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Introduction: The primary function and spatial layout of agriculture are 
essential foundations and prerequisites for achieving green development. This 
paper explores the growth drivers for the green transformation of agricultural 
production in Guangdong, China, aiming to guide the continuous green and 
low-carbon development of agricultural productivity in Guangdong.

Methods: Based on the panel data of 21 prefecture-level cities in Guangdong, 
China, from 2004 to 2022, this paper uses DEA-BCC and DEA-Malmquist 
to measure the agricultural green total factor productivity (AGTFP) and its 
decomposition efficiency in Guangdong China. The SDM is employed to analyze 
its spatial spillover roles of the agricultural industrial structure (AIS) innovation.

Results: The results show that the AGTFP varies with an overall fluctuating upward 
trend, but the imbalance of regional differences still exists, characterized as “Pearl 
River Delta > Eastern Wing > Western Wing > Mountainous Area,” indicating the 
siphoning role from Pearl River Delta. There is a strong spatial correlation between 
the AGTFP and the AIS.

Discussion: Our evidence suggests that the AIS innovation improves the AGTFP 
and can have positive spatial consequences in neighboring areas. Besides, 
human capital hinders AGTFP, accounting for the self-exploitation in agricultural 
production driven by the excessive labor force input. Our findings highlight the 
spatial impact of the AIS innovation on the AGTFP when greening agricultural 
production.
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1 Introduction

Agriculture has experienced a glorious development process in developing countries like 
China and has remarkable historical achievements. In China, not only has it fed nearly 20% 
of the world’s population with less than 9% of the world’s arable land, but it has also realized 
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the green transformation from traditional agriculture dominated by 
crop cultivation to modern agriculture with comprehensive 
development of agriculture, forestry, animal husbandry, and fishery. 
The central contradiction of agriculture has changed from insufficient 
total output to structural contradiction, and agricultural development 
has shifted from increasing production to improving quality (Yan, 
2019). While earning outstanding achievements, problems such as 
land occupation, external and internal pollution, water shortage, and 
so on cannot be ignored and gradually become factors restricting the 
sustainable development of China’s agricultural economy that land 
abandonment, rural hollowing out, and aging of the agricultural labor 
force is becoming increasingly prominent. Out of the severity of the 
high level of fertilizer and pesticide application, the overall situation 
of performing in an environment-friendly way in agricultural 
production is pessimistic, as most farmers have not adopted green 
technology in the cultivation process.

The “Opinions on Innovating System and Mechanism to 
Promote Green Development of Agriculture” is the first document 
of the CPC Central Committee on Green Development of 
Agriculture, which proposes for the first time the system of 
agricultural primary function and spatial layout, agricultural 
productivity layout, agricultural industrial structure (AIS), 
agricultural industry establishment of resource and environmental 
protection and utilization management and control, and 
agricultural green circular low-carbon production (Wang et al., 
2023). Zhang and Li (2022) pointed out that agriculture’s primary 
function and spatial layout are essential foundations and 
prerequisites for achieving green development. The high-tech 
information industry becomes the core technological force of 
economic growth, absorbs comprehensive talents, vigorously 
strengthens talent team building, increases people’s income and 
productivity, and provides help and support for the rational 
transformation of industrial development. In China’s AIS, creating 
a modern agricultural industrial technology innovation mode is 
the basic idea and best means to drive the transformation and 
development of the AIS (Jakku et al., 2022).

