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Intelligent apple-picking robots can significantly improve the efficiency of apple 
picking, and the realization of fast and accurate recognition and localization of 
apples is the prerequisite and foundation for the operation of picking robots. 
Existing apple recognition and localization methods primarily focus on object 
detection and semantic segmentation techniques. However, these methods often 
suffer from localization errors when facing occlusion and overlapping issues. 
Furthermore, the few instance segmentation methods are also inefficient and 
heavily dependent on detection results. Therefore, this paper proposes an apple 
recognition and localization method based on RGB-D and an improved SOLOv2 
instance segmentation approach. To improve the efficiency of the instance 
segmentation network, the EfficientNetV2 is employed as the feature extraction 
network, known for its high parameter efficiency. To enhance segmentation 
accuracy when apples are occluded or overlapping, a lightweight spatial attention 
module is proposed. This module improves the model position sensitivity so that 
positional features can differentiate between overlapping objects when their 
semantic features are similar. To accurately determine the apple-picking points, 
an RGB-D-based apple localization method is introduced. Through comparative 
experimental analysis, the improved SOLOv2 instance segmentation method has 
demonstrated remarkable performance. Compared to SOLOv2, the F1 score, 
mAP, and mIoU on the apple instance segmentation dataset have increased by 
2.4, 3.6, and 3.8%, respectively. Additionally, the model’s Params and FLOPs have 
decreased by 1.94M and 31 GFLOPs, respectively. A total of 60 samples were 
gathered for the analysis of localization errors. The findings indicate that the 
proposed method achieves high precision in localization, with errors in the X, Y, 
and Z axes ranging from 0 to 3.95 mm, 0 to 5.16 mm, and 0 to 1 mm, respectively.
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1 Introduction

Currently, apple picking relies largely on manual labor, which is time-consuming and 
labor-intensive, resulting in high harvesting costs and low efficiency. With the rapid 
development of artificial intelligence and robotics, the realization of automated apple picking 
has become an inevitable trend (Wang et al., 2022, 2023). Achieving rapid and accurate apple 
identification and localization in complex orchard environments is the key to realizing 
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automated apple harvesting. However, the complex environment of 
orchards is influenced by shading, overlapping, and camera angles, 
making fast and accurate apple identification and positioning a 
greater challenge.

In recent years, along with the development of machine vision, the 
recognition and localization of apples have been extensively researched 
(Xia et  al., 2022, 2023; Gai et  al., 2023). Specific methods can 
be classified into three main categories: object detection-based (Huang 
et al., 2017; Hu et al., 2023), semantic segmentation-based (Jia et al., 
2022b), and instance segmentation-based (Wang and He, 2022a). 
Object detection involves identifying and localizing objects in images 
and marking them with bounding boxes. Jia et al. (2022a) proposed 
an improved FoveaBox (Kong et  al., 2020) for green apple object 
detection. This approach utilizes EfficientNetV2s as the feature 
extraction network and employs the BiFPN (Bidirectional Feature 
Pyramid Network) (Tan et al., 2020) for feature fusion. It utilizes the 
ATSS (Adaptive Training Sample Selection) (Zhang et  al., 2020) 
technique to match positive and negative samples. The overall model 
achieves a high recall but with reduced speed. Wu et  al. (2021) 
presented an enhanced YOLOV4 method for complex scene apple 
detection. They replaced YOLOV4’s backbone feature extraction 
network with EfficientNet and achieved a 96.54% F1 score on the 
constructed dataset. Chen et  al. (2021) proposed a Des-YOLOV4 
detection model tailored for apples. This method introduces the 
DenseNet dense residual structure into YOLOV4 and employs 
Soft-NMS in the post-processing phase to enhance the recall rate of 
overlapping apples. The overall model has fewer parameters compared 
to YOLOV4. Apple recognition and localization based on object 
detection methods are faster. But when the apples in the detection 
bounding box are obscured or overlapped, it will hinder the 
acquisition of their depth information and lead to picking failure.

Semantic segmentation can segment each pixel in an image into 
corresponding categories, yielding more refined object segmentation 
results. Ahmad et al. (2018) proposed a method based on a fuzzy 
inference system and fuzzy c-means to achieve the segmentation of 
apples with different colors during the growth process. Zou et  al. 
(2022) introduced a color-index-based apple segmentation method 
that enables rapid segmentation of orchard apples, with an average 
segmentation time of 20 ms. While these traditional segmentation 
methods offer faster speed, their robustness is compromised when 
facing complex orchard environments. Kang and Chen (2019) 
introduced the DasNet, a deep learning-based semantic segmentation 
network, to achieve the segmentation of apples and tree branches. Li 
et al. (2021) proposed an improved U-Net (Ronneberger et al., 2015) 
method for segmenting green apples. It incorporated dilated 
convolutions and the ASPP (Atrous Spatial Pyramid Pooling) (Chen 
et al., 2017) structure into U-Net, which enlarged the receptive field 
and enhanced segmentation accuracy. Using semantic segmentation 
methods for apple segmentation can provide more detailed contours. 
However, in cases of overlapping apples, distinguishing between them 
becomes challenging with semantic segmentation, which, in turn, 
impacts the acquisition of depth information for each apple.

Instance segmentation enables the classification of each pixel’s 
category in an image while distinguishing different instances of the 
same category. Kang and Chen (2020) proposed the DaSNet-V2 
method for apple instance segmentation, using ResNet101 and 
ResNet18 as backbone feature extraction networks, achieving 
segmentation accuracies of 87.3 and 86.6%, respectively. Wang and 

He (2022b) introduced an improved Mask R-CNN method for apple 
instance segmentation. By incorporating attention mechanisms in the 
feature extraction module, this approach enhances apple 
segmentation accuracy, but at a slower speed. Jia et  al. (2020) 
presented an enhanced Mask R-CNN method for apple instance 
segmentation. They combined the DenseNet dense connection 
structure into the ResNet backbone feature extraction network, thus 
improving segmentation accuracy and enabling recognition and 
segmentation of overlapping apples. Jia et al. (2021) proposed an 
anchor-free instance segmentation method tailored for green apples. 
This method adds an instance branch to FoveaBox, conducting apple 
detection before segmentation. Nevertheless, it exhibits subpar 
performance in segmenting apple edge contours. Instance 
segmentation-based methods can achieve apple recognition, precise 
localization, and mask generation. However, the majority of current 
research focuses on detection-based instance segmentation 
approaches. In these methods, the instance branch often lacks 
consideration of global context, resulting in suboptimal performance 
in edge segmentation and slower segmentation speeds.

Acquiring depth information for apples is a critical factor in 
achieving accurate picking. Specific means of obtaining this 
information include stereo cameras, structured light cameras, TOF 
(time-of-flight) cameras, and laser radar. Tian et al. (2019) proposed 
a fruit localization technique based on Kinect V2, utilizing depth 
images to determine the apple’s center and combining RGB data to 
estimate the apple’s radius. But, in cases of overlap and occlusion, the 
depth image may not fully represent the apple’s true depth information, 
leading to ambiguous localization. Kang et al. (2020) implemented 
apple localization using an Intel D-435 camera. They employed RGB 
images for fruit detection and instance segmentation, combining 
depth information to fit apple’s point cloud, thus localizing it. 
However, this method suffers from lower efficiency. Gené-Mola et al. 
(2019) utilized laser radar and object detection for apple localization, 
achieving a success rate of 87.5%. Kang et al. (2022) fused radar with 
the camera as input and then used instance segmentation to achieve 
apple localization, but this method incurs higher costs.

So far, the recognition and localization of apples have 
predominantly relied on object detection and semantic segmentation 
methods. However, these methods often lead to positioning errors 
when facing challenges such as occlusion and overlapping. While a 
few studies have explored detection-based instance segmentation 
methods for apple recognition and localization, these methods usually 
come with high parameter and computational complexity, are 
susceptible to the influence of detection results, and lack consideration 
of global information. SOLOv2 (Wang et al., 2020b) is a one-stage 
instance segmentation method that introduces an efficient instance 
mask representation scheme based on the foundation of SOLO (Wang 
et  al., 2020a). It improves the efficiency of the overall method by 
decoupling instance mask generation into mask kernel and mask 
feature learning and utilizing convolutional operations to generate 
instance masks. Compared to two-stage instance segmentation models 
like MaskRCNN, SOLOv2 eliminates the need for anchor boxes, does 
not rely on detection results, occupies less memory, and is more 
suitable for practical engineering applications. Therefore, this paper 
proposes an apple recognition and localization approach based on 
RGB-D and an improved SOLOV2 instance segmentation method. 
This method eliminates reliance on detection results and can achieve 
accurate apple positioning even in occlusion and overlapping 
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scenarios. Specifically, the main contributions of this paper are 
as follows:

 1 Introducing an improved SOLOV2 instance segmentation 
method that achieves high-precision apple instance 
segmentation and is independent of detection results.

 2 Introducing a lightweight spatial attention mechanism into the 
mask prediction head of SOLOV2 to enhance the segmentation 
accuracy for overlapping apples.

 3 Introducing an RGB-D-based apple localization method that 
achieves accurate positioning in scenarios with occlusion and 
overlapping, thereby enhancing the success rate of apple picking.

The sections of this paper are organized as follows: section 2 
introduces the improved SOLOv2 instance segmentation method and 
the RGB-D-based apple-picking point localization method. Section 
3 conducts comparative experiments and analyzes the experimental 
results. Section 4 summarizes the entire paper and outlines future 
research directions.

2 The proposed method

2.1 Apple instance segmentation method 
based on improved SOLOv2

In this paper, we further enhance the segmentation accuracy based 
on SOLOv2 without introducing excessive parameters. Specifically, 
we integrate the proposed lightweight spatial attention module into the 
mask kernel and mask feature branches and adopt a more efficient 
feature extraction network, EfficientNetV2. After these improvements, 
the improved SOLOv2 significantly boosts instance segmentation 
accuracy while maintaining efficiency and avoiding the introduction 
of redundant parameters. Figure 1 illustrates the enhanced SOLOv2 
instance segmentation method, and detailed descriptions of each 
module will be elaborated in the subsequent sections.

2.1.1 Backbone feature extraction network
The feature extraction network, as a crucial component of the 

instance segmentation method, significantly influences the performance 
of the whole model. In this study, EfficientNetV2 (Tan and Le, 2021) 
was adopted as the backbone feature extraction network, building upon 
the improvements made in EfficientNetV1 (Tan and Le, 2019). The 
network’s optimal width, height, and other design parameters were 
determined using NAS (Neural Architecture Search) techniques. To 
address the slow training speed of EfficientNetV1, the shallow MBConv 
modules were substituted with Fused-MBConv modules, with the 
specific MBConv and Fused-MBConv modules illustrated in Figure 1.

As depicted in Figure 1, the MBConv module employs a 1 × 1 
convolutional layer to increase feature dimensionality, followed by a 
3 × 3 depthwise separable convolutional layer for feature extraction. In 
contrast, the Fused-MBConv module directly utilizes a 3 × 3 
convolutional layer to perform feature extraction and dimensionality 
expansion, improving feature extraction speed. EfficientNetV2 
demonstrates exceptional accuracy on the ImageNet dataset while 
enhancing training speed and parameter efficiency. Compared to 
ResNet50, EfficientNetV2 exhibits higher efficiency, achieving greater 
precision with equivalent parameters and computation. Additionally, 

EfficientNetV2 is well-suited for mobile and embedded device 
deployment for tasks such as apple harvesting.

2.1.2 Instance mask generation module
SOLOv2 decouples the instance mask generation into mask kernels 

and mask features. Then, it utilizes convolution between the mask 
kernels and mask features to obtain the final instance mask. The 
parameters of the mask kernels and mask features are generated 
separately through the mask kernel branch and the mask feature branch.

As depicted in Figure 1, the first step is utilizing the FPN (Lin et al., 
2017) to perform multi-scale feature fusion, aiming to achieve multi-
scale segmentation. This process is detailed in the following Eq. 1.

 P P P P P C C C C2 3 4 5 6 2 3 4 5, , , , = ( )FPN , , ,  (1)

where C C C C2 3 4 5, , ,  are the effective feature layers output by 
EfficientNetV2, and P P P P P2 3 4 5 6, , , ,  are the feature layers output after 
feature fusion.

In the mask kernel branch, each feature layer Pi is sampled to a 
grid of size Si, and if the center of the GT falls into this grid, it 
indicates that this grid is responsible for predicting its instances. 
Specifically as shown in Eq. 2.

 K f P ii i= ( ) =Kernel Branch , , , , ,2 3 4 5 6 (2)

Ki is the mask kernel parameter generated by the corresponding 
feature layer with size S S Ci i× × .

In the mask feature branch, FPN output features are used to create 
shared mask features across different levels. This approach allows 
different levels to share the same mask features, reducing parameters 
and improving efficiency. The process is detailed in Eq. 3 below.

 F f P P P P= ( )Feature Branch , , ,2 3 4 5  (3)

where F  denotes the shared mask features, with sizes of 
H W C× × . H  and W  are one-fourth the size of the input height and 
width, respectively.

Finally, the mask kernel parameters corresponding to the grids 
containing objects, denoted as Ki

pos , are selected. These are the grids 
where the center of the GT falls during training and the grids where 
the predicted classification score is greater than the score threshold 
during inference. The selected mask kernel parameters Ki

pos  are 
utilized to convolve with the shared mask features F  to generate 
instance masks. As shown in the following Eq. 4.

 M K Fi j i, = pos   (4)

Ki
pos is the mask kernel parameter obtained by filtering in Ki with 

size n × 1 × 1 × C, and Mi j,  is the instance prediction mask generated 
at the corresponding location. The overall instance mask generation 
module is illustrated in Figure 2.

2.1.3 Improved mask feature branch
In SOLOv2, the mask feature branch is composed solely of 

upsampling and convolution operations. However, instances with 
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similar semantic features heavily rely on positional features for 
differentiation. Relying solely on convolution-generated positional 
information is insufficient. Therefore, an Att-Block is utilized as a 
replacement for the convolution operation to construct mask features 
containing comprehensive positional information without introducing 

excessive parameters. In the Att-Block, the convolution is replaced 
with a depthwise separable convolution and a lightweight spatial 
attention mechanism is introduced to capture positional features 
between instances. The details are illustrated in Figure 3.

