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In chickpea breeding, drought is a major concern and a complex trait controlled 
by several genes. To develop drought-tolerant varieties, it is essential to use 
the available germplasm and genomic resources. Over the years, the landraces 
have proven to be a good source for the dissection of genes for different yield 
and yield-related traits. The present investigation for marker–trait associations 
(MTAs) and candidate gene identification was conducted by studying 125 
chickpea landraces collected from the West Asia and North Africa (WANA) 
region, along with 4 varieties suitable for irrigated and rainfed environments. 
This study analyzed 13 physio-morphological traits in 2 consecutive years at 
two isolated locations (IARI, New Delhi, and Dharwad). A strong correlation 
coefficient was observed between the trait seed yield (SY) and biological yield 
(BY) under both conditions. The Drought Susceptibility Index (DSI) ranged from 
0.02 to 1.84 and 0.10 to 2.04 at the IARI, New Delhi and Dharwad locations, 
respectively. The genotypic data of 6,367 single nucleotide polymorphisms 
(SNPs) distributed across the genome were used for genetic diversity study, 
population structure, and genome-wide association study (GWAS). The average 
polymorphic information content (PIC) value observed was 0.25, and the 
average linkage disequilibrium (LD) decay distance was 152,269  bp across the 
genome. A total of four subgroups were observed within the population for 
genotypic data. Fixed and random model Circulating Probability Unification 
(FarmCPU) was used for the GWAS analysis, which considered both fixed- and 
random-effect models. A total of 52 significant SNPs were reported in both 
irrigated and rainfed conditions at low locations; 7 SNPs were associated with 
more than one trait, which may have pleiotropic effects. Significant SNPs were 
annotated in the pulse database. The identified genomic region found in or 
near MTA under rainfed conditions encodes for guard cell hydrogen peroxide-
resistant1 (GHR1), late embryogenesis-abundant, E3 ubiquitin-protein ligase, 
walls are thin1 (WAT1), and beta-galactosidase that are known to be associated 
with drought tolerance.
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Introduction

Chickpea (Cicer arietinum L.) is a globally cultivated legume, 
with an area of 15 million ha and a production of 15 million tons 
(FAOSTAT, 2021). It is a cool-season crop, predominantly grown 
in arid and semi-arid climatic conditions with residual soil 
moisture (Thudi et al., 2014). It is also a vital source of protein, 
dietary fiber, and essential minerals (Bar-El Dadon et al., 2017). 
In the past century, the average global temperature has increased 
by 1.2°C and is estimated to rise further by 3°C by 2,100 
(Schneider et  al., 2007). Due to these climatic changes, the 
frequency, severity, and duration of drought periods are estimated 
to increase progressively (Cramer et al., 2011). Among the 100 
meta-analysis studies of 13 legumes, chickpea stands seventh with 
a significant difference in drought tolerance measured in terms of 
yield reduction (Daryanto et al., 2015). More than 50% of yield 
losses were reported by terminal drought or end-season drought 
alone (Ahmad et al., 2005). Over the past three decades, chickpea 
cultivation has shifted from cooler to warmer regions in India 
(Krishnamurthy et al., 2013) and the productivity of chickpea is 
expected to be further reduced. As per the Vision 2050 document 
of the Indian Council of Agricultural Research (ICAR)–Indian 
Institute of Pulses Research (IIPR), approximately 16–17.5 million 
tons of chickpeas need to be  produced from an area of 
approximately 10.5 million ha with an average productivity of 
1.5–1.7 tons/ha (Dixit et al., 2019). The chickpea genome (size 
~700 Mb) has been sequenced, and the whole-length genome 
sequence is available for desi (Jain et al., 2013; Parween et al., 
2015), kabuli (Varshney et al., 2013), and wild species, C. reticulum 
(Gupta et  al., 2017). With the availability of well-developed 
genomic resources in chickpeas and the advances in the cost-
effective next-generation sequencing technology, genome-wide 
association mapping is the best method to discover a large amount 
of variability available in the population. The availability and 
accessibility of genomic resources make it possible to identify 
unique alleles and haplotypes associated with agronomic traits 
(Varshney et al., 2019). The precise integration of genome-wide 
sequence information, to that of phenotypic variation for yield 
component trait, abiotic, or disease tolerance, allows capturing 
accessions with low-frequency variants (Roorkiwal et al., 2020). 
The QTL hotspot for drought tolerance with a phenotypic 
variation of >50% was identified on chromosome 4, by using QTL 
analysis along with SSR and GBS markers (Varshney et al., 2014; 
Jaganathan et al., 2015). The addition of more SNPs was done to 
fine map QTL-hotspot to ~300-kb region, and 26 genes were 
reported in the region with the help of QTL bin-mapping and 
gene enrichment strategies (Kale et al., 2015). The introgression 
of these QTL hotspots has led to increased seed yield and 
enhanced drought tolerance in three elite chickpea cultivars 
(Bharadwaj et  al., 2021). Recent efforts were made by Li et  al. 
(2018) to identify the marker–trait association for drought 
tolerance by incorporating GWAS and genomic selection (GS) in 
132 chickpea varieties. In order to augment the available genomic 
resources in chickpeas and to accelerate the chickpea breeding 
program for drought tolerance, our present investigation of GWAS 
was carried out in 129 chickpea landraces (collected from the 
WANA region) for the identification of candidate genes for 
drought tolerance.