An essential controversial debate on the role of the AIS is how to 
effectively promote agriculture-economic growth with less input of 
fertilizers and pesticides and less undesired carbon emission output, 
which has always been the focus. Adopting technology from the AIS 
innovation improves agriculture efficiency through the innovation of 
technology and management, as well as urbanization and financial 
help, which positively affects long-term prospects (Ahmad et  al., 
2023). Whether clean or non-clean, technology has been seen as a 
valuable means with different significances. In contrast to non-clean 
technology, clean one is the primary factor responsible for reducing 
agricultural carbon emissions and improving agriculture efficiency 
following the environment-friendly benefits in the operation process 
(Awosusi et al., 2022). The achievements in the growth of agricultural 
green production are derived from the grain industrial agglomeration 
and the human capital via knowledge transfer (Gu et al., 2024; Wang 
and Long, 2024). In terms of the lifecycle of the agricultural 
production process, the promotion effect is weak in the early stage, 
slowly in the growth stage, and declining after the maturity stage 
(Wang F. et al., 2022).

Conversely, the negative externalities of the AIS have received 
relative research attention concerning resource loss (Wang F. et al., 
2022; Wang J. et al., 2024). For instance, the technology adoption 

following the AIS produces resource usage consumption and increases 
the carbon emission from agricultural cultivation, thus resulting in a 
rebound effect (Wang Y. et  al., 2022). Although the debate has 
highlighted the “green paradox” by the AIS, an emerging line of 
research has begun to assess the change and regional features of 
agriculture production efficiency and its spatial driver determinants.

As shown in the following, prior research exploring agricultural 
production efficiency has generally focused on the calculation 
method, index framework, and functional factors. Firstly, data 
envelopment analysis (DEA) is the most widely used method 
regarding the agricultural production efficiency evaluation method. 
For example, Yang (2021) analyzed the spatio-temporal evolution 
trend of water resource utilization efficiency in grain production in 
China based on the Malmquist index model; Cheng et  al. (2022) 
measured the grain production efficiency in Shaanxi Province based 
on the DEA-BCC model; Chen et  al. (2022) evaluated China’s 
agricultural production efficiency by using a gray correlation degree. 
Secondly, the evaluation index system is constructed from the 
perspective of agricultural input–output, with different viewpoints. 
Regarding input index selection, crop sown area, total agricultural 
machinery power, fertilizer application amount, irrigation area, and 
agricultural workers are included. Besides, output indexes commonly 
used include grain total output representing social benefits, total 
agricultural output value representing economic benefits, and carbon 
emission representing environmental benefits. Thirdly, the research 
on the factors affecting agricultural production efficiency mainly 
focuses on external factors. For example, Yang and Li (2022) analyzed 
the impact of agricultural socialized service connotation 
characteristics and related policy evolution on agricultural production 
efficiency improvement and agricultural reform development; Liu 
et al. (2019) examined the effect of farmland transfer on technical 
efficiency in grain production. (4) Research object of agricultural 
production efficiency.

The existing research perspectives are diverse and rich in content, 
but some shortcomings have not been addressed. First, the widely 
used DEA-BCC model can only distinguish between effective and 
ineffective DMUs and cannot further measure the efficiency value of 
effective DMUs. Second, the research scope is concentrated on the 
macro and meso levels, and there is insufficient analysis of the 
efficiency differences of prefecture-level cities within the province, 
which weakens the practical guidance significance of the research 
results; finally, the research on the factors affecting agricultural 
production efficiency mainly focuses on external factors, and there is 
a lack of research on internal factors. This paper employed prefecture-
level cities in Guangdong, China, as the research object and used 
DEA-Malmquist to analyze the redundancy situation of agricultural 
production factors and the internal differences in agricultural 
production efficiency based on the DEA-BCC model. Thirdly, in terms 
of identifying the spatial structure effect, the Spatial Durbin Model 
was used to analyze the internal factors affecting agricultural 
production efficiency to provide practical guidance for improving the 
green transformation of agricultural production in Guangdong, China.

