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Compared with conventional crop cultivation in greenhouses or fields, plant 
factories with artificial light (PFAL) have advantages in the highly efficient use 
of space, energy, and resources available for cultivation. However, few studies 
on environmental controls for improving the space use efficacy (SUE) of PFAL 
in the production of edamame, a vegetable soybean, have been reported. 
Therefore, developing an environmental control method for high productivity 
with minimal space and energy requirements is of high priority. The aims of this 
study were to (1) identify the optimal photosynthetic photon flux density (PPFD) 
and light quality to enhance the SUE of edamame at the vegetative growth 
stage, and (2) examine the effects of PPFD, light quality, and their interaction 
on edamame plant growth at the vegetative stage. SUE is defined as the crop 
biomass produced per unit cubic volume of cultivation during the growth 
period. We examined three PPFD treatments (300, 500, and 700  μmol  m−2 s−1) 
with three color temperature LED lamps (3,000, 5,000, and 6,500  K), for a 
total of nine treatments. The results demonstrated that, under the same light 
quality treatment, higher PPFDs resulted in larger fresh and dry weights of all 
organs, higher stem length, and lower specific leaf area. Under the same PPFD 
treatment, a high ratio of blue (400–499  nm) to red (600–699  nm) photon flux 
density increased the plant height but decreased the projected leaf area. The 
values of SUE at 700  μmol  m−2 s−1 increased by 213, 163, and 92% with 3,000, 
5,000, and 6,500  K, respectively compared with those at 300  μmol  m−2  s−1. 
The values of SUE at 700  μmol  m−2 s−1 increased by 34 and 23% in 5,000 and 
6,500  K treatments, respectively compared with that in the 3,000  K treatment. 
In conclusion, a combination of 700  μmol  m−2  s−1 PPFD and 5,000  K color 
temperature is the suitable condition to increase the SUE of edamame at the 
vegetative growth stage in a PFAL.
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1 Introduction

With the decrease in agricultural land resources, increase in 
unusual weather, and aggravated environmental pollution, a stable, 
safe, and sustainable food production system is necessary. To solve 
these problems, many studies have been conducted on closed-plant 
production systems have been proposed (Goto, 2012; Kozai, 2013; Ji 
et al., 2023). Recently, plant factories with artificial light (PFALs) and 
vertical farms—characterized by a multilayered cultivation system and 
utilization of artificial light—have been widely used to produce high-
quality and fresh agricultural products throughout the year (Kozai and 
Niu, 2016; Benke and Tomkins, 2017; Sharath Kumar et al., 2020; Van 
Gerrewey et al., 2022). PFAL controls environmental factors such as 
light, temperature, humidity, CO2 enrichment, and air velocity for 
plant growth. It has water and CO2 savings for production compared 
with greenhouses and fields (Kozai, 2005; Graamans et al., 2018).

Soybeans are crucial crops containing high-quality proteins. 
Vegetable soybeans, also called edamame in Japanese, are harvested and 
consumed at the immature R6 developmental stage which occurs when 
the seeds or pods become larger but do not turn yellow (Ogles et al., 
2016; Carneiro et al., 2020). Therefore, the difference between soybeans 
and edamame lies in the harvest or consumption time. Because 
edamame also contains high levels of protein, isoflavones, edible oil, 
and dietary fiber, it is very popular in the United States, Japan, China, 
and several other countries (Sánchez et al., 2005; Zeipina et al., 2017). 
In addition, edamame takes only 70–100 days from planting to harvest, 
shorter than that of soybeans (Konovsky et al., 1994; Moseley et al., 
2021). In our preliminary study using a PFAL, edamame was harvested 
~65 d after germination; therefore, it is more suitable for high-efficiency 
PFAL production. There have been some reports on PFAL cultivation 
of fruits and vegetables, such as strawberries and tomatoes (Yoshida 
et al., 2013; Ke et al., 2023; Park et al., 2023), wherein the time from 
germination to harvest is 100–150 d (Li et al., 2019). In comparison, 
edamame requires a shorter cultivation period, rendering it a 
marketable crop produced using PFAL. It is common for crops to 
be cultivated without agrichemicals in a PFAL; therefore, fresh and 
agrichemical-free edamame could be produced and made available to 
the market in the future (Wang, 2018).

In a PFAL, the energy consumption includes that of lamps and air 
conditioning systems for cooling, heating, and dehumidification 
(Graamans et al., 2018) and is a major production cost. Therefore, 
energy consumption should be  reduced using lamps with higher 
electric efficiency and performance air conditioning systems. 
Reducing the space of the cultivation shelf of the multilayered 
cultivation system in a PFAL is also a good means to reduce the 
operational cost of the air-conditioning system because the volume of 
the targeted air to be controlled. Space use efficacy (SUE) is defined as 
the dry biomass produced per unit of cumulative volume of cultivation 
during a growth period and that combines both the integrated volume 
occupied by crops and dry biomass production. According to this 
definition, it is considered that SUE is improved by reducing the 
volume of cultivation space and/or increasing the dry biomass of 
crops. The volume of space required for crop production is determined 
by crop shape, with plant height being the most influential factor. For 
more efficient use of space, short plants are desirable to increase the 
number of plant layers in a multilayered cultivation system.

Photosynthetic photon flux density (PPFD) may influence SUE 
because it can affect plant morphology (Van Roekel and Purcell, 2014; 

Graham and Wheeler, 2017). Additionally, PPFD can affect dry 
biomass production, and decreased PPFD or shading conditions can 
significantly decrease soybean yield and total dry biomass 
accumulation (Kurosaki and Yumoto, 2003; Zhang et al., 2011; Wu 
et al., 2016). Moreover, light quality, as defined by color temperature 
in the present study, may also affect SUE. Developing a strategy to 
control the edamame light environment during the vegetative stage is 
important for determining its morphology and yield (Feng et al., 2018; 
Moseley et al., 2021). In addition, PPFD and light quality can affect 
the biomass accumulation and morphology of edamame, which are 
principal SUE determinants. Maximizing SUE is the primary strategy 
for achieving a high edamame yield in a PFAL. Biomass accumulation, 
such as that of non-structural carbohydrates, is essential for high 
translocation from leaves to seeds during the reproductive stage. This 
study had two objectives. The first was to assess the influence of PPFD 
and light quality on edamame SUE and to identify the optimal PPFD 
and light quality for improving SUE during the vegetative growth 
stage. The second was to identify the influence of PPFD and light 
quality, and their effect on edamame plant growth at the 
vegetative stage.

2 Materials and methods

2.1 Plant material and growth conditions

This experiment was conducted in a PFAL at the Matsudo 
Campus, Chiba University, Japan using the soybean cultivar, Glycine 
max L. Merrill. Enrei, which is available as both a vegetable and a 
conventional soybean. This cultivar accounted for 9% of the total 
soybean planting area in Japan in 2014 (Shimomura et al., 2015); 
consequently, ‘Enrei’ was chosen for the present study. Edamame 
seeds were sterilized in a 20% sodium hypochlorite (NaClO) solution 
for 10 min, washed with distilled water, and then germinated on wet 
filter paper in the dark for 4 d. After germination, the seedlings were 
put under white fluorescent lamps (FL, FHF32EXNH; Panasonic 
Corporation, Osaka, Japan) with 200 μmol m−2 s−1 PPFD at the top of 
the seedling canopy. Conditions were maintained at 1000 μmol mol−1 
CO2 concentration, 25/20°C (day/night period) air temperature with 
65–70% relative humidity, and 16/8 h (light/dark) photoperiod. All 
seedlings were cultivated using tap water for irrigation for 12 d after 
sowing (DAS). At 12 DAS—when the first true leaf had fully 
expanded—the seedlings were transplanted into the treatment area. 
Seedlings were cultivated using 1/2 OAT house A nutrients (OAT 
Agrio Co., Ltd., Tokyo, Japan). The height of the cultivation shelf and 
the area of cultivation area used in the study were 60 cm and 0.78 m2, 
respectively.

2.2 Light treatment

Different color temperatures of LED lamps with various spectral 
characteristics were used for the light quality treatments here 
(Tables 1, 2). White LED lamps (XLX450DELP LE9, XLX450NHNU 
LE9, and XLX460NEDT LE9; Panasonic Corporation, Osaka, Japan) 
with the color temperatures of 3,000 K (31.9 W), 5,000 K (26.3 W) and 
6,500 K (43.1 W) were used as light sources, respectively. A 
spectroradiometer (USR-45DA, USHIO INC., Japan) was used to 
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measure the spectral photon flux distribution of the lamps (spectral 
data are shown in Figure  1). The photon flux density (PFD) was 
recorded at three wavelengths: 400–499 nm (blue light), 500–599 nm 
(green light), and 600–699 nm (red light), the ratio of blue-to-red 
photon flux (B/R) and ratio of red-to-far-red photo flux (R/FR) ratio 
was calculated (Table 1 and Supplementary Figure S1). The ratios of 
B/R for the 3,000, 5,000, and 6,500 K lamps were 0.22, 0.70, and 1.04, 
respectively. There were three levels of PPFD: 300, 500, and 
700 μmol m−2 s−1 with daily light integrals (DLIs) of 17.28, 28.80, and 
40.32 mol m−2 d−1, respectively. In each PPFD level, there were three 
light qualities: 3,000, 5,000, and 6,500 K. The blue and red photon flux 
densities (BPFD and RPFD), green, and far-red wavelengths in 
different PPFDs and color temperature treatments are shown in 
Table 2. The power and energy consumptions in each light treatment 
are shown in Supplementary Table S1. Each treatment was performed 
in duplicate.

2.3 Growth measurement

The growth parameters were measured at 21 DAS with stem 
length, leaf area, and fresh and dry weights of the leaves, stems, 
branches, and roots of each plant measured using a ruler, leaf area 
meter (LI-3000C; LI-Cor Inc., Lincoln, NE, United  States), and a 
digital balance, respectively. Plant organs were put in a convection 
oven (DV600 dry oven, Yamato Scientific Co., Ltd., Japan) and dried 
for 72 h at 80°C. The specific leaf area (SLA) of all leaves at 21 DAS was 
calculated by using the leaf area by the leaf dry weight. Daily canopy 

photographs from the top of the plants were used to calculate the 
projected leaf area (PLA) using a free imaging software (LIA 32 
ver. 0.378).

2.4 Measurement of chlorophyll pigment

Chlorophyll pigments were extracted from the first fully expanded 
leaf from the top of the seedlings at 21 DAS. Fresh leaves (0.08 g) were 
soaked in 2 mL 80% acetone for 24 h. The absorbance of the leaf 
extracts was measured at 663 and 645 nm using an ultraviolet–visible 
spectrophotometer (V-750; JASCO Co., Ltd., Japan), according to the 
method described by Porra et al. (1989).

2.5 Leaf net photosynthetic rate

A LI-6400 portable photosynthesis system (LI-COR Inc., Lincoln, 
NE, USA) with a leaf chamber containing a transparent cuvette was 
used to measure the net leaf photosynthetic rate (Pn). The first fully 
expanded leaf from the top of the edamame plant at 21 DAS for each 
of the nine treatments was used. For the measurements, the leaf was 
clamped in the chamber and environmental conditions of the leaf 
chamber were set as 25 ± 1°C leaf temperature, 1,000 μmol mol−1 CO2 
concentration, 65–70% relative humidity, and 500 μmol s−1 air flow 
rate through the system. The leaves from each treatment were 
clamped, and Pn was measured after both Pn and stomatal 
conductance had stabilized.

TABLE 1 Spectral characteristics of each light source.

Light quality (Color 
temperature, K)

Photon flux density (%) B/R R/FR

400–499  nm 
(Blue)

500–599  nm 
(Green)

600–699  nm 
(Red)

700–800  nm 
(Far-red)

3,000 10.0 39.3 45.1 5.6 0.22 8.05

5,000 21.0 46.8 29.9 2.2 0.70 13.59

6,500 26.3 45.9 25.2 2.7 1.04 9.33

White light emitting diode lamps (XLX450DELP LE9; XLX450NHNU LE9; and XLX460NEDT LE9; Panasonic Corporation, Osaka, Japan) were used as light sources. Photon flux density (%) 
means a proportion of photon flux density at a given wavelength range to total photosynthetic photon flux density (PPFD). B/R means the ratio of blue to red photon flux density. R/FR means 
the ratio of red to far-red photon flux density.

TABLE 2 Photon flux density (PFD) of blue, green, red, and far-red wavelengths in different photosynthetic photon flux density (PPFD) and light quality 
treatments.

Light quality (Color 
temperature, K)

PPFD (μmol  m−2 s−1) PFD (μmol  m−2 s−1)

400–499  nm 
(Blue)

500–599  nm 
(Green)

600–699  nm 
(Red)

700–800  nm 
(Far-red)

3,000

300 31.8 124.7 143.5 16.8

500 53.0 207.9 239.2 28.0

700 74.2 219.0 334.8 39.3

5,000

300 65.5 143.5 92.0 6.6

500 107.5 239.2 153.3 11.1

700 150.5 334.9 214.6 15.5

6,500

300 81.0 141.3 77.7 8.1

500 134.9 235.6 129.5 13.5

700 188.9 329.8 181.3 18.9
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2.6 Space use efficacy

SUE (g m−3) is defined as the ratio of the accumulated total dry 
biomass to the cumulative volume occupied by the plant at the growth 
stage as:

 
SUE

W

V
=

 
(1)

Where W (g) is the accumulated total dry biomass at the growth 
stage and V (m3) is the cumulative volume occupied by the plant at the 
growth stage. W (g) during the growth period is defined as:

 W W Wm n= −  (2)

Where Wn (g) and Wm (g) are the plant dry weights at day ‘m’ and 
day ‘n’. In the experiment, ‘m’ and ‘n’ are, respectively, 21 and 12. The 
V (m3) during the growth period is defined as:

 
V PLA t h t

t n

m

= ( )× ( ) 
=
∑

 
(3)

Where PLA (t) (m2) is the plant projected leaf area on day t 
(n ≤ t ≤ m, integer) and h (t) (m) is the plant height on day t.

2.7 Statistical analysis

The mean values ± standard deviation of six individuals in each of 
the nine treatments are expressed in the results. SPSS for Windows 
(Version 24.0; SPSS Inc., Chicago, IL, United  States) was used to 
conduct two-way analysis of variance (ANOVA) to determine if there 
was an interactive effect between ‘PPFD’ and ‘light quality’ variables 
on measurement and calculation parameters. An open-source 

statistical software program, JASP (Version 0.16.4; JASP Team, 
Amsterdam, The Netherlands), was used for the Test of Simple Effects 
to uncover the extent to which one factor exhibited different 
effectiveness at each level of a second factor. Subsequently, a post-hoc 
analysis was performed using Tukey’s HSD test method and p < 0.05 
was considered as statistically significant (Goss-Sampson, 2020).

