climate change. Mollusks and aquatic plants in IMTA can sequester 
blue carbon, reduce global warming, and mitigate climate change 
impacts. Additionally, these extractive organisms grown in prawn 
farms can decrease emission of waste materials, such as unutilized 
feed, excretions, and metabolic wastes, by feeding aquaculture 
material to improve water quality and the aquatic ecosystem 
functions. Farming extractive species in IMTA increase food and 
nutritional value; therefore, they can be  used instead of other 
expensive protein sources to optimize the cost of meat, milk, and 
other animal products. The IMTA approach in prawn farms can fit 
well with the goal of circular food production and has great potential 
to contribute to solve the food crisis, blue growth, and the blue 
economy. Despite the current technological and environmental 
limitations of IMTA approaches, adapting this technique to prawn 

farming can enhance export potential and be socially, economically, 
and ecologically sustainable. To fully optimize the potential of prawn 
farming in Bangladesh, it is essential to identity and combine the 
most suitable extractive species (e.g., aquatic mollusks and plants) 
within the IMTA strategy. This requires comprehensive research and 
development initiatives, which should be  a future priority in the 
national policy. The National Fisheries Policy, developed by the DoF 
(1998), requires a significant reformation, as it did not adequately 
address aquaculture research and development issues (DoF, 1998). 
Updating this policy with a clear aquaculture policy guideline that 
seriously considers advanced techniques like IMTA is essential. In 
line with this, government and non-governmental research and 
extension organizations (i.e., BFRI, WorldFish, DoF) can collaborate 
to revise national policy, and implement action research to develop 
IMTA model in prawn farms, and provide training and technical 
support to the farmers to foster the adoption of this sustainable 
technique in coastal regions of Bangladesh.
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