The lightweight spatial attention module is divided into two 
steps: (1) first, obtain the corresponding spatial position relationship 
in the vertical direction by using a K × 1 convolutional kernel on the 
feature map. The computational complexity of this step is H W2 ; (2) 
then obtain the corresponding spatial position relationship in the 
horizontal direction by using a 1 × K convolutional kernel on the 
feature map generated in step (1), the computational complexity of 
this step is HW 2. Finally, use Sigmoid to generate the spatial 
attention map, the overall computational complexity is H W HW2 2+
, compared with directly using a fully connected layer to calculate 
the spatial attention map of the feature map, the lightweight attention 
module has lower computational complexity when the feature map 
width W and height H are large. This makes it particularly suitable 
for capturing feature map spatial relationships in 
lightweight networks.

2.1.4 Improved mask kernel branch
With the aim of enhancing the sensitivity of learned mask kernel 

parameters to positional information and improving instance 
segmentation accuracy, this paper introduces a modification to the mask 
kernel branch. The convolution operations in the mask kernel branch are 

FIGURE 1

Diagram of the overall structure of the improved SOLOV2.

FIGURE 2

Instance mask generation module structure diagram.
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replaced with Att-Block modules to capture feature spatial relationships. 
This alteration enables the learned mask kernel parameters to encompass 
richer positional information, as depicted in Figure 4. It is important to 
note that the Att-Block used in the improved mask kernel branch 
employs regular convolutional structures rather than depthwise 
separable convolutions. This choice aims to ensure that the encoded 
information within the mask kernel is more comprehensive.

2.1.5 Label assignment method and loss 
calculation

SOLOV2 differs from detection-based instance segmentation 
methods in that it does not assign labels by IoU thresholding. It resizes 
different feature layers into S × S grids of different sizes, and each 
element in the grid is responsible for predicting one instance. Given 
an image where GT represents the ground truth labels, GTarea denotes 

the area of the label, GTmask  represents the mask of the label, and 
GTlabel  indicates the category of the label. Firstly, the ground truth 
instances are categorized into different levels based on their area. 
Specifically as shown in Eq. 5.

 areaGTi ilb up≤ ≤  (5)

where lbi and upi represent the lower and upper bounds of the 
object scale predicted by the current feature layer, if instances satisfy 
this condition, are considered as GTi for the current layer. 
Subsequently, GTi is scaled around its center, and the grid cells within 
the scaled GTi are selected as positive samples, as shown in the 
following Eq. 6.

 pos GT pos
index

scalei i= ∗  (6)

where pos
index
i  represents the indices of grids within the scaled 

GTi, which are the indexes of positive samples; posscale is the scaling 
factor. Then, the mask kernel parameters corresponding to the positive 
samples are selected using these indices and denoted as Ki

pos . 
Specifically as shown in Eq. 7.

 
K Ki i i

pos index
pos= 



 

(7)

The mask kernel parameters corresponding to positive samples 
from all layers are collected and denoted as Kpos. Then, convolution 
is applied to obtain the predicted masks. Specifically as shown 
in Eq. 8.

FIGURE 3

The structure diagram of the improved mask feature branch.

FIGURE 4

The structure diagram of the improved mask kernel branch.

https://doi.org/10.3389/fsufs.2024.1403872
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Tang et al. 10.3389/fsufs.2024.1403872

Frontiers in Sustainable Food Systems 06 frontiersin.org

ALGORITHM 1 The label assignment method and loss calculation in SOLOv2
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 M K F= pos   (8)

where F  is the mask feature generated by the mask branch, and 
M  is the prediction mask. Finally, the mask and classification losses 
are computed as follows in Eqs. 9, 10.

 L Mmask maskDiceloss ,Target= ( ) (9)

 L Pcls labelFocalloss ,Target= ( ) (10)

Lmask is the mask loss, specifically Diceloss , where Targetmask  
means that the index of positive samples corresponds to GTmask , and 
the negative samples do not participate in the calculation of the mask 
loss. Lcls  is the classification loss, specifically Focalloss , where P is 
the classification prediction value, and Targetlabel  means that the 
positive samples correspond to GTlabel, and the negative samples are 
0. Both positive and negative samples contribute to the calculation of 
the classification loss. The overall loss function is formulated as 
shown in Eq. 11.

 L L Ltotal cls mask= +λ λ1 2  (11)

where Ltotal  is the total loss, λ1 and λ2 are the weights of 
classification loss and mask loss, which take the values of 1.0 and 3.0 in 
this paper, respectively. The overall training label assignment method 
and loss calculation can be seen in Algorithm 1.