3 Results

3.1 Biomass accumulation

Biomass accumulation at 21 DAS is shown in Table 3. Biomass 
accumulation significantly increased with increasing PPFD under the 
same light quality treatments. In the 3,000, 5,000, and 6,500 K 
treatments, the W values of at 21 DAS increased by 175, 189, and 88%, 
respectively at 700 compared to 300 μmol m−2  s−1. Moreover, they 
increased by 119, 74, and 62%, respectively at 500 compared to 
300 μmol m−2 s−1. At 300 μmol m−2 s−1, the W values increased with an 
increasing ratio of B/R, and at 500 μmol m−2 s−1, the W values decreased 
with an increasing ratio of B/R. When PPFD was 700 μmol m−2 s−1, the 
W values were significantly higher in the 3,000 and 5,000 K treatments 
than those in the 6,500 K treatment. In addition, the interaction 
between the PPFD and light quality affected W (Table 4).

3.2 Specific leaf area

The SLA values were significantly higher at 300 μmol m−2 s−1 than 
those at 500 and 700 μmol m−2 s−1 (Figure 1). Additionally, the SLA 
was significantly higher in the 3,000 K treatment than that in the 
5,000 K treatment when the PPFD was 500 and 700 μmol m−2  s−1. 
There was an interaction effect between PPFD and light quality on 
SLA (Table 4).

3.3 Plant height and stem length

Figure 2 shows the plant height from 12 to 21 DAS in edamame 
under different PPFDs and light qualities, the interaction between 
which affected both plant height and stem length (Table 4). Plant 
height increased rapidly at 17 DAS (Figure 2). The plant height at 
700 μmol m−2 s−1 in 3,000, 5,000, and 6,500 K at 21 DAS increased by 
13.0, 26.4, and 11.6%, respectively, compared to that at 
300 μmol m−2  s−1. In addition, plant height in the same PPFD 
treatments was higher in the 3,000 K treatment than that in the 5,000 
and 6,500 K treatments. At all PPFD treatments, the plant height in the 
6,500 K treatment at 21 DAS increased by 30.4, 29.6, and 28.8% at 300, 
500, and 700 μmol m−2  s−1, respectively, compared to that in the 
3,000 K treatment.

Figure 3 shows the effects of BPFD and the ratio of BPFD/PPFD 
on stem length at 21 DAS. The stem length decreased with increasing 
BPFD. Interestingly, the stem length significantly decreased with 
increase in BPFD up to 107.5 μmol m−2 s−1 and then slightly declined 
when BPFD further increased up to 188.9 μmol m−2  s−1. Both the 
BPFD and BPFD/PPFD affected stem elongation. Far-red photon flux 
density (FRPFD) had a slightly stronger effect on stem elongation than 
BPFD did.

FIGURE 1

Specific leaf area of edamame at 21 DAS in different PPFD and light 
quality treatments. Vertical bars indicate standard error (n  =  6). 
Lowercase letters indicate significant differences between PPFD 
treatments but within the same light quality treatments, determined 
using Tukey’s HSD test at p  <  0.05. Asterisks indicate significant 
differences at different light quality treatments but within the same 
PPFD treatments, determined using Tukey’s HSD test at p  <  0.05.
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3.4 Projected leaf area

Under the same PPFD treatments, as BPFD/PPFD increased, PLA 
decreased (Figure  4). PLA was significantly higher in the 3,000 K 
treatment than those in the 5,000 and 6,500 K treatments when PPFD 
was 300 and 700 μmol m−2 s−1.

3.5 Cumulative volume occupied by the plant

The V values were highest at 300 μmol m−2 s−1 under the same 
light quality treatments at 21 DAS (Table  3), and significantly 
increased after 17 DAS (Figure 5). Under the same PPFD treatments, 
as the ratio of B/R increased, V decreased. When PPFD was 300 and 
700 μmol m−2 s−1, the V values were significantly higher in the 3,000 K 
treatment than those in the 5,000 and 6,500 K treatments at 21 DAS.

3.6 Chlorophyll concentration

Chlorophyll a (Chl a) concentration decreased with increasing 
PPFD in the 5,000 K treatment (Figure 6). The Chl a concentration had 
the highest value at 700 μmol m−2  s−1 in both 3,000 and 6,500 K 
treatments. Chlorophyll b (Chl b) concentration decreased with 
increasing PPFD, and it was significantly higher at 300 μmol m−2 s−1 
than that at 500 and 700 μmol m−2 s−1 in the 5,000 K treatment. The 
chlorophyll a + b concentrations (Chl a + b) were higher at 300 and 
500 μmol m−2 s−1 compared to 700 μmol m−2 s−1 in the same light quality 
treatments. The interaction between PPFD and light quality affected the 
ratio of chlorophyll a/b (Chl a/b) (Table 4) which was significantly 
higher at 700 μmol m−2 s−1 than those at 300 and 500 μmol m−2 s−1.