Materials and methods

Plant materials and experimental design

The experimental material consisted of 129 chickpea 
genotypes, including 125 landraces collected from the WANA 
(West Asia and North Africa) region, and 4 varieties. The 
experiment was conducted at two isolated locations, viz. IARI, 
New Delhi (28.0800N and 77.120°E), and Dharwad (15.45890N 
and 75.0078°E) during 2 consecutive years, 2017–18 and 
2018–19, under irrigated and rainfed conditions, respectively. No 
supplementary irrigation was given for the rainfed environment. 
The supplementary irrigation was given at the critical growth 
stage (initiation of pod formation) under an irrigated 
environment. The month-wise rainfall data are provided in 
Supplementary Table S1. The 10 morphological traits, namely, 
days to 50% flowering (DFF), plant height (PH), number of 
primary branches (NPB), number of secondary branches (NSB), 
number of pods per plant (NPP), biological yield (BY), the 
Harvest Index (HI), 100 seed weight (100SW), seed yield (SY), 
and the Drought Susceptible Index (DSI) and three physiological 
traits, namely, relative water content (RWC), the Membrane 
Stability Index (MSI), and canopy temperature depression (CTD) 
were recorded for both the experimental trials, across the years. 
The seed yield and biological yield were recorded in 10 plants per 
genotype, and CTD was measured with the help of an 
infrared thermometer.

The Drought Susceptibility Index (DSI) was calculated as follows 
(Fischer and Maurer, 1978):

 DSI = (1 Y /Y )/(1 Y /Y )S N S N− −

where YS and YN are the mean yields of individual genotypes 
under rainfed and irrigated conditions and yS and yN are the mean 
yields of all genotypes under rainfed and irrigated conditions.

The MSI was calculated using the formula (Blum and Ebercon, 
1981) as below:
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For the estimation of MSI, ~400 mg of fresh leaf sample was 
taken in a test tube containing 10 mL distilled water and kept in a 
water bath at 45°C for 30 min, and conductivity was measured (C1). 
Similarly, the test tubes were placed again at 100°C for 10 min and 
the conductivity (C2) was measured after allowing it to cool to 
room temperature.

The relative water content (RWC) was estimated according to 
Barrs and Weatherley (1962).
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The fresh weight was recorded for the leaf samples of all genotypes, 
and then they were kept in a Petri dish filled with distilled water for 
4 h, so as to record the turgid weight. Thereafter, the samples were 
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placed in a dry-air oven set at 60°C for 72 h to record the dry weight 
of the sample.

Analysis variance across location and year is calculated in the R 
environment. The Best linear Unbiased Predictions (BLUPs) were 
calculated by using the phenotype version 0.1.0 package, and Metan 
version 1.16.0 was used to calculate the correlation coefficient and 
to draw a correlation plot (Olivoto and Lucio, 2020) in R 
version 4.1.1.

Genotyping of plant material

A total of 16,983 SNPs were filtered from 16 k Illumina GBS 
resequencing data for 129 genotypes. After excluding the markers with 
minor allele frequency (MAF) <0.05 in TASSEL version 5 (Bradbury 
et al., 2007), a total of 6,367 markers were retained for further genetic 
diversity and genome-wide association study.

Genetic diversity and population structure 
analysis

The molecular genetics diversities such as gene diversity (GD), 
polymorphic information content (PIC), and heterozygosity were 
calculated using PowerMarker 3.25 (Liu and Muse, 2005). The 
population structure for 6,367 SNPs was analyzed with the 1 to 10 
assumed number of subgroups (K) for each run with 100,000 
Markov Chain Monte Carlo iteration and a burn-in 10,000 steps in 
Structure 2.3.4 (Pritchard et al., 2000). The optimum number of 
clusters was determined by plotting ΔK against the natural 
logarithms of probability data [LnP(K)] Structure Harvester (Earl 
and vonHoldt, 2012). The PCA was incorporated in the package 
Genomic Association and Prediction Integrated Tool Version 3 
under the R environment (Wang and Zhang, 2021), and the analysis 
was performed. The extent of linkage disequilibrium between the 
SNP markers was analyzed by calculating the r2 values in TASSEL 
v5 (Bradbury et al., 2007). Only r2 values with p < 0.05 within each 
chromosome were considered for LD decay analysis. The non-linear 
regression curve was used for the estimation of LD decay (Hill and 
Weir, 1988). LD decay plot was drawn with the help of LD (r2) and 
physical distance (bp) by using the script in R version 4.1.1 (David 
et al., 2001).

Genome-wide association mapping

The genome-wide association analysis for 6,367 SNPs was 
performed using a multilocus GWAS model, viz., Fixed and random 
model and Circulating Probability Unification (FarmCPU) (Liu et al., 
2016) using GAPIT version 3 (Wang and Zhang, 2021) in R software. 
Both the fixed-effect model (FEM) and random-effect model (REL) 
are utilized in this model, and it is considered the most efficient as it 
eliminates confounding issues arising due to population structure, 
kinship, multiple testing, etc. (Gahlaut et al., 2021). To identify the 
significant SNPs, the Bonferroni-corrected p-value at 1 (−log 
p-value = 3.8) was considered as the threshold p-value (Kohli et al., 
2020). Only the SNPs with above this value were declared as significant 
MTAs. A mixed linear model in TASSEL was to calculate the 

phenotypic variation explained (PVE) (Bradbury et al., 2007). The 
Manhattan plot was generated from qqman version 0.1.8 
(Turner, 2018).

Exploration of candidate gene

To explore putative candidate genes, LD decay along the individual 
chromosome was considered to retrieve sequence flanking significant 
MTAs, searched against the NCBI (National Center for Biotechnology 
Information) reference genome ASM33114v1. The Chickpea pulse 
database1 was used for the annotation of significant MTAs.

Results

Screening of chickpea genotypes for 
morpho-physiological traits under irrigated 
and rainfed environment

In total, 129 chickpea genotypes were evaluated for 10 
morphological and 3 physiological traits under differing water 
regimes and were found to have a wide range of variability. The 
analysis of variance (ANOVA) of all morphological traits under 
irrigated and rainfed environments across the location and year was 
estimated, and a mean sum of squares and their significance are 
presented in Supplementary Table S2. The ANOVA reveals that the 
genotype–environmental interaction was significant at p < 0.001 for 
all the morphological traits except NPP, BY, and HI for 
genotype × year interaction in both irrigated and rainfed conditions. 
This indicates that the environmental influence on the performance 
of the genotypes. The genotypic × location interaction effect was 
significant for all the traits in both irrigated and rainfed conditions. 
This shows the genotypes studied had wide variability, and they 
performed differently across the locations. The DSI for IARI, New 
Delhi, environment varied from 0.02 to 1.84 while for the Dharwad 
environment was 0.10 to 2.04. Boxplot was drawn to compare the 
mean value of morphological traits under different environmental 
conditions, and the reduction in the mean value of all traits studied 
was observed in rainfed compared to the irrigated conditions in 
both locations (Figure  1). Pearson’s correlation analysis is 
summarized in Figure 2, which reveals the significant correlation 
among most of the traits in both rainfed and irrigated environments. 
Furthermore, the seed yield is positively associated with the traits 
NPB, NSB, NPP, BY, HI, and 100SW in both irrigated and rainfed 
environments and negatively associated with the DFF and PH. A 
strong correlation was observed between the trait SY and BY with 
correlation coefficients of 0.934, 0.932, 0.919, and 0.941 in the E1, 
E2, E3, and E4 environment, respectively, which showed that 
healthy plant biomass will retain yield even in drought condition 
(Kashiwagi et  al., 2013; Li et  al., 2018). The boxplot for three 
physiological traits, viz., RWC, MSI, and CTD is presented in 
Figure 3, reduced in the mean value of traits observed in rainfed 
condition compared to irrigated condition.

1 https://www.pulsedb.org/blast/report/
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Genetic diversity, linkage disequilibrium, 
and population structure

A total of 6,367 SNPs were considered for the study after excluding 
the SNPs with minor allele frequency (MAF) of <0.05 from 16,983 
SNPs. The distribution of SNPs across the chromosome ranged from 
438 in chromosome 8 to 1,480 in chromosome 4. The percentage of 
transitions (A/G and C/T) was higher at 0.53% than 0.47% of A/C, 
A/T, G/C, and G/T transversions. The average genetic distance was 
0.33 with a range from 0.095 to 0.611. The average PIC value was 0.25 
with a range from 0.09 to 0.53, and the average heterozygosity was 
0.11. The LD and LD decay of all 8 chickpea chromosomes are 
presented in Table 1. The average LD across the genome was 0.14, and 
in the individual chromosomes, it varied from 0.06 in chromosome 5 
to 0.22 in chromosome 8. The maximum SNP pairs with a p-value of 
<0.05 were on chromosome 4 (12477), and the minimum SNP pairs 
were on chromosome 5 (697). The whole genome LD decay distance 
was 152,269 bp (Figure 4), above which LD decay was observed. The 
LD decay distance of individual chromosomes ranged from 81,535 on 
chromosome 5 to 225,588 on chromosome 6. The SNP density per 
chromosome ranged from 9.80SNPS/Mb in Chromosome 5 to 30.24 
SNPs/Mb in Chromosome 4.

The 129 chickpea genotypes were clustered into subpopulations 
based on the Bayesian clustering approach and plotted as cluster k and 
delta K. The maximum delta K was observed on cluster 4 (Figure 5), 
concluding that 129 chickpea genotypes were divided into 4 
subpopulations by using the admixture method in STRUCTURE 
software and computing the result into online Structure HarveSter 
(Evanno et al., 2005). The individual genotypes were included in the 
subpopulation based on their highest share of the membership 
coefficient. Based on the membership coefficient, the four 
subpopulations namely SubPop1, SubPop2, SubPop3, and SubPop4 

have 54, 42, 18, and 15 genotypes, respectively, in their clusters 
(Figure 5 and Supplementary Table S3). The fixation index of 0.56, 
0.52, 0.44, and 0.58 was recorded in SubPop1, SubPop2, SubPop3, and 
SubPop4, respectively. The allele-frequency divergence of SubPop1 
from SubPop2 was 0.19, from SubPop3 was 0.12, and from SubPop4 
0.23; the divergence of SubPop2 from SubPop3 was 0.15 and from 
SubPop4 was 0.19; and the divergence of SubPop3 from SubPop4 was 
0.17. The average distance between the individuals within the 
subpopulation was 0.18, 0.19, 0.23, and 0.19 in SubPop1, SubPop2, 
SubPop3, and SubPop4, respectively. The kinship matrix obtained 
from SNPs, varied from −0.52 to 2.07. The diversity among 129 
chickpea genotypes, as shown in the kinship matrix heatmap 
(Figure 6A), by using PCA (Figure 6C) and percentage variation, 
explained each PCA (Figure 6B). The PCA and kinship showed the 
presence of a high level of diversity in the panel used.

Genome-wide association mapping for 
irrigated and rainfed environments

The analysis of significantly associated SNPs (p < 1.5E-04) 
resulted in a total of 49 SNPs for morphological traits, excluding 
NPB, and three for physiological traits, in both irrigated and rainfed 
environments at two locations (Table 2). For the morphological traits 
studied, 8 SNPs were reported for both irrigated and rainfed 
environments, 27 SNPs for the rainfed environment, and 10 SNPs 
for the irrigated environment. A maximum number of 21 SNPs 
showed significant association with 100SW explained 0.003–17.184% 
phenotypic variation followed by 10 SNPs with SY explained 0.002–
28.75% phenotypic variation and 7 SNPs with NPP explained 0.001 
to 30.969% phenotypic variation. In total, seven SNPs were found to 
be associated with more than one trait (Supplementary Table S4). 

FIGURE 1

Box plot for morphological traits studied under different environments: E1, IARI irrigated; E2, IARI rainfed; E3, Dharwad irrigated; E4, Dharwad rainfed; 
DFF, days to 50% flowering; PH, plant height; NPB, number of primary branches; NSB, number of secondary branches; NPP, number of pods per plant; 
BY, biological yield; HI, Harvest Index; 100SW, 100 seed weight; SY, seed yield; DSI, Drought Susceptible Index.
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Two significant SNPs for DSI, one each under IARI, New Delhi, 
located on Ca8:8904366 (Figure  7A) and Dharwad located on 
Ca1:7500524 (Figure 7B). For physiological traits studies, two SNPs 
were found to be significant for RWC (Ca3:13202989) and CTD 
(Ca4:25809665) in an irrigated environment, and one SNP for CTD 
(Ca5:31164539) for a rainfed environment at IARI, New Delhi 
(Figure  7C). The Manhattan plot for 100SW and SY under the 

rainfed condition for both the locations IARI, New Delhi, and 
Dharwad, are presented in Figure  8. The SNP located on 
Ca1:43273961 was found to be associated with a greater number of 
traits (NPB, NPP, BY, and SY) followed by SNP on Ca1:43273962, 
associated with NPB, NPP, and SY and SNP located on Ca8:13745335 
associated with NPP, BY, and SY, which indicates the 
pleiotropic effect.

FIGURE 2

Correlation coefficient (r) plot for morphological traits in different water regimes. (A) IARI irrigated. (B) IARI rainfed. (C) Dharwad rainfed, and 
(D) Dharwad irrigated environment (top to bottom in clockwise).

FIGURE 3

Box plot 3 physiological traits RWC (relative water content), MSI (Membrane Stability Index), and CTD (canopy temperature depression) at E1—IARI 
irrigated and E2—IARI rainfed.
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Putative candidate gene identification for 
marker–trait associations

The significant SNP associations with different traits were 
further used for the identification of putative candidates based on 
the position of SNPs. LD decay across individual chromosomes 
was considered to retrieve a flanking sequence of significant SNPs 
from the NCBI database and functionally annotated based on 
CDC Frontier v1 functional annotation (Varshney et al., 2013) 
from the pulse database (Supplementary Data S1). The identified 
MTA Ca1:7500524 associated with traits IARI_DSI (9.58E-05) and 
E4_NPP (p < 1.10E-04) explains 6.915 and 10.648% phenotypic 
variance found in or near probable coding region encodes for 
probable LRR receptor-like serine/threonine-protein kinase 
At4g20940 (Ca_08003), and another significant MTA for 
Dharwad_DSI (7.24E-05) located at Ca8:8904366 explains 9.816% 
phenotypic variance, colocalized with the gene encodes for 