2.2 RGB-D-based apple localization 
method

To achieve precise apple localization, especially in scenarios with 
occlusion and overlapping, this paper proposes an RGB-D-based 
apple localization method. The method begins by employing the 
enhanced SOLOv2 apple instance segmentation method to obtain 
masks for apples in the images. Subsequently, these masks are 
combined with the depth maps generated by an RGB-D camera to 
accurately locate the points where apples can be picked. The overall 
workflow is depicted in Figure 5, with the following steps.

Step 1: Instance segmentation.
Perform segmentation on the RGB images to obtain apple masks.
Step 2: Finding the minimum enclosing circle of the mask.
Utilize OpenCV to compute the minimum enclosing circle of the 

segmented apple mask. This step aims to ensure a better fit of the mask 
to the apple, avoiding excessive inclusion of background information.

Step 3: Calculating mask and minimum enclosing circle IoU.
To ensure that the pixel information of the apple is as complete as 

possible, thereby enhancing the success rate of picking, compute the 
IoU to filter out apples that are viable for picking in the current view. 
A higher IoU value indicates fewer obscured parts of the apple. This 
paper adopts an IoU threshold of 0.5.

Step 4: Confirming if the central point of the minimum enclosing 
circle belongs to the apple.

Select the center point of the minimum enclosing circle of the 
apple mask as the picking point. To do so, verify whether the pixel 

coordinates of the circle’s center point correspond to the apple. If 
leaves or branches potentially obstruct the point, picking is not viable 
from the current viewpoint.

Step 5: Calculate picking point coordinates.
If steps 3 and 4 are satisfied, it indicates that the viewpoint allows 

picking. Using pixel coordinates along with the corresponding depth 
information and camera intrinsic allows calculating the three-
dimensional coordinates (x, y, z) of the picking point in the camera 
coordinate system. Specifically as shown in Eqs. 12,13.

 
x z u u

fx
= ×

− 0

 
(12)

 
y z v v

f y
= ×

− 0

 
(13)

where u v,( ) represents the pixel coordinates of the center of the 
minimum enclosing circle in the X and Y directions, z indicates the 
depth information of the circle center, and u v fx0 0, , , and f y  are the 
camera intrinsic.

3 Experiments

3.1 Dataset

The apple instance segmentation dataset constructed in this paper 
consists of two parts. One part is the public dataset, which includes 
3,925 apple images annotated with instance labels (Gené-Mola et al., 
2023). This dataset covers two growth stages of apples, with 
approximately 70% at the growth stage where apples are primarily 
green, as shown in Figure 6A. The remaining approximately 30% are 
at the ripening stage, where apples are mostly light red, as shown in 
Figure 6B.

The other part of the dataset is collected from orchards, consisting 
of 300 apple images and annotated with instance labels using the 
Labelme tool. These images were captured during the ripe stage of 
apples, characterized by their red color, as illustrated in Figure 6C.

Lastly, an 8:2 data split ratio was employed to ensure the effective 
utilization of training data. It means that 80% of the data were used 
for training and validation, totaling 3,400 images, while the remaining 
20% were reserved for testing, comprising 852 images. Such a division 
aims to avoid overfitting, thereby improving the generalization ability 
and robustness of the model.

3.2 Experimental setting

The hardware setup for the experiments in this study included an 
E5-2678 V3 CPU, 32GB of RAM, and an NVIDIA 3090 GPU with 
24GB of VRAM. The software system used was Ubuntu 18.04, with 
Python version 3.8. The deep learning framework employed was 
PyTorch. Pretrained weights were utilized for the backbone feature 
extraction networks to expedite model convergence. The training 
configuration encompassed 40 epochs with a batch size of 4. The SGD 
optimizer was used with an initial learning rate of 0.01. Learning rate 
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adjustments were applied using the StepLR strategy, where the 
learning rate was reduced by 0.1 at the 16th and 32th epochs, 
respectively. To accelerate model convergence, the weights of the 
backbone for all models were initialized using pre-trained weights on 
ImageNet-1K. The specific experimental settings are shown in Table 1.

3.3 Evaluation metrics

In order to evaluate the performance of the proposed method, AP 
(average precision), mAP (mean average precision), mIoU (mean 
intersection over union), and F1 scores are used to measure the 
accuracy, and Params (parameters), FLOPs (floating-point 
operations), and FPS (frames per second) are used to measure the 
model complexity. The calculation formula is shown below.

 
Precision

TP

all detections
=

 
(14)

 
Recall

TP

all GTBox
=

 
(15)

 
AP d= ∫ ( )

1

0

p r r
 

(16)

 
mAP

AP
=
∑

N  
(17)

FIGURE 6

Samples of apple instance segmentation dataset.
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Branch

Input

Improved SOLOv2
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Segmentation results
and depth map RGB-D-based apple localization method
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Minimum enclosing circle

IoU threshold filtering

Confirmation of the depth
category of the center point

Solving for picking point coordinates

Realsense L515

FIGURE 5

Flowchart of RGB-D based apple localization method.
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F

Precision Recall

Precision Recall
1 2= ×

+
.

 
(18)

 
mIoU

TP

TP FP FN
= ∑

+ +  
(19)

where TP denotes the number of correctly detected targets among 
all detected targets, FP denotes the number of incorrectly detected 
targets among all detected targets, FN indicates the number of 
incorrectly classified negative samples, p r( ) stands for the Precision-
Recall curve, and N represents the number of categories in the dataset.

FLOPs and Params are critical metrics for evaluating model 
complexity and speed. FLOPs measure the amount of computation, 
and Params indicate the number of learnable parameters in the 
network. A larger computational and parameter count typically results 
in higher model complexity and slower detection speed. Therefore, a 
model suitable for edge devices such as apple picking in orchards 
should have fewer parameters and lower computational burden.

3.4 Experimental results of the improved 
method

The improved SOLOv2 is trained on the constructed apple 
instance segmentation dataset, and model evaluation is performed 
every epoch. The training loss curve and the test set mAP curve are 
shown in Figure 7, where red represents the mAP curve and green 
represents the loss curve.

As shown in Figure 7, the model’s loss value gradually decreases 
and stabilizes as the training progresses, while the mAP metric steadily 
increases. It indicates that the model is progressively converging. 
Selecting the weights from the last epoch as the final result, the mAP 
on the test set of the apple instance segmentation dataset reaches 
90.1%. Demonstrates that the proposed method achieves high 
precision and recall in apple instance segmentation tasks, and the 
model’s overall performance is excellent.

3.5 Comparative experiments with other 
instance segmentation methods

To verify the effectiveness and advancement of the proposed 
method, it will be  compared to other mainstream instance 
segmentation methods, specifically including the original SOLOv2 
method before improvement, the one-stage instance segmentation 

method Yolact (Bolya et  al., 2019), and the two-stage instance 
segmentation method MaskRCNN (He et al., 2020) and MS-RCNN 
(Huang et  al., 2019). The mAP, mIoU and F1 scores of various 
segmentation models are depicted in Figure 8. It can be observed that, 
compared to other segmentation models, the improved SOLOv2 
achieves the highest scores.

According to the results in Table  2, the improved SOLOv2 
instance segmentation model performs best in the F1 score, mIoU, 
and mAP metrics, reaching 88.5, 83.2, and 90.1%, respectively. 
Compared to the original method, these three metrics were improved 
by 2.4, 3.6, and 3.8%, respectively, highlighting the effectiveness of the 
improved method. Compared with the two-stage models MaskRCNN 
and MS-RCNN, the improved SOLOv2 model improved the F1 scores 
by 0.2 and 0.6%, mIoU by 1.1 and 2.7%, and mAP by 2.3 and 2.1%, 
respectively. Compared to the one-stage model Yolact, the improved 
SOLOv2 model significantly improved all metrics, including a 7.9% 
improvement in mIoU, 2.3, and 4.4% in F1 score and mAP, 
respectively. These results highlight the superior precision and recall 
achieved by the proposed method, resulting in more effective 
instance segmentation.

Furthermore, the improved SOLOv2 apple instance segmentation 
method has also been optimized for Params, FLOPs, and 
FPS. Compared to the original method, it reduces Params by 1.94M, 
FLOPs by 31 GFLOPs, and maintains detection speed almost the 
same, with a slight decrease of 0.7 frames per second. Compared to 
MaskRCNN, Params remain similar, but FLOPs decrease by 39 
GFLOPs, and FPS increases by 1.3. Compared to MS-RCNN, Params 
and FLOPs are significantly reduced by 15.94M and 78 GFLOPs, 
respectively, with FPS increasing by 2.8. Although Yolact performs 
best in detection speed-related metrics, the proposed method 
significantly improves segmentation accuracy. Overall, the proposed 
method strikes a balance between model accuracy and complexity, 
performing excellently in apple instance segmentation tasks.

Figure 9 displays a comparison of Precision-Recall (P-R) curves 
for each method within the apple category. The red curve represents 
the proposed enhanced SOLOv2 instance segmentation method. 
Notably, the red curve encompasses the largest area, and even at high 
recall rates, it sustains a remarkable level of accuracy. These findings 
underscore the enhanced method’s ability to attain superior precision 

FIGURE 7

Training loss curve and mAP curve of the improved SOLOv2 model.

TABLE 1 Experimental parameter settings.

Hyperparameters Setting

Batch size 4

Epoch 40

Learning rate Epoch 1–16 0.01

Epoch 16–32 0.01*0.1

Epoch 32–40 0.01*0.01

Optimizer SGD
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and recall, showcasing improved stability and performance when 
contrasted with other methods.

Figure 10 illustrates a comparison of segmentation results between 
the enhanced SOLOv2 and other methods on the test set of the apple 
instance segmentation dataset. Notably, the improved SOLOv2 
maintains accurate segmentation even in scenarios where apples are 
closely spaced. In Figure 10C, SOLOv2 exhibits segmentation errors 
when distinguishing overlapping objects, failing to separate the two 

instances. Moreover, in Figure  10D, MaskRCNN experiences 
segmentation omission issues with overlapping objects. However, 
Figure 10B illustrates that these issues were substantially addressed 
following the improvements. The improved model can accurately 
segment and differentiate overlapping instances. This further 
underscores the effectiveness of the proposed lightweight spatial 
attention module, which excels at distinguishing objects based on 
their spatial characteristics when semantic features pose challenges 
in differentiation.

3.6 Ablation study

In order to further validate the impact of improvements on model 
performance, this section conducts ablation experiments to assess the 
effectiveness of both the backbone feature extraction network and the 
lightweight attention module. Firstly, we  replace the original 
ResNet50 in the SOLOv2 backbone feature extraction network with 
EfficientNetV2 while keeping all other aspects unchanged. This step 
aims to evaluate how the improved backbone feature extraction network 
influences model performance. Subsequently, we conduct experiments 
to individually introduce the proposed lightweight attention module 
into the mask feature branch, the mask kernel branch, and 
simultaneously into both branches. These experiments are designed to 
assess the impact of the proposed lightweight attention module. The 
results of the specific ablation experiments can be seen in Table 3.

As shown in Table 3, improving the backbone feature network to 
EfficientNetV2 results in a 0.5% increase in the F1 score and a 0.2% 
increase in mAP. Additionally, EfficientNetV2’s parameter-efficient 
design enhances the computational efficiency of the model. The 
performance is improved when introducing the lightweight spatial 
attention module separately into the mask feature branch and the 
mask kernel branch. Specifically, adding the attention module to the 
mask feature branch increases mAP by 1%. Incorporating the 
attention module into the mask kernel branch results in a 1.2% 
improvement in the F1 score and a 2.3% improvement in 
mAP. Simultaneously, adding the attention module to both branches 
yields even more significant effects, with the F1 score improving by 
2.4% and mAP by 3.4%. This unequivocally demonstrates that the 
proposed lightweight spatial attention module significantly enhances 
the precision of apple instance segmentation.

3.7 Positioning error analysis

For validation of the localization accuracy of the proposed 
RGB-D-based apple localization method, 20 sets of RGB images and 

FIGURE 8

Comparison of F1 score, mIoU and mAP of different segmentation 
models.

TABLE 2 Comparative experimental results of mIoU, mAP, F1 score, Params, FLOPs and FPS for different segmentation models.

Methods F1 (%) (%) mIoU (%) FLOPs (GFLOPs) Params (M) FPS

MaskRCNN 88.3 87.8 82.1 186 43.97 28.2

MS-RCNN 87.9 88.0 80.5 225 60.23 26.7

Yolact 86.2 85.7 75.3 61.427 34.73 51.4

SOLOv2 86.1 86.5 79.4 178 46.23 30.2

Improved SOLOv2 88.5 90.1 83.2 147 44.29 29.5

FIGURE 9

Comparison of P-R curves for different segmentation models.
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the corresponding depth maps, totaling about 60 apples, are captured 
using the Realsense L515 depth camera. The true picking point of an 
apple is defined as the camera’s three-dimensional coordinates x y z, ,( ), 
obtained by combining the pixel coordinates of the manually 
annotated center of the largest bounding rectangle around the apple, 
camera intrinsic parameters, and the corresponding depth 
information. Subsequently, the improved SOLOv2 instance 
segmentation method and the depth-based apple localization method 

are used to derive the predicted three-dimensional coordinates 

x y z

, ,









  for the apple’s estimated picking point. Finally, the error 

between the predicted and true picking points is calculated to assess 
the positioning accuracy. Table 4 presents some true picking points, 
predicted picking points, and their absolute errors. Figure 11 illustrates 
box plots of the positioning errors in the X, Y, and Z directions for 
approximately 60 sets of apples.

OursOriginal 

A B

C D

E F

image

MaskRCNNSOLOv2

Yolact MS-RCNN

False segmentation Missed segmentation

FIGURE 10

Comparison of segmentation results of different segmentation models.

TABLE 3 Ablation experiment results.

Baseline EfficientNetV2 Att-Block F1 (%) mAP (%)

Mask feature 
branch

Mask kernel 
branch

✓ × × × 86.1 86.5

✓ ✓ ✓ × 86.6 86.7

✓ ✓ ✓ × 86.6 87.7

✓ ✓ × ✓ 87.8 89.0

✓ ✓ ✓ ✓ 88.5 90.1

Baseline is SOLOv2-ResNet50.
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Figure  11 displays the median errors represented by red line 
segments. The median positioning errors in the X and Y directions are 
less than 1.5 mm. Furthermore, the median positioning error in the Z 
direction approaches zero, with a maximum Z-direction positioning 
error of approximately 1 mm. These observations demonstrate that the 
proposed RGB-D-based apple-picking point localization method 
attains remarkable precision, fulfilling practical picking needs.

Figure 12 illustrates the process of apple-picking point localization. 
Figure 12A shows the original image, while Figure 12B displays the 
instance segmentation result. Figure 12C shows the pickable apples 
after IoU filtering and confirmation of the depth information of the 
center point, where the blue circles indicate the pickable apples and 
the red circles indicate the non-pickable apples. Figure 12D presents 
the localization results of picking points in the camera coordinate 
system, obtained by combining depth information and camera 
intrinsic parameters with coordinates measured in meters. It can 
be observed from the figure that the proposed RGB-D-based picking 
point localization method effectively achieves accurate apple 
localization. Furthermore, when the depth information at the center 
of the bounding circle of the apple segmentation mask does not 
correspond to the apple category, the localization method can provide 
correct feedback.

4 Conclusion

The orchard environment is complex, and detection and 
segmentation-based methods exhibit lower accuracy in recognizing 
and localizing overlapping or occluded apples. Detection-based 
instance segmentation methods heavily rely on detection results and 
do not consider global features, such as MaskRCNN. Therefore, this 
study introduces a high-precision method based on RGB-D data and 
an enhanced SOLOV2 instance segmentation method for orchard 
apple recognition and picking point localization. This method does 
not rely on detection results, performs well in the face of occlusion, 
and can accurately locate the apple picking point. The specific 
conclusions of this research are outlined below:

 (1) An improved SOLOv2 high-precision apple instance 
segmentation method is introduced. To enhance the efficiency 
of the instance segmentation network, EfficientNetV2 is 
adopted as the backbone feature extraction network, which 
has a highly efficient parameter design. When faced with 
scenarios involving overlapping or occluded apples, as their 
semantic features are quite similar, we introduce a lightweight 
spatial attention module to improve segmentation accuracy. 
This module can increase position sensitivity, thus 
distinguishing based on positional features even when 
semantic features are similar. Through comparative 
experimental analysis, the improved SOLOv2 instance 
segmentation method performs exceptionally well, achieving 
the highest F1 score and mAP values on the apple instance 
segmentation dataset, 88.5 and 90.1%, respectively. 
Furthermore, compared to the previous version, the model’s 
parameter count and computational load have slightly 
decreased by 1.94M and 31 GFLOPs.

 (2) To achieve precise apple-picking point localization, an apple 
localization method based on RGB-D is proposed. Firstly, the 
pickable apples are filtered by the IoU of the mask and its 
maximum outer circle and then determine whether the 
midpoint of the maximum outer circle is an apple category. 
Finally, the 3D coordinates of the picking point are obtained 
based on the depth information of the midpoint and the 
camera’s intrinsic parameters. Experimental verification 
indicates that, in the collection of 60 datasets, the median 

TABLE 4 The positioning error of some picking points, in which the data unit is mm.

x y z
x y z x x−  y y−  z z− 

20.04 47.83 733.75 20.04 47.83 733.75 0 0 0

−43.68 −53.3 801 −43.66 −53.3 801 0.02 0 0

109.13 −12.59 892 109.51 −12.58 801 0.38 0.01 0

87.21 −76.57 823.75 89.17 −75.05 823.75 1.96 1.52 0

−132.2 104.1 923.5 −130.1 106.2 923.8 2.1 2.1 0.3



113.29 −149.57 791 114.77 −148.24 791 1.48 1.33 0

279.69 75.82 653.75 281.47 74.4 653.75 1.78 1.42 0

−132.23 104.11 923.5 −130.12 106.19 923.75 2.11 2.08 0.25

FIGURE 11

X, Y, Z direction positioning error.
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errors in the X and Y directions for localization are less than 
1.5 mm, while the median error in the Z direction is close to 
0. Moreover, the maximum error in the Z direction is 
approximately 1 mm, demonstrating high accuracy.

In the future, due to the high cost of obtaining instance 
segmentation data and issues related to the real-time performance of 
the models, we will focus on in-depth research in two critical areas: 
data generation and model lightweight. This will enable practical 
applications on edge devices and embedded systems.
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FIGURE 12

Apple picking point localization process. (A) Original image. (B) Segmentation result. (C) Pickable apples. (D) Localization result of pickable apples.
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