3.7 Leaf net photosynthetic rate

The interaction between PPFD and light quality affected Pn 
(Table 4) which increased with increasing PPFD under the same light 
quality (Figure  7). It was significantly higher at 500 and 
700 μmol m−2  s−1 than at 300 μmol m−2  s−1. Moreover, Pn was 
significantly higher in the 3,000 K treatment than in the 5,000 and 
6,500 K treatments when PPFD was 300 μmol m−2 s−1.

3.8 Space use efficacy

SUE values increased with increasing PPFD under the same light 
quality treatments (Table 3). Under the 3,000 K treatment, SUE values 

TABLE 3 The cumulative volume occupied by the plant (V), dry biomass accumulation during the growth period (W), and space use efficacy (SUE) of 
edamame at 21 DAS under different PPFD and light quality treatments.

Light quality (Color 
temperature, K)

PPFD (μmol  m−2 s−1) B/R V (× 10−4 m3) W (g) SUE (kg DW m−3)

3,000

300

0.22

17.16 ± 1.23A 0.85 ± 0.02Bc 0.51 ± 0.05Bb

500 14.88 ± 0.43A 1.87 ± 0.12b 1.27 ± 0.10a

700 14.83 ± 0.82A 2.35 ± 0.07Aa 1.60 ± 0.13a

5,000

300

0.70

12.22 ± 0.58B 1.03 ± 0.06ABc 0.81 ± 0.07ABc

500 11.81 ± 0.20B 1.79 ± 0.11b 1.49 ± 0.12b

700 11.06 ± 0.29B 2.35 ± 0.06Aa 2.14 ± 0.10a

6,500

300

1.04

10.66 ± 0.85B 1.07 ± 0.07Ab 1.02 ± 0.14Ab

500 10.29 ± 0.46B 1.73 ± 0.14a 1.47 ± 0.16ab

700 10.08 ± 0.28B 2.01 ± 0.12Ba 1.97 ± 0.19a

Data are shown as the mean ± standard error of the five biological replicates. B/R means the ratio of blue photon flux density to red photon flux density. Lowercase letters within the column 
indicate significant differences between PPFD treatments, but within the same light quality treatments, as determined using Tukey’s HSD test at p < 0.05. Uppercase letters within the column 
indicate significant differences between light quality treatments, but within the same PPFD treatments, as determined using Tukey’s HSD test at p < 0.05.

TABLE 4 Analysis of two-way variance for the effects of PPFD, light 
quality, and their interactions on root dry weigh (RDW), stem dry weight 
(SDW), leaf dry weight (LDW), branch dry weight (BDW), biomass 
accumulation during the growth period (W), plant height (PH), stem 
length (SL), stem diameter (SD), leaf area (LA), specific leaf area (SLA), 
project leaf area (PLA), chlorophyll a, b, and a  +  b concentrations, 
chlorophyll a/b ratio, and photosynthetic rate (Pn) of edamame at 21 
DAS.

Parameter PPFD Ligh quality PPFD × 
Light 

quality

RDW ** NS NS

SDW ** ** NS

LDW ** NS NS

BDW ** NS *

W ** NS *

PH ** ** **

SL ** ** **

SD ** NS NS

LA ** NS NS

SLA ** ** **

PLA NS ** NS

Chl a NS NS NS

Chl b ** NS NS

Chl a + b * NS NS

Chl a/b ** NS *

Pn ** NS *

Asterisks indicate significance levels (*p < 0.05 and **p < 0.01). NS indicates no statistical 
significance.
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were significantly higher at 500 and 700 μmol m−2 s−1 than those at 
300 μmol m−2 s−1. In the 5,000 K treatment, all SUE values differed 
significantly among the three PPFD treatments. Under 3,000, 5,000, 
and 6,500 K treatments, the SUE values at 700 μmol m−2 s−1 increased 
by 213, 163, and 92%, respectively compared to those at 
300 μmol m−2 s−1. Moreover, SUE at 500 μmol m−2 s−1 increased by 150, 
83, and 44%, respectively compared to 300 μmol m−2 s−1. When PPFD 
was 300 μmol m−2 s−1, the SUE values increased when the ratio of B/R 
was increased, and they also increased by 100 and 60% in 6,500 and 
5,000 K treatments, respectively compared to those in the 3,000 K 
treatment. When PPFD was 500 μmol m−2 s−1, SUE values increased 
by 16 and 17% in 6,500 and 5,000 K treatments, respectively compared 
to those in the 3,000 K treatment. When PPFD was 700 μmol m−2 s−1, 
SUE values in 6,500 and 5,000 K treatments increased by 23 and 34%, 
respectively compared to those in the 3,000 K treatment.

4 Discussion

4.1 Increased PPFD increases SUE by 
increasing dry biomass accumulation and V

The value of SUE depends on the W and V (Eq. 1) and W was 
calculated using (Eq. 2). Under the same light quality treatments, high 
PPFD (500 and 700 μmol m−2 s−1) increased SUE by increasing the W 
and reducing the V (Table 3). As PPFD increased, the W increased 
and V decreased under the same light quality treatments. Moreover, 
PPFD affected the W more than the V. The W had a greater influence 
on SUE than V because there was a significant difference in W in the 

different PPFD treatments under the same light quality. However, 
there were no significant differences in V among the different PPFD 
treatments under the same light quality.

Dry biomass production depends on Pn and leaf area (Trouwborst 
et al., 2011; Malek et al., 2012). The results of our study indicated that 
the Pn (Figure 7) of the leaves increased with increasing PPFD under 
the same light quality treatments. In addition, the leaf area increased 
with increasing PPFD (Supplementary Figure S2). The chlorophyll 
concentration in leaves is an important element that affects their 
photosynthetic capacity (Dai et al., 2009; Shao et al., 2014). Gong et al. 
(2017) found that soybean leaves have higher chlorophyll 
concentrations under shaded conditions, which enables a more 
effective capture of light. Our results showed high PPFD led to low 
chlorophyll concentrations and high ratio of Chl a/b (Figure 6). The 
greater decrease in Chl b concentration compared to Chl a 
concentration was mainly responsible for decreasing the ratio of Chl 
a/b at 700 μmol m−2 s−1. Chl b tends to absorb solar radiation scattered 
in a manner complementary to that of Chl a. Therefore, Chl b enhances 
the ability of plants to absorb solar radiation (Voitsekhovskaja and 
Tyutereva, 2015). With increasing PPFD, the requirement for light-
harvesting complexes to efficiently capture light decreases, leading to a 
decrease in the Chl b concentration at a higher PPFD (Pearcy and 
Seemann, 1990). Leaf thickness and the relative proportions of 
conductive, assimilatory, and mechanical tissues were determined 
using SLA (Reich et al., 1998). In particular, the increased total leaf 
thickness with increasing PPFD primarily results from an increase in 
the thickness of the palisade parenchyma, epidermal tissue, and spongy 
parenchyma (Evans, 1999). Such a structure is beneficial for leaves to 
intercept more light resources. This is one of the main reasons why Pn 

FIGURE 2

Plant height from 12 to 21 DAS in edamame regulated by different PPFDs and light qualities. Pictures (A-C) show the color temperatures of 3,000, 
5,000, and 6,500  K, respectively. The B/R ratio of 3,000, 5,000, and 6,500  K lamps from Table 1 are 0.22, 0.74, and 1.22, respectively. Pictures (D-F) 
show the PPFDs were 300, 500, and 700  μmol  m−2 s−1, respectively. Vertical bars indicate standard error (n  =  6). Lowercase letters indicate significant 
differences at different treatments, determined using Tukey’s HSD test at p  <  0.05.
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at 500 and 700 μmol m−2  s−1 was significantly higher than those at 
300 μmol m−2 s−1 under the same light quality treatments (Figure 7).

The value of V depends on the PLA and plant height (Eq. 3). PPFD 
had a significant effect on V (Figure 5) because there was a significant 

difference in plant height (Figure  2) among the different PPFD 
treatments under the same light quality treatments. Some studies 
reported that the plant height increased with the increasing PPFD from 
200 to 290 μmol m−2 s−1 in lettuce (Kang et al., 2013) and from 50 to 

FIGURE 3

The effects of blue photon flux density (A) and ratio of blue photon flux density to photosynthetic photon flux density (B) on stem length in edamame 
at 21 DAS. The effects of far-red photon flux density (C) and the ratio of far-red photon flux density to photosynthetic photon flux density. (D) on SL in 
edamame at 21 DAS. Vertical bars indicate standard error (n  =  6). BPFD means blue photon flux density (μmol  m−2 s−1). PPFD means photosynthetic 
photon flux density (μmol  m−2 s−1). FRPFD means far-red photon flux density (μmol  m−2 s−1).

FIGURE 4

The projected leaf area from 12 to 21 DAS in edamame regulated by different PPFDs and light qualities. Pictures (A–C) show the PPFDs were 300, 500, 
and 700  μmol  m−2 s−1, respectively. The B/R ratio of 3,000, 5,000, and 6,500  K lamps from Table 1 are 0.22, 0.74, and 1.22, respectively. Vertical bars 
indicate standard error (n  =  5). Lowercase letters indicate significant differences at different light quality treatments but within the same PPFD 
treatments, determined using Tukey’s HSD test at p  <  0.05.
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600 μmol m−2 s−1 in basil (Larsen et al., 2020). However, some studies 
verified that the plant height decreased with increasing PPFD from 200 
to 500 μmol m−2  s−1 in tomato (Ke et  al., 2023) and from 100 to 
800 μmol m−2 s−1 in wheat (Li et al., 2021). In the case of soybean, the 
plant height decreased when the PPFD increased from 63 to 
700 μmol m−2  s−1 (Feng et  al., 2018; Yang et  al., 2020) which was 
consistent with our results (Figure  2). Low PPFD induces a shade 

response in plants (Smith and Whitelam, 1997). Plants grown under 
shaded conditions allocate more biomass to stem growth than to leaf 
expansion (Franklin, 2008). Gibberellins (GAs) and auxins—two 
endogenous plant hormones—regulate the shade-induced differential 
growth and elongation of stems (Kurepin et al., 2007; Yamaguchi, 2008). 
Low PPFD increases GA levels in the internodes of soybeans (Yang et al., 
2018) which may be the reason for increasing plant height of edamame 

FIGURE 5

The cumulative volume (V) occupied by the plant from 12 to 21 DAS in edamame regulated by different PPFDs and light qualities. Pictures (A–C) show 
the PPFDs were 300, 500, and 700  μmol  m−2 s−1, respectively. The B/R ratio of 3,000, 5,000, and 6,500  K lamps from Table 1 are 0.22, 0.74, and 1.22, 
respectively. Vertical bars indicate standard error (n  =  5). Lowercase letters indicate significant differences between different light quality treatments but 
within the same PPFD treatments, determined using Tukey’s HSD test at p  <  0.05.

FIGURE 6

The chlorophyll a (A), chlorophyll b (B), and chlorophyll a  +  b (C) concentrations, and chlorophyll a/b ratio (D) of edamame at 21 DAS in different PPFD 
and light quality treatments. Vertical bars indicate standard error (n  =  6). Lowercase letters indicate significant differences between PPFD treatments but 
within the same light quality treatment, determined using Tukey’s HSD test at p  <  0.05. Asterisks indicate significant differences between light quality 
treatments but within the same PPFD treatments, determined using Tukey’s HSD test at p  <  0.05.
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in the present study. The results suggest 700 μmol m−2 s−1 is the best 
PPFD for edamame at the vegetative growth stage to improve SUE.

4.2 Light quality affects SUE by affecting V

Under the same PPFD treatments, light quality increased SUE 
mainly by reducing V (Table 3) which is due to the difference in the 
B/R ratio between the different light quality treatments. Our results 
indicate that a high B/R ratio (0.70 and 1.04) led to a lower plant 
height (Figure  2) and PLA (Figure  4). The W increased with an 
increasing B/R ratio at 300 μmol m−2 s−1. However, the high B/R ratio 
decreased the W at 500 and 700 μmol m−2 s−1.

Blue light is an important single light source that alters plant 
morphology (Crosson and Moffat, 2001). Low blue light or low light 
intensity enhances gibberellin and auxin accumulation in plant 
stems, causing stem cells to elongate (Spalding and Cosgrove, 1989; 
Goyal et al., 2013). The elongation response of the stem to low blue 
light is consistent with the shade avoidance response to low PPFD, 
which causes low absolute blue light intensity (Cope and Bugbee, 
2013; Hitz et  al., 2019). Blue light reduces leaf area and stem 
elongation by inhibiting gibberellin synthesis (Lyu et al., 2021). Lyu 
et al. (2021) found that soybean stem length increased with increasing 
BPFD from 4 μmol m−2 s−1 to 106 μmol m−2 s−1. Here, we found that 
the shade avoidance response can be triggered by a low BPFD even 
under high PPFD (500 and 700 μmol m−2  s−1). Interestingly, stem 
length was more influenced by BPFD than by BPFD/PPFD, which is 
consistent with the findings of Cope and Bugbee (2013); however, the 
current study investigated a wider PPFD range. BPFD instead of 
BPFD/PPFD was found to be an important factor that determines the 
stem elongation response to blue light (Wheeler et al., 1991).

A low R/FR ratio can trigger a shade avoidance response. Hitz 
et al. (2019) found that the stem length of soybeans was higher under 
a R/FR ratio of 1.5 than of 5. Yang et al. (2020) found that the stem 

length of soybeans was higher under a R/FR ratio of 0.42 than of 1.33. 
However, in our study, far-red light had a weaker effect on stem 
elongation than blue light (Figure 3) because the R/FR ratio in our 
treatments was higher than that in studies by Hitz et al. (2019) and 
Yang et al. (2020). Under natural environmental conditions, the ratio 
of R/FR is ~1.2 in daylight, under a canopy with a leaf area index of 4 
(Holmes and Smith, 1975). This ratio is lower than that observed in 
this study (Table  1); therefore, the R/FR ratio did not affect stem 
elongation. In addition, Lyu et al. (2021) showed that low blue PFD 
predominantly induced excessive soybean stem elongation compared 
with far-red light, consistent with the results here.