There are more macro-level studies on the national and provincial 
levels and less analysis on the efficiency differences of prefecture-level 
cities within the province, which weakens the practical guidance 
significance of the research results. Our study fills this gap based on 
our knowledge of Guangdong, China, where AIS innovation was 
created to allocate agricultural resources. Unlike most studies that 
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compare agricultural TFP among 31 provinces in China, the 21 
prefecture-level cities in Guangdong were assessed as the research 
object with the measurement of the agricultural production efficiency 
of each city more objectively. Beyond the previous studies that used a 
single method to calculate agricultural production efficiency and 
inspected the relationships among various research topics, both 
DEA-BCC and DEA-Malmquist were used to jointly analyze the 
agricultural production efficiency of Guangdong and evaluate the 
efficiency of each city as well as the progress regulation space and 
angle. The most notable difference between the prior works exploring 
agriculture production and the prior works exploring agriculture 
production is that spatial geographic factors were considered for 
analyzing the possible spatial correlation and spillover effects of 
agricultural production efficiency among cities in Guangdong using 
the spatial Durbin Model.

The rest of this paper is constructed into four aspects. Section 2 is 
the literature review. Next is the theory model. The following is the 
empirical method and data source. The results and discussions are 
reflected in Sections 5 and 6. Section 7 provides the conclusions, 
recommendations, and limitations.

2 Literature review

There is wide attention on agricultural productivity focused by 
scholars, including the characteristics of agriculture production, the 
involvement of agricultural input and output, the economic growth of 
the agricultural sector, and the measurement of agricultural 
productivity or its determinant (Qiao et al., 2019; Chen et al., 2020; 
Chen Y. et al., 2021; Praveen et al., 2022). According to the endogenous 
growth theory, which takes total factor productivity (TFP) or green 
total factor productivity (GTFP) as the backbone of agriculture-
economic growth (Alzeban, 2018), agricultural productivity is 
characterized by TFP or GTFP. The former measurement omits more 
environment-related elements in the production, which cannot 
identify the undesirable output. In contrast to TFP, GTFP can 
accurately reflect the green transformation of agricultural production.

Agricultural GTFP (AGTFP) can generally be understood as 
agricultural TFP calculated by adding environmental factors, where 
environmental factors are mainly undesirable outputs, such as 
agricultural non-point source pollution or agricultural carbon 
emission (Wang H. et al., 2022; Xu et al., 2022; Wang et al., 2023). 
Huang and Rozelle (2018) found that China’s agricultural TFP grew 
5.3 percent from 1978 to 2017. Fuglie and Rada (2018) found that 
agricultural TFP accounts for 61.4 percent of agricultural economic 
output based on the estimation of provincial data from 1978 to 
2013 in China. For China, the data assessment from 1978 to 2016 
shows that agricultural production slowed after 2009, suggesting 
emerging challenges exist (Sheng et al., 2019). Chen Y. et al. (2021) 
suggested that slower AGTFP is due to the superior external 
environment’s restriction of poor management efficiency. Along 
with this, governance management involves the process of 
agricultural operations in China.

As environmental degradation can threaten agricultural 
production, numerous studies have shown that governance 
management can decrease resource use efficiency (Ma et al., 2023; 
Zhang et al., 2023). Due to the constraints of agricultural methane 
emission, despite the benefit for agricultural efficiency from fertilizer 
use and farm machinery, effective management and agri-policy can 

be implemented (Praveen et al., 2022; Hamid et al., 2023), which is an 
essential factor (Xie and Huang, 2021). Although agricultural 
governance management has risen as a national strategy, the specific 
practice has not achieved the expected results. The reason for this is 
that the rural living environment is relatively closed, and the cultural 
quality of farmers is not high, which leads to limited access to 
information and understanding of farmers and insufficient knowledge 
of environmental regulatory policies and green production technology 
(Li et al., 2020). And the “acquaintance society” naturally forms social 
connections. The interaction between farmers creates a relatively 
stable social system. It provides the action function of “herd 
(imitation) effect” and “mutual protection,” which avoids the external 
supervision and accountability of environmental pollution to a large 
extent and then adopts the extensive production mode, curbing the 
performance of the environment-friendly way in rural areas (Zheng 
and Luo, 2022; