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The traditional method of detecting crop nutrients is based on the direct chemical 
detection method in the laboratory, which causes great damage to crops. In order 
to solve the above problems, the main goal of this study is to design a precise 
fertilization method for greenhouse vegetables based on the improved back-
propagation neural network (IM-BPNN) algorithm to increase fertilizer utilization 
efficiency, reduce production costs, and improve the economic viability of 
agriculture. First, soil samples from the farm in china are selected. With the laboratory 
treatment, available phosphorus, available potassium, and alkaline nitrogen are 
extracted. These data are preprocessed by the z-score (zero-mean normalization) 
standardization method. Then, the BPNN (backpropagation neural network) 
algorithm is improved by being trained and combined with the characteristics of 
the dual particle swarm optimization algorithm. After that, the soil sample data 
are divided into training and test sets, and the model is established by setting 
parameters, weights, and network hierarchy. Finally, the NBTY (nutrient balance 
target yield),BPNN (backpropagation neural network) and IM-BPNN algorithm are 
used to calculate the amount of fertilizer. Compared with the BPNN and NBTY 
algorithm, it shows that the IM-BPNN algorithm can more accurately determine 
the amount of fertilizer required by vegetables and avoid over-application, which 
can improve fertilizer utilization efficiency, reduce production costs, and improve 
the economic feasibility of agriculture.
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1 Introduction

The reasonable crop nutrient supply is of great significance to the healthy growth of crops, 
especially nitrogen, phosphorus, and potassium, which is the most important nutrient 
elements for crop growth in china. However, existing fertilization methods are mainly based 
on manual decision-making, which is easily affected by factors such as subjective judgment, 
experience bias, and insufficient information. Moreover, the lack of comprehensive and 
accurate soil and plant information makes the fertilization plan easily deviate from the optimal 
state, which reduces useful efficiency of nutrient and increases the waste of agricultural 
resources (Youlu, 2018). Although some methods for accurately detecting crop nutrients are 
based on the direct chemical detection methods in the laboratory, some of which are at the 
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cost of the survival and growth of crops, and meanwhile with the 
disadvantages of poor real-time performance, high cost, and large 
pollution. Therefore, how to apply artificial intelligence technology to 
crop growth has become a current research hotspot, with scientific 
and efficient fertilization the focus of research, which is benefited to 
the development of precision fertilization (Sharma et al., 2023).

In order to solve the above problems, some scholars made some 
achievements in the fertilization decision-making systems. Jin et al. 
(2020) designed an intelligent monitoring system for vegetable 
fertilization and sowing. It uses GPS and soil prescription plot maps 
to determine the target amount of fertilizer, and uses pressure sensors 
and microcomputer control to calculate the amount of fertilizer and 
flow information. Shamshiri et al. (2020) proposed a novel comfort 
ratio model connected with IoT sensors to evaluate greenhouse 
microclimate parameters. He  also developed an optimization 
algorithm for set point manipulation in microclimate control. Dong 
et al. (2020) proposed a method for precise fertilization of field crops 
based on a wavelet-BP neural network. It combines wavelet analysis 
with BP neural network to analyze the complex non-linear relationship 
between soil nutrients, fertilizer application and crop yield, which can 
improve the prediction accuracy of the model. Coulibali et al. (2020) 
proposed a site-specific machine learning predictive fertilization 
model for potato crops in eastern Canada. It uses machine learning 
algorithms to determine an optimal model for predicting high tuber 
yield and quality. Swaminathan et al. (2023) proposed a deep neural 
collaborative filtering model for fertilizer prediction. It uses feature 
fusion and deep learning technology to effectively capture the complex 
interactive relationship between soil and fertilizer, which improve the 
accuracy of the algorithm in predicting the amount of fertilizer. 
Shamshiri et  al. (2018) proposed a method for evaluating and 
controlling microclimate in greenhouse tomato cultivation based on 
optimal temperature, humidity and vapor pressure difference. It 
defines the membership function model of the optimality of the 
optimal, critical and failed air and root zone temperatures of tomatoes 
to determine the optimal growth conditions of tomatoes.