threonine–tRNA ligase, mitochondrial 1-like (Ca_11521). The 
MTA Ca3:32706215 for E1_100SW (p < 3.0E-04), E1_100SW 
(p < 3.0E-04), and E2_SY (7.24E-10) explain the phenotypic 
variation of 6.453, 4.818, and 4.361%, respectively, colocalized 
with the gene zinc finger BED domain-containing protein 
DAYSLEEPER-like (Ca_12000). The MTA Ca4:30258567 had 
associations with E4_NPP (p < 7.97E-05) and E4_BY (p < 1.30E-
04) explaining 30.969 and 22.205% phenotypic variations, 
respectively, and encodes for 11 kDa late embryogenesis abundant 
protein-like (Ca_14189). The MTA Ca5:28886131 for E4_100SW 
(p < 6.16E-05) explains the phenotypic variation of 14.511% and 
is colocalized in or near gene encodes for protein WAT1-related 
protein-like (Ca_17987). MTA Ca7:41673233 was found to 
be  colocalized with gene encodes for the beta-galactosidase 
(Ca_17987) and was associated with E2_100SW (p < 1.88E-05) 
explaining the phenotypic variation of 6.830%. MTA 
Ca7:31317611 for E4_100SW (p < 1.2E-04) explains the 
phenotypic variation of 19.740%, found near or in gene encodes 
for putative proline-rich protein APG isolog, GDSL esterase/lipase 
APG (Ca_10127). MTA Ca1:2252356 for E2_SY (p < 8.43E-07) 
found in or near gene encodes for E3 ubiquitin-protein ligase 
AIRP2-like (Ca_00281) explains 13.853% phenotypic variance. 
MTA Ca5:47684292 for E2_SY (p < 2.96E-07) encodes with the 
protein FAR1-RELATED SEQUENCE 7-like and sugar transport 
protein 10-like (Ca_24737) explains 7.161% phenotypic variance. 
MTA Ca4:30308719 for E2_BY (p < 1.45E-04) found in or near 
gene encodes for UDP-glycosyltransferase (Ca_23901) explains a 
phenotypic variance of 17.974%. MTA Ca5:31164539 for E2_CTD 
(p < 7.56E-05) explains phenotypic variance of 13.406%, found in 
or near gene encodes for protein U-box domain-containing 
protein 44-like (Ca_04820), and is also capable of functioning as 
E3 ubiquitin-protein ligase (Raab et al., 2009).

Discussion

The chickpea grown in the Indian subcontinent has a narrow 
genetic base (Bharadwaj et  al., 2011b), and the use of various 
accessions/donor parents in the breeding program would increase 
the sensitivity of chickpea productivity toward biotic and abiotic 
stress (Muehlbauer and Sarker, 2017). The study on the linkage 
mapping in the intraspecific populations (desi × kabuli) from the 
STMs proved the potential of using genomic resources in chickpea 

TABLE 1 Distribution of SNPs, SNP pairs (p  <  0.05), LD (r2), and LD decay on all eight chromosomes of chickpea.

Chromosome Number of SNPs SNP density 
(per Mb)

SNP pair in LD 
(p  <  0.05)

Average LD (r2) LD decay 
distance (bp)

1 1,014 20.98 5,506 0.14 87,707

2 585 15.98 4,107 0.13 82,456

3 572 14.33 3,621 0.15 216,852

4 1,480 30.24 12,477 0.15 130,725

5 470 9.80 697 0.06 81,535

6 942 15.85 5,273 0.16 225,588

7 866 17.85 4,908 0.12 117,169

8 438 26.59 3,705 0.22 582,792

FIGURE 4

Genome-wide Linkage Disequilibrium plot of the entire genome of 
chickpea. The x-axis represents distance (bp), and the y-axis 
represents LD (r2). The intersection between the horizontal and 
vertical lines represents the LD decay distance.
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breeding (Bharadwaj et  al., 2011a). The breeding program could 
be accelerated by supplementing conventional breeding efforts with 
genomics-assisted breeding (GAB) (Varshney et al., 2007). Sequence 
cost curtailed as an advance in the next-generation sequencing 
technology (NGS) (Varshney et  al., 2005) and the availability of 

chickpea draft genome (Jain et al., 2013; Varshney et al., 2013; Gupta 
et  al., 2017) have led to the development of genotyping-by-
sequencing-based marker, which can be effectively used for genome-
wide association analysis for identification of marker–trait 
associations (MTAs).

FIGURE 5

Population structure of 129 Chickpea genotypes. Delta K shows four subpopulation by Evanno’s method; the peak observed at k  =  4.

FIGURE 6

Molecular diversity and genetic structure of 129 chickpea genotypes. (A) Kinship matrix heatmap. (C) Scree plot depicting significant PCs. (B) The 3D 
graph depicting the distribution of genotypes along the three (top to bottom in clockwise).
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TABLE 2 Fifty-two SNPs which are associated with different traits.

Traits Environment SNP Chromosome Position SNP 
allele

P-value Rsquare 
value

PH E1 Ca4:10030134 4 10,030,134 A/G 1.2E-04 11.511

E3 Ca1:1225254 1 1,225,254 T/G 2.72E-05 7.870

Ca4:10030134 4 10,030,134 A/G 9.52E-05 12.475

E4 Ca4:10030134 4 10,030,134 A/G 1.2E-04 13.195

Ca6:14042859 6 14,042,859 A/T 1.10E-04 7.920

DFF E3 Ca8:1612982 8 1,612,982 A/C 1.4E-04 12.281

E4 Ca8:1612982 8 1,612,982 A/C 1.4E-05 13.855

NPB E2 Ca1:10191516 1 10,191,516 A/G 1.10E-04 17.863

Ca1:10191517 1 10,191,517 G/T 1.10E-04 17.863

Ca7:35258029 7 35,258,029 G/T 1.30E-04 10.232

E4 Ca1:43273961 1 43,273,961 C/T 9.1E-06 3.074

Ca1:43273962 1 43,273,962 A/G 9.1E-06 3.074

Ca6:32262855 6 32,262,855 C/T 1.89E-05 0.002

Ca7:6075124 7 6,075,124 T/G 1.20E-04 20.577

NPP E2 Ca8:13745335 8 13,745,335 A/G 1.39E-05 0.001

E3 Ca1:43273961 1 43,273,961 C/T 3.5E-05 1.698

Ca1:43273962 1 43,273,962 G/T 3.5E-05 1.698

Ca6:32262855 6 32,262,855 C/T 6.2E-05 0.001

Ca6:52065393 6 52,065,393 C/A 4.60E-04 27.384

E4 Ca1:43273961 1 43,273,961 C/T 1.33E0.5 4.239

Ca1:43273962 1 43,273,962 G/T 1.33E0.5 4.239

Ca1:7500524 1 7,500,524 T/C 1.10E-04 10.468

Ca4:30258567 4 30,258,567 C/A 7.97E-05 30.969

Ca6:32262855 6 32,262,855 C/T 7.85E05 0.004

BY E1 Ca8:13745335 8 13,745,335 A/G 1.14E-04 0.001

E2 Ca1:43273961 1 43,273,961 C/T 3.94E-07 21.337

Ca4:30308719 4 30,308,719 C/A 1.45E-05 17.974

Ca5:6290453 5 6,290,453 G/A 6.41E-06 3.230

E4 Ca4:30258567 4 30,258,567 C/A 1.30E-04 22.205

HI E1 Ca3:4878351 3 4,878,351 G/T 1.3E-04 12.007

100SW E1 Ca1:11225828 1 11,225,828 C/T 1.4E-04 7.527

Ca1:46749206 1 46,749,206 T/G 1.2E-04 3.608

Ca3:31454799 3 31,454,799 G/T 1.1E-04 4.610

Ca3:32706215 3 32,706,215 A/C 3.0E-04 6.453

Ca4:24729101 4 24,729,101 T/G 1.4E-04 3.892

Ca5:47775117 5 47,775,117 T/G 1.4E-04 5.936

Ca6:10136954 6 10,136,954 A/C 1.19E-04 4.124

Ca6:1288709 6 1,288,709 T/G 3.84E-05 7.853

Ca8:2029341 8 2,029,341 T/G 7.20E-06 6.951

Ca8:5352551 8 5,352,551 T/G 5.44E-05 6.904

(Continued)
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Morphological traits studied under 
different environments

The significance of the genotypic and environment main effect 
from analysis of variance implicates the presence of more variability 
in this germplasm for different traits, and also, the significance of 
interaction effects reveals the differential response of these genotypes 
across the environments. A strong correlation with SY and BY in all 
four environments implies that plant growth and development have a 
direct impact on seed yield. The strong correlations between seed and 
biomass in both the irrigated and stress treatments at vegetative and 

reproductive stages (Sachdeva et al., 2022). The DSI was the best used 
indices to identify drought-tolerant lines (Fischer and Maurer, 1978), 
in the earlier investigation, also used the DSI as a selection index to 
identify drought-tolerant genotypes in chickpeas (Sachdeva 
et al., 2018).

Genetic diversity of SNPs

Half of SNPs studies have a PIC value of more than 0.25; this 
indicates sufficient diversity of these markers. The average PIC 

TABLE 2 (Continued)

Traits Environment SNP Chromosome Position SNP 
allele

P-value Rsquare 
value

E2 Ca1:13043346 1 13,043,346 T/A 4.88E-05 0.037

Ca2:7633564 2 7,633,564 G/T 4.01E-05 0.003

Ca4:11040108 4 11,040,108 C/T 1.28E-05 4.626

Ca6:1288709 6 1,288,709 T/G 1.02E-11 7.882

Ca6:26383440 6 26,383,440 A/C 1.08E-06 3.478

Ca6:30001391 6 30,001,391 C/T 1.2E-05 5.684

Ca7:41673233 7 41,673,233 A/C 1.88E-05 6.830

E3 Ca1:11225828 1 11,225,828 C/T 3.64E-05 7.360

Ca3:32706215 3 32,706,215 A/C 3.0E-04 4.818

Ca4:4605340 4 4,605,340 A/C 6.79E-05 6.668

Ca6:1288709 6 1,288,709 T/G 3.84E-05 5.617

Ca8:2029341 8 2,029,341 T/G 7.47E-05 5.401

E4 Ca2:11246842 2 11,246,842 G/A 6.13E-05 0.098

Ca4:11113277 4 11,113,277 A/C 4.53E-05 1.030

Ca5:23161492 5 23,161,492 A/T 5.07E-05 0.0490

Ca5:28886131 5 28,886,131 T/C 6.16E-05 14.511

Ca7:31317611 7 31,317,611 T/G 1.2E-04 19.740

Ca8:11631836 8 11,631,836 C/T 3.24E-05 17.184

SY E2 Ca1:2252356 1 2,252,356 C/T 8.43E-07 13.853

Ca3:32706215 3 32,706,215 A/C 7.24E-10 4.361

Ca4:27268301 4 27,268,301 G/A 1.08E-05 18.167

Ca4:3280217 4 3,280,217 G/A 2.41E-05 4.151

Ca5:32598221 5 32,598,221 C/A 3.33E-05 12.660

Ca5:47684292 5 47,684,292 A/G 2.96E-07 7.161

E4 Ca1:43273961 1 43,273,961 C/T 7.44E-05 11.377

Ca1:43273962 1 43,273,962 A/G 7.44E-05 11.377

Ca6:10116403 6 10,116,403 A/T 1.4E-04 28.750

Ca8:13745335 8 13,745,335 A/G 2.43E-05 0.002

DSI IARI, New Delhi Ca1:7500524 1 7,500,524 T/C 9.58E-05 6.915

Dharwad Ca8:8904366 8 8,904,366 A/G 7.24E-05 9.816

RWC E1 Ca3:13202989 3 13,202,989 C/T 4.14E-05 0.197

CTD E1 Ca4:25809665 4 25,809,665 T/C 9.82E-05 6.066

E2 Ca5:31164539 5 31,164,539 T/C 7.56E-05 13.406

E1, IARI irrigated; E2, IARI rainfed; E3, Dharwad irrigated; E4, Dharwad rainfed. *R2 Values calculated from the mixed linear model using TASSEL, DFF (days), days to 50% flowering; PH 
(cm), plant height; NPB, number of primary branches; NPP, number of pods per plants; BY (g/plot), biological yield; HI, Harvest Index; 100SW (g), 100 seed weight; and SY(g/plot), seed yield.
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value of 0.32 was reported for SNP markers, and more than half 
of the SNP markers showed PIC values higher than 0.25; these 
SNP markers were used in chickpeas for genome diversity, 
population structure, and linkage analysis (Farahani et al., 2019). 
The average genetic distance between the individual was 
calculated between the genotypes, the average GD between 
genotypes was 0.32 with more than 81% of genotype pairs having 
a genetic distance above 0.25, implicating the presence of high 
genetic variability between the genotypes. The genome-wide LD 
decay estimated for the present investigation is on par with the 
previous association studies of chickpeas for complex yield traits 
(Kujur et al., 2015; Upadhyaya et al., 2016). The greater number 
of genotypes had a lower kinship value (<0.5) (a lower kinship 
value indicates diverse genotypes, while a higher kinship value 
indicates a similar genotype) (Dodds et al., 2015).

Putative candidate genes for drought 
tolerance

LD decay distance along individual chromosomes was considered 
to retrieve a flanking sequence of significant MTAs (p < 1.5E-04), 
selected region searched for the identification of candidate genes 
including start and stop position, BLAST sequence description, 
InterPro IDs, Gene ontology terms, and accessions in pulse database. 
“QTL-hotspot” harboring several drought-tolerant traits has been 
identified in the biparental mapping population ICCRIL03 (ICC 
4958 × ICC 1882) and ICCRIL04 (ICC 283 × ICC 8261) (Varshney 
et al., 2014). Furthermore, this “QTL-hotspot” region was refined to 
~14 cM from the original ~29 cM (Jaganathan et al., 2015); later, it was 

fine-mapped to ~300 Kb (13,239,546–13,547,009) (Kale et al., 2015); 
in this study, we do not find any significant MTAs in this QTL-hotspot. 
Gene present in or near significant MTAs associated with different 
traits under different environments was found to be  encoded for 
different proteins; based on the available literature, some of the MTAs 
reported have been known to play a role in drought tolerance 
mechanisms. The protein probable LRR receptor-like serine/
threonine-protein kinase At4g20940 [Guard 211 Cell Hydrogen 
Peroxide-Resistant1 (GHR1)], found in or near MTA for IARI_DSI 
and E4_NPP, is reported to be  involved in drought tolerance in 
Arabidopsis by regulating the level of aliphatic glucosinolates (GLSs) 
by involving in auxin signaling and also stomatal regulation (Salehin 
et  al., 2019); one QTL “QR3dsi02” for DSI explaining 13.00% 
phenotypic variation was reported in biparental mapping population 
ICC4958 × ICC 1882 (Jaganathan et al., 2015). The genomic region of 
MTA for E4_NPP and E4_BY encodes LEA (Late embryonic 
abundant protein). These proteins contribute toward antioxidant 
activity, metal ion binding, membrane and protein stabilization, 
hydration buffering, and DNA and RNA interaction and are known 
to protect plant metabolism against abiotic stresses (Shao et al., 2005). 
Genomic region with MTA for E4_100SW encodes WAT1 protein 
localized, which acts as an auxin transporter and is involved in the 
auxin homeostasis (Ranocha et al., 2013). MTA for E2_SY encodes 
with the protein FAR1-RELATED SEQUENCE 7-like and sugar 
transport protein 10-like. FRS genes like FRS7 and FRS12 and the loss 
of function could result in early flowering plants with overly elongated 
hypocotyls mainly in short days in Arabidopsis (Ritter et al., 2017). 
Two SNPs at different locations are found to be associated with the SY 
found with the protein sugar transporter. Earlier studies reported that 
the sugar transporter genes serve as signaling molecules in 

FIGURE 7

Manhattan Plot represents chromosome on the X-axis and –log (p) value on the Y-axis. (A) DSI—IARI, New Delhi. (B) DSI—Dharwad. (C) CTD—IARI, 
Rainfed (Left to Right).
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Arabidopsis (Wobus and Weber, 1999). In Arabidopsis, the sugar 
transporter gene induces subcellular modification, cellular signal 
alteration, enhanced biomass of Arabidopsis seeds, and early plant 
development (Wingenter et  al., 2010). Investigation of drought 
tolerance in chickpeas using GWAS and genomic selection reported 
a significant association of SNPs in several auxin-related genes and 
sugar transporters with yield and yield-related traits under drought-
prone environments (Li et al., 2018). MTA for E2_100SW encodes 
β-galactosidase protein that plays a major role in water stress. During 
senescence, the increase in the activity of β-galactosidase and loss of 
photosynthesis was observed in the leaves of Arabidopsis. In the 
background of loss of photosynthesis, this protein was found to 
be  involved in the production of sugars that could serve for the 
execution of energy-dependent senescence (Pandey et al., 2017). The 
MTA for E4_100SW colocalized with the gene encodes putative 
proline-rich protein APG isolog and GDSL esterase/lipase APG. Some 
of the PRP genes such as the proline-rich protein-encoding gene 
(CcHyPRP) isolated from pigeon peas (Cajanus cajan) could 
be induced by various stresses (Priyanka et al., 2010). SNP marker-
associated plant height under the rainfed condition located near 
GDSL esterases and lipases (GELPs) was reported in a study of GWAS 
for drought tolerance in multiple environments (Istanbuli et al., 2024). 
The overexpression of the GDSL-type pepper lipase gene in 
Arabidopsis during seed germination and plant growth showed 
drought tolerance and differential expression of drought- and abscisic 

acid (ABA)-inducible genes (Hong et al., 2008). MTA that encodes E3 
ubiquitin-protein ligase AIRP2-like, AtAIRP2  in Arabidopsis, 
reported to play ABA-mediated drought stress responses (Cho et al., 
2011). SNP associated with 100 seed weight encodes gene LRR 
receptor-like kinase family protein, and SNP associated with plant 
height encodes for E3 ubiquitin-protein ligase RNF185-like was 
reported in a study of high-resolution mapping of drought tolerance 
in chickpea using MAGIC population (Thudi et al., 2024). The MTA 
encoding to UDP-glycosyltransferases was found to be associated 
with E2_BY. Some of the UDP-glycosyltransferases, such as UGT79B2 
and UGT79B3, contribute to cold, salt, and drought stress tolerance 
via modulating anthocyanin accumulation (Li et  al., 2017). The 
protein U-box domain-containing protein 44, localized with the SNP 
associated with E2_CTD, has been reported to prevent premature 
senescence in Arabidopsis plants (Raab et al., 2009).

The present study demonstrates that several MTAs identified for 
different traits including yield, physiological, and drought indices 
recorded across locations, seasons, and different stress conditions. 
Identified genomic region colocalized with these MTAs encodes for 
proteins that are known for drought tolerance. However, to validate 
their functionality, further investigation via gene expression analysis 
or gene knock-out studies is imperative. Moreover, enhancing the 
scope of research by including large accessions and encompassing 
more locations and seasons could be considered to improve these 
findings. Once validated, these insights serve as good candidates for 

FIGURE 8

Manhattan Plot represents chromosome on the X-axis and –log (p) value on the Y-axis. (A) IARI, RF-100SW. (B) IARI, RF-SY. (C) Dharwad, RF-100SW. 
(D) Dharwad, RF-SY.
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climate-resilient breeding for the improvement of drought tolerance 
in chickpeas.
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