Our results reveal that light quality had no significant influence 
on leaf area under the same PPFD treatments, consistent with the 
results of Cope and Bugbee (2013). Although an increase in the B/R 
ratio from 0.22 to 1.04 increased the photosynthetic capacity of the 
leaves under the same PPFD treatments (Supplementary Figure S3), 
the increase was smaller at a PPFD of 700 μmol m−2 s−1. This is because 
the R/FR ratios were higher in the 5,000 and 6,500 K treatments than 
in the 3,000 K treatment. Far-red light can increase Pn by increasing 
the quantum yield of photosystems (Zhen and van Iersel, 2017; Zhen 
et al., 2019). PLA was significantly influenced by the color temperature 
(Figure 4 and Supplementary Figure S4); additionally, the PLA content 
decreased as the B/R ratio increased. The reduction of PLA at the 
6,500 K treatment was the main reason for the decrease in W at a 
PPFD of 700 μmol m−2 s−1. The reduction of W eventually led to the 
decreased SUE in the 6,500 K treatment compared to the 5,000 K 
treatment at PPFDs of 500 and 700 μmol m−2 s−1.

These results suggest that high levels of BPFD (21.0 and 26.3%) 
increased the SUE by reducing plant height and PLA with the same 
PPFD. In addition, the SUE was higher in the 5,000 K treatment than 
in 3,000 and 6,500 K treatments at PPFDs of 500 and 700 μmol m−2 s−1. 
Furthermore, the energy consumptions of lamps in 5,000 K treatments 
were the lowest at the same PPFD (Supplementary Table S1). 
Therefore, the 5,000 K color temperature was the best light quality for 
edamame at the vegetative growth stage for improving SUE.

4.3 Effect of interaction between PPFD and 
light quality on SUE

PPFD and light quality can also affect SUE through their 
interactive effects on the growth and morphology of edamame. Effects 
of the interactions between PPFD and light quality were found for W, 
plant height, stem length, SLA, Chl a/b, and Pn (Table 4). We found 
that the light quality affected W at different PPFD levels (Table 3). W 
increased with the increasing B/R ratio at the PPFD of 
300 μmol m−2 s−1; however, W decreased with the increasing B/R ratio 
at the PPFDs of 500 and 700 μmol m−2 s−1. This indicated that W was 
affected by the light quality, and the results of this effect depended on 
the PPFD. In addition to the anticipated increase in stem length in 
response to a low PPFD, a decrease in the ratio of B/R increased the 
elongation response to PPFD. Stem length decreased in response to 
increasing PPFD, with an additive effect of a decreasing B/R ratio. This 
may explain why BPFD had a greater influence on stem length than 
BPFD/PPFD. Therefore, stem length responds to PPFD, light quality, 
and their interactions, which ultimately affect plant height.

PPFD and light quality affected SUE differently. PPFD had a 
significant effect on SUE by influencing W and plant height; 

FIGURE 7

The photosynthetic rate (Pn) of edamame leaves at 21 DAS in 
different PPFD and light quality treatments. Vertical bars indicate 
standard error (n  =  3). Lowercase letters indicate significant 
differences between PPFD treatments but within the same light 
quality treatment, determined using Tukey’s HSD test at p  <  0.05. 
Asterisks indicate significant differences between light quality 
treatments but within the same PPFD treatments, determined using 
Tukey’s HSD test at p  <  0.05.
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however, light quality affected SUE by influencing the PLA and 
plant height. In addition, the interaction between PPFD and light 
quality indirectly affected SUE by affecting the W and height of 
edamame during the vegetative growth stage. White LEDs with full 
spectra were used in this study. From a physiological viewpoint, the 
influence of red, blue, and far-red light on the growth and SUE of 
edamame cannot be  accurately explained. Moreover, light is an 
important resource in cultivation spaces, and its utilization 
efficiency affects SUE within a certain range. In addition, only the 
vegetative growth stage was considered in this study. Total dry 
weight increased significantly at 18 DAS (Supplementary Figure S5), 
and the plants were in a stage of rapid growth until 21 
DAS. Therefore, the effects of PPFDs and light quality on the growth 
and SUE of edamame may differ between the reproductive and 
vegetative growth stages. Further research is necessary to determine 
the suitable light conditions to improve the SUE of edamame during 
the reproductive growth stage.

5 Conclusion

Our results show that increasing PPFD could significantly improve 
the SUE of edamame at the vegetative growth stage by increasing W and 
decreasing V. High PPFD improved W by increasing Pn and leaf area 
and decreased V by decreasing plant height or stem length. Moreover, a 
high color temperature improved SUE, mainly by reducing V. This was 
because the high B/R ratio decreased V by reducing plant height and 
PLA under LED lamps with a high color temperature. However, a high 
B/R ratio decreased W and further decreased SUE at the PPFDs of 500 
and 700 μmol m−2 s−1. In conclusion, a combination of 700 μmol m−2 s−1 
PPFD and 5,000 K color temperature is recommended for edamame 
cultivation to improve SUE at the vegetative growth stage in a PFAL. This 
knowledge suggests that the optimal combination between PPFD and 
light quality can improve efficiency for the sustainable production of 
pesticide-free and high-quality edamame in commercial PFALs and 
further can be utilized in space agriculture.
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