Zhang et al. (2019) designed a QUEFTS model to estimate the 
nutrient absorption requirements of radish in China. It used the 
Quantitative Evaluation of Tropical Soil Fertility (QUEFTS) model to 
study the relationship between radish fleshy root yield and nutrient 
accumulation, and obtained the optimal balanced requirements of N, 
P and K for radish plants to produce 1,000 kg of fleshy roots. Brunetto 
et al. (2022) used a machine learning model to predict nitrogen use in 
the “Alicante Bouschet” vineyard. They conducted a 5-year fertilization 
experiment and used ML tools to build a model including nitrogen 
dosage, climate index, foliar nitrogen dosage, and stem diameter of the 
previous season to achieve nitrogen management from local 
characteristics. Recena et al. (2019) used the visible–near infrared 
spectroscopy (Vis–NIR) to find the response sites of P, Ca, Mg, K and 
Fe in vegetable soils, which accurately estimated the plant-available 
phosphorus and potassium content in crops, and control the 
application of phosphorus and potassium fertilizers. Shamshiri et al. 
(2021) proposed a wireless sensor and IoT instrument integrated with 
artificial intelligence to realize greenhouse automation process. It is 
equipped with a distributed wireless node custom-designed based on 
a powerful dual-core 32-bit microcontroller to achieve optimal growth 
conditions and automatic fertilization of greenhouse crops. Ashraf 
et  al. (2021) proposed a Maisotsenko cycle evaporative cooling 
(M-DAC) system based on desiccant dehumidification. It optimizes 

the traditional greenhouse air conditioning system from the 
perspective of temperature gradient, relative humidity level, VPD and 
dehumidification gradient, so that crops can grow in the best 
environmental conditions. Rezvani et  al. (2021) proposed a 
greenhouse crop growth simulation model based on energy balance 
and computational fluid dynamics to balance the relationship between 
climate, soil, water and crops to achieve optimal growth of crops.

Although the above studies provide fertilization decisions based 
on some crops, some of these studies need to focus on the convergence 
of the algorithm, computational efficiency and the use of large-scale 
data sets, and the practicability of the algorithm in actual farm 
applications is not high. Some studies requires the use of infrastructure 
(such as greenhouse climate constant temperature system, GIS 
systems, etc.), but these equipment are expensive, which may impose 
an economic burden on small farms. Finally, some fertilization 
decision-making methods involve multiple variables, including soil 
texture, plant varieties, meteorological conditions, etc. There are 
uncertainties and inaccuracies in these data, which may affect the 
accuracy of fertilization decisions, and the above methods are not 
practical in practice. The applications are relatively complex and 
limited by hardware equipments and network infrastructures. 
Although Junfeng et  al. (2022) proposed to predict the impact of 
different application amounts of nitrogen, phosphorus and potassium 
on the tomato yield and quality in solar greenhouses of the Gobi 
region, this method is limited by specific geographical and climatic 
conditions, so it has the versatility of greenhouse agriculture. In order 
to solve the above problems, the main goal of this study is to develop 
a precise fertilization method for greenhouse vegetables based on the 
improved back-propagation neural network (IM-BPNN) algorithm to 
improve the accuracy of fertilization, thereby improving fertilizer 
utilization efficiency and reducing agricultural production costs. By 
introducing the double particle swarm optimization algorithm, this 
method aims to improve the accuracy of the BPNN algorithm in 
determining the amount of fertilizer required for vegetables, thereby 
achieving high yield and efficiency.

2 Materials and methods

2.1 Algorithm design

In this study, the dual particle swarm algorithm was introduced 
to the BP neural network, which was combined to improve the 
algorithm’s accuracy (Qiuying, 2017).

2.1.1 Backpropagation neural network
Backpropagation Neural Network (BPNN) is a multi-layer 

feedforward neural network used for classification and regression 
tasks (Gunawan et al., 2022). It learns and adjusts the weights of 
the network through two stages of forward propagation and back 
propagation to minimize the prediction error. As to the forward 
propagation, the nodes of the input layer receive the input data 
and pass it to the hidden layer; each node of the hidden layer 
weights the input data Sum and perform a nonlinear 
transformation through an activation function (such as the 
Sigmoid function), and then pass the result to the next layer. The 
nodes of the output layer receive the output of the hidden layer, 
perform weighted summation and activation function 
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transformation, and finally output the predicted value. As to the 
backpropagation, it calculates the error between the predicted 
value and the actual value of the output layer, makes the error 
from the output layer to the hidden layer, and calculates the error 
gradient of each node. Finally, according to the error gradient, the 
weights and biases of nodes in each layer of the network are 
adjusted to gradually reduce the prediction error (Zhang et al., 
2019). The BP neural network was trained according to the 
following steps:

 (1) Initialization: the parameters such as the number, weight, 
neuron bias, and learning rate of each hidden layer node are 
set. Among them, Neuron Bias is an additional parameter. 
Its function is similar to the intercept term in linear 
regression and can help the model fit the data better. The 
existence of the bias term enables the activation function to 
be translated so that it is no longer limited to the vicinity of 
the origin, increasing the flexibility and expressiveness of 
the model. Activation Function is a nonlinear transformation 
between the output of each neuron in the neural network 
and its input. It is used to introduce nonlinearity so that the 
neural network can handle complex nonlinear problems. 
The learning rate is a hyperparameter that determines the 
size of the step size each time the model parameters 
are updated.

 (2) Calculating the hidden layer output: the calculation of the 
hidden layer output is expressed as Formula 1:

 
G P a u x

m

i
m mϕ ϕ ϕ= × −











=
∑

1  
(1)

In Formula 1, ϕ represents the number of the hidden layer node; 
m represents the number of the input layer node; i represents the total 
number of input layer nodes; mϕ  represents the input value of the mth 
input layer node; Gϕ represents the output of the ϕ − th  node in the 
hidden layer; P ( ) represents the activation function; i represents the 
number of input layer nodes; umϕ  represents the connection weight 
from the m th−  input layer node to the ϕ − th  hidden layer node (ϕ 
=1,2,…,j). Based on the data, the Sigmoid function is adopted as the 
activation function to build a real number to the (0, 1) interval, which 
is expressed as Formula 2:
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 (3) Calculating the actual output: the real output is computed, yn  
represents the offset value (n = 1, 2,…, γ .), which is shown in 
Formula 3:
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 (4) Backpropagation: the error value is calculated by Formula 4:

 w R Rn n n= −  (4)

Then the weight is updated, and the calculation of the updated weight 
from the input layer to the ahidden layer is expressed as Formula 5:
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In Formula 5, ρ  represents the learning rate. The updated weights 
from the hidden layer to the output layer is computed by Formula 6:

 u u G wm m nϕ ϕ ϕρ= + × ×  (6)

Finally, the threshold is updated. The updated from the input layer 
to the hidden layer is computed by Formula 7:

 
x x G G u w

n

t
n nϕ ϕ ϕ ϕ ϕρ ρ= + × − ×( )× ×( )

=
∑

1  
(7)

The updated threshold from the hidden layer to the output layer 
is computed by Formula 8:

 y y wn n n= +  (8)

The BPNN algorithm transforms the input data to the output data 
through the activation function and continuously fit any nonlinear 
function through the backpropagation function, which is good 
adaptability and robustness. However, it has some disadvantages, such 
as slow convergence, easy to fall into local optimum, overfitting, etc. 
Therefore, it is necessary to integrate other algorithms to improve 
model accuracy and efficiency, so the dual particle swarm optimization 
algorithm can meet this requirement (Chen et al., 2019).

2.1.2 Dual particle swarm optimization algorithm
The duel particle algorithm upgrades the original particle swarm 

algorithm. It divides the particle swarm into two populations and 
uses different learning algorithms to identify the optimal value (Jain 
et al., 2020). Meanwhile, in order not to completely abandon the 
discarded particle information, the particle swarm is divided into the 
following two types:

For the main group, the method of linearly decreasing inertial 
weight ɷ is used for searching, and the genetic algorithm is combined 
to optimally preserve inheritance and small probability mutation to 
update the particles. Formulas 9 and 10 are as follows:

 

C C Hy k A k
Dy k A k

m m n m

n m

α α α β

α β

+( ) = ( ) + ( ) − ( )( )
+ ( ) − ( )( )

1 1 1

2 2

µ

 (9)

 A k A k C km m m+( ) = ( ) + +( )1 1  (10)

In Formula 9, Cm α +( )1  represents the velocity of the m-th 
particle in the α + 1th generation; µ represents the inertial weight, 
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which controls the search ability and development ability of particles. 
A larger inertia weight helps global search, while a smaller inertia 
weight helps local search; α1 and α2 represents the acceleration 
constant, which determines the acceleration of particles approaching 
the individual optimal position and the global optimal position, 
respectively. The value is [1,2] to ensure that particles can balance 
exploration and exploitation. β1 and β2 represents a random number, 
with a value range of [0, 1]. Randomness is introduced to increase the 
diversity of the particle swarm and prevent it from falling into local 
optimality. Hy kn ( ) represents the historical optimal position of the 
current particle, and Dy kn ( ) represents the global optimal position of 
the particle swarm. They ensure that the particles move toward the 
historical best position and the current global optimal position, 
improving the optimization ability of the algorithm. A km ( ) represents 
the current particle position.

In Formula 10, A represents the position of the m-th particle 
in the (k + 1)-th generation. B represents the position of the m-th 
particle in the k-th generation, which is the basis for the next 
position update. C represents the speed of the m-th particle in the 
(k + 1)-th generation, which determines the moving direction and 
distance of the particle in the next step. Through the speed and 
position updates of the above two formulas, the particle swarm can 
continuously adjust its position in the search space and finally 
converge to the global optimal solution. Since the main group uses 
the decreasing weight to search the later stage of iteration, the 
extreme value falls into the local value with the decrease of µ, 
which is possible to filter out the particles of the global value. The 
auxiliary group consists of two parts: one part is the particles 
rejected from the main group, and the other is the particles 
randomly selected in the particle group. It is expressed by 
Formula 11:

 H H Hi i i2 50 50= × + ×% % (11)

In Formula 11, H i2  represents the position of the 2i-th particle in 
the new generation. Hi  represents the position of the i-th particle in 
the current generation. Hi represents the position of the i-th particle, 
which is selected from the other particles in the swarm. The main 
group and the auxiliary group account for 70 and 30% of the particle 
swarm. The two groups are calculated according to the above two 
points. During the iteration process, the auxiliary group keeps filtering 
particles, so the particles are overlaped with the main group, which are 
the optimal particles.

2.1.3 Improved backpropagation neural network
In order to improve the accuracy of the BPNN alogrithm, BP train 

and DPSO (Particle Swarm Optimization) class are defined. The 
population size of the particle swarm optimization algorithm is set as j, 
the maximum speed is Cmax, the inertia weight coefficient is w, the 
acceleration coefficients is α1 and α2, the highest iteration number is m. 
The training set is passed into fit for training, the BP is used to construct 
the mathematical model. Finally, the output value of the neural units in 
each layer and the error rate between the output value and the real value 
are calculated to facilitate subsequent optimization of the algorithm 
using weights and deviations. The pseudocode of the IM-BPNN 
algorithm algorithm is as follows:

The process of the IM-BPNN algorithm is shown in Figure 1.

2.2 Experimental design

2.2.1 Experimental environment
The study data is taken from the research area of a farm in Shuixi 

Village, Qingyuan, Guangdong, China, which covers up to 500 acres. 
The object of this study is Komatsuna. Figure 2 shows the komatsuna 
production environment and soil monitoring equipment. (a) It shows 
the vegetable agricultural production base, covered with a transparent 
greenhouse for protecting and growing vegetables. (b) It shows the 
pineapple planting area, which shows the planting area inside the 
greenhouse, with pineapple seedlings planted neatly in the soil. (c) It 
shows the vegetable soil tester, which is a soil testing equipment 
installed in the field and used to monitor and collect various 
parameters of the soil, such as humidity, temperature, pH value, etc. 
(d) It shows the soil surface sensors, which are installed on the surface 
to monitor soil conditions in real time. They are connected to 
vegetable soil detectors for data recording and transmission, which 
can continuously collect and send soil data for scientific analysis and 
decision-making.
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2.2.2 Data acquisition and pre-processing
Figure 3 shows the soil parameter collection methods. The land 

type, land status, alkaline hydrolysis nitrogen, available phosphate, 
available potassium and other contents are measured. Each small plot 
is 60 ft. × 30 ft. through the layered grid sampling method (Sasikala and 
Ratha Jeyalakshmi, 2021). In each grid, the plum blossom sampling 
method is used for soil sampling (Mildenhall et al., 2019). The soil 
samples of 5 points are mixed and put into soil sampling bags for 
labeling. The mixed soil represents the soil fertility of the entire region.

When the soil sample is obtained from the farm, it is air-dried, 
ground, sieved, and mixed to determine its content. The contents of 
alkaline hydrolysis nitrogen, available phosphate, available potassium 
are determined by the Kjeldahl method (Solangi et al., 2019), the 
molybdenum antimony anti-colorimetric method (Liu et al., 2022) 
and flame photometry method (Hemachandiran et al., 2023), which 
can obtain the soil nutrient data of the corresponding sampling points 
in each plot, so these data are sorted out. Table 1 shows the nutrient 
data of some soil samples from the experimental plot. It has six 
attributes for each sample: plot number, sampling soil depth, alkaline 
hydrolysis nitrogen, available phosphate, available potassium and 
other contents.

Due to the large differences in the attributes of soil data, larger 
inputs can suppress smaller inputs during the training process, which 
will not only slow down the training speed but also lead to the 
convergence failure (Roberts et al., 2022). In order to achieve better 
results, the difference of the data impact is eliminated, which ensured 
that the data variation is the same level. It also maintain the stability 
of the model and avoid the above errors. So the z-score normalization 
method is applied to preprocess the data before they are used for the 
model training (Ahmed et  al., 2024). The z-score normalization 
subtracts the average value of the attribute from each attribute in each 
data object. The difference is divided by the variance of the attribute, 
as shown in Formula 12:

 
s s

lτ
τ

τ

σ
=

−

 
(12)

In Formula 12, sτ  represents the τ − th  standardized data 
attribute value, sτ  represents the τ − th  data attribute value to 
be standardized, σ  represents the mean value of the attribute, lτ  
represents the variance of the attribute. Based on the results, the 
data standardized by this method conforms to standard the normal 
distribution. The mean value of standardized data is 0, and the 
variance is 1.

2.2.3 Model building
(1) Parameter setting
For the model training, 2000 sets of soil sample data are used, 

which has 1,600 sets for training and 400 for verification. According 
to the IM-BPNN model, the input and output layer unit numbers are 
set to 9 and 2. The Sigmoid function is taken as the activation function 
of the hidden layer neurons (Panda and Panda, 2020). The soil natural 
fertility parameters of the farmland in the experiment are alkaline 
hydrolysis nitrogen (128.241 mg/kg), available phosphorus 
(31.262 mg/kg), available potassium (270.345 mg/kg), organic matter 
(0.547ds/m), PH value (6.61) and bulk density (1.209 g/cm3), which 
are denoted by p1, p2, p3, p4, p5, p6, so the unit komatsuna yield is 
represented by p7.

(2) Proportion determination
In order to extract the proportion of various element parameters 

in the soil, the relationship of the fertility parameters is identified by 
the neural network weight analysis function (Lou et  al., 2022). 
According to the relationship between the various elements in the soil 
fertility indexes, the analysis weight of each index is determined. The 
BPNN is extensively trained using the BPNN algorithm’s learning 
rules and the TensorFlow Linspace function multiple times. The 
training is terminated when the training results meet the error 

FIGURE 1

The process of the IM-BPNN algorithm.
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accuracy requirements. The analytical weights for soil fertility 
indicators in the IM-BPNN algorithm are obtained.

Table  2 shows the connection weight fertility matrix of the 
IM-BPNN algorithm. The analysis weight order of the BPNN 
algorithm is available phosphorus > available potassium > alkaline 
hydrolysis nitrogen > organic matter > PH > bulk density. The weight 
variable of each element node is determined through multiple 
comparisons and analyses of the fertility weights of soil element 
information in the BPNN algorithm. The weight is effective, and the 
entire network training process is hardly affected except by the model 

itself. Therefore, the weighted results of IM-BPNN algorithm can 
maintain a high accuracy.

(3) Determination of network hierarchy
The optimal number of hidden layers and nodes in the neural 

network are determined in this study. Firstly, the number of hidden 
nodes in the BPNN algorithm is optimized by the dual particle swarm 
algorithm and four layers of a nonlinear network with Nihl neurons (Yu 
et al., 2022). The training accuracy of the network model is improved, 
and the network error is reduced by increasing the number of hidden 
layers or nodes in the hidden layers. Finally, after a lot of training on 

FIGURE 2

The komatsuna production environment and soil monitoring equipment. (A) The greenhouse vegetable production base; (B) The kumatsuna olantation 
area; (C) The vegetable soil detector; (D) The soil monitoring surface sensor.

FIGURE 3

The soil parameter collection methods. (A) The structure of the layered grid sampling method; (B) The plum blossom sampling method.
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different neural network structures, it is found that when there is an 
hidden layer and 18–28 units in every layer. The training effect is best, 
so the magnitude of the training error is not large, which can keep stable.

3 Results and discussion

3.1 Experimental result

To prove the model’s accuracy, the amount of fertilizer applied to 
the original data is calculated by the unimproved BPNN algorithm, 

the NBTY (nutrient balance target yield) algorithm and the IM-BPNN 
algorithm. In order to estimate the fertilization amount for the target 
yield, the NBTY algorithm takes the target yield of crops, the 
difference between the amount of soil nutrients and supplied soil 
fertilizer as factors, so the balance of nutrients can be  reached. 
According to the mathematical model of standard fertilization, the 
analysis result of sample data is as follows: 261 milligrams of available 
potassium, 37 milligrams of available phosphate, 280 milligrams of 
alkaline hydrolysis nitrogen are absorbed by every kilogram of 
Komatsuna soil [30], which is the fertilizer utilization rates of K, P, and 
N being 38, 27 and 56%.

TABLE 1 The nutrient data of some soil samples from the experimental plot.

Plot 
number

Sampling soil 
depth(cm)

Alkaline 
hydrolysis 

nitrogen (mg/kg)

Available 
phosphorus 

(mg/kg)

Available 
potassium 

(mg/kg)

PH 
value

Organic 
matter(ds/m)

Bulk 
density 
(g/cm3)

001 20.4 129.4 36.08 283.63 6.8 0.61 1.285

002 20.3 101.39 29.09 272.80 6.6 0.65 1.086

003 20.5 105.47 31.77 255.07 6.9 0.51 1.173

004 20.8 156.52 25.26 275.21 6.4 0.55 1.244

005 19.4 112.91 33.91 279.93 6.3 0.48 1.352

006 20.5 153.54 27.31 301.46 6.7 0.47 1.370

007 19.7 109.26 34.5 255.87 6.5 0.64 1.102

008 20.8 113.24 29.32 282.35 6.4 0.53 1.120

009 20.6 167.15 28.51 240.60 6.6 0.54 1.200

010 19.9 133.53 36.87 256.53 6.9 0.49 1.157

TABLE 2 The neural network soil fertility matrix with connection weights.

Node Available 
phosphorus

Available 
potassium

Alkaline hydrolysis 
nitrogen

Organic 
matter

pH Bulk density

1
0.055 0.623 0.530 −0.179 0.116 0.573

1 7 10 26 12 4

2
−0.687 0.415 −0.837 0.343 0.34 0.455

78 3 25 4 7 5

3
−0.499 0.832 −0.267 −1.096 0.44 −0.193

97 7 85 51 6 25

4
0.982 1.874 −1.414 0.522 0.355 0.625

4 11 8 3 7 4

5
−0.288 −1.039 0.221 0.296 −0.445 0.336

8 6 20 7 54 7

6
0.905 0.832 −0.598 −0.514 0.315 0.154

9 18 15 17 8 14

7
−0.38 −0.416 0.362 −0.931 0.497 0.647

37 4 6 44 5 3

8
−0.259 1.874 −0.783 0.495 −0.357 −0.409

3 7 55 3 32 70

9
1.371 1.063 −0.981 −1.432 0.008 0.296

21 12 28 87 18 8

10
0.19 −0.207 0.76 0.284 0.287 −0.404

2 23 98 7 10 68
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FIGURE 4

The fertilization prediction distribution of three algorithms. (A) Potassium fertilization range; (B) Available phosphate fertilization range; (C) Alkaline 
hydrolysis nitrogen fertilization range.

(1) Available potassium fertilization prediction
Figure 4A shows the three algorithms for Potassium fertilizer 

prediction. The potassium amounts given by the NBTY and BPNN 
algorithm are in the range of 0–300 mg/kg. The amounts of fertilization 
less than 50 mg/kg are 5.70 and 2.45%; The amounts of fertilization in 
the range of 100–250 mg/kg (the reasonable potassium range) are 
73.65 and 86.60%. Compared with the NBTY and BPNN algorithm, 
the potassium amounts suggested by the IM-BPNN algorithm are all 
in 100–250 mg/kg, and the prediction accuracy rate has increased by 
35.78 and 15.47%. Meanwhile, 89.35% of the decision values are 
100–200 mg/kg (the best potassium range), and the prediction 
accuracy rate has increased by 52.09 and 19.85%. Therefore, the 
fertilization model based on the IM-BPNN algorithms is more 
accurate and reasonable than another two algorithms.

(2) Available phosphate fertilization prediction
Figure  4B shows the three algorithms for phosphate fertilizer 

prediction. Due to the large variation of soil available phosphate, it is 
difficult to calculate the correction coefficient of soil available 
phosphate. For the NBTY and BPNN algorithm, the suggested 
fertilization amounts in 30–90 mg/kg (the reasonable phosphate 
range) are 78.35 and 84.55%; the suggested fertilization amounts in 
30–60 mg/kg (the best phosphate range) are 58.65 and 67.70%.
Compared with the NBTY and BPNN algorithm, the phosphate 
amounts suggested by the IM-BPNN algorithm in the range of 
30–90 mg/kg are 94.75%, which show that the prediction accuracy rate 
has increased by 20.93 and 12.06%. The decision values in the range 

of 100–200 mg/kg are 80.55%, which show that the prediction 
accuracy rate has increased by 37.34 and 18.98%. Therefore, the 
fertilization model based on the IM-BPNN algorithm is more accurate 
and reasonable than another two algorithms.

(3) Alkaline hydrolysis nitrogen fertilization prediction
Figure  4C shows the three algorithms for Nitrogen fertilizer 

prediction. For the NBTY and BPNN algorithm, the suggested 
amounts in 150–250 mg/kg (the reasonable nitrogen range) are 72.45 
and 77.90%; the suggested amounts in 200–250 mg/kg (the best 
nitrogen range) are 47.60 and 51.55%, which is easy to make mistakes 
in decision-making. Compared with the NBTY and BPNN algorithm, 
the nitrogen amounts suggested by the IM-BPNN algorithm in the 
range of 150–250 mg/kg are 85.55%, which show that the prediction 
accuracy rate has increased by 18.08 and 9.82%. The suggested 
nitrogen amounts in 200–250 mg/kg are 80.55%, which show that the 
prediction accuracy rate has increased by 20.59 and 11.35%. Therefore, 
the IM-BPNN algorithm is more accurate and reasonable than 
another two algorithms.

3.2 Discussions

This study achieved remarkable results in experiments on 
greenhouse vegetables (komatsuna) in Qingyuan City, Guangdong, 
China. But in order to ensure the effectiveness and reliability of the 
IM-BPNN algorithm in wider applications, in subsequent research, it 
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also need to collect data from Data for different geographical locations, 
different crops and different soil types. Through training on diverse 
data, the generalization ability of the model can be improved so that 
it can perform well in more scenarios. Furthermore, experiments are 
conducted under different environmental conditions and agricultural 
practices to verify the performance of the algorithm under different 
conditions, which improves the robustness and adaptability of the 
algorithm. It will also conduct research on more crops and analyze the 
applicability of the algorithm on different crops. By comparing the 
experimental results of different crops, the parameters can 
be optimized and its prediction capabilities on different crops can 
be enhanced. Through these measures, the IM-BPNN algorithm will 
be able to demonstrate its potential in a wider range of agricultural 
applications and provide reliable and efficient solutions for 
precision agriculture.

In addition, this study conducts research based on two 
assumptions: the IM-BPNN algorithm can predict the amount of 
fertilizer required for greenhouse vegetables more accurately than the 
BPNN and NBTY algorithms, and the introduction of the double 
particle swarm optimization algorithm can improve the accuracy and 
efficiency of the BPNN algorithm in fertilizer decision-making. And 
made corresponding research contributions in algorithm innovation 
and multi-variable comprehensive analysis. In terms of algorithm 
innovation, this study introduced the dual particle swarm algorithm 
to improve the BPNN algorithm. It has not been widely used in 
existing fertilization decision-making methods, filling the research 
gap in this field. The IM-BPNN algorithm combines the nonlinear 
fitting ability of BPNN and the global search ability of the dual particle 
swarm optimization algorithm to improve the convergence speed and 
prediction accuracy of the model. This innovation provides a new 
technical means for intelligent agricultural management. In the 

multi-variable comprehensive analysis, this study analyzed the 
relationship between multiple soil nutrient indicators (such as alkali-
hydrolyzable nitrogen, available phosphorus, available potassium, 
etc.), determined the weight of each indicator’s impact on crop growth, 
and established a comprehensive Fertilization decision model. It can 
comprehensively consider multiple influencing factors to achieve 
more scientific fertilization decisions and improve crop yield 
and quality.

Although the IM-BPNN algorithm proposed in this study is better 
at predicting the amount of fertilizer required for these three nutrients 
in the future through the historical data of soil nutrients such as alkali-
hydrolyzable nitrogen, available phosphorus and available potassium. 
However, factors that affect crop growth and nutrient requirements 
also include trace elements, soil pH, and other soil characteristics that 
have an impact on the overall nutrient requirements of crops, so 
subsequent research needs to explore the possibility of more factors 
affecting crop growth and nutrient requirements. Furthermore, real-
time data collection and monitoring of crops are very necessary 
measures. Follow-up research will also need to integrate real-time data 
collection methods, such as sensors and Internet of Things (IoT) 
devices, to continuously monitor soil conditions and dynamic changes 
in the environment. Through the above measures, the samples for 
IM-BPNN algorithm training can be expanded to avoid problems 
such as the IM-BPNN algorithm falling into local optimal solutions 
when the amount of data is small, thereby improving the accuracy of 
algorithm prediction. The final step is to apply the algorithm to the 
corresponding user interface or mobile application, allowing farmers 
to easily enter data and obtain actionable recommendations in an 
easy-to-understand format, which facilitates the application of the 
algorithm in actual scenarios. Figure 5 shows the precision fertilization 
monitoring application graphical user interface.

FIGURE 5

The precision fertilization monitoring application graphical user interface.
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4 Conclusion

In this study, a greenhouse vegetable precision fertilization 
method based on the IM-BPNN algorithm is designed. It introduces 
the dual particle swarm optimization algorithm to improve the 
accuracy of the BPNN algorithm, which builds the IM-BPNN 
algorithm. Compares with the NBTY and BPNN algorithm, the 
predictive potassium amounts are all in 100–250 mg/kg, and the 
predictive accuracy rate improves 35.78 and 15.47%. The predictive 
phosphate amounts in the range of 30–90 mg/kg are 94.75%, and the 
predictive accuracy rate has increased 20.93 and 12.06%. The 
predictive amounts suggested in the range of 150–250 mg/kg are 
85.55%, and the predictive accuracy rate has increased 18.08 and 
9.82%.It shows that the decision-making accuracy of is the IM-BPNN 
algorithm higher than the another two algorithms. Through the 
method proposed in this study, it can more accurately determine the 
amount of fertilizer required by vegetables, avoid over-application, 
and reduce negative impacts on the environment, which improves the 
fertilizer utilization efficiency and agricultural environmental 
protection. It also helps farmers reduce fertilizer waste, lowers 
production costs and improves the economic viability of agriculture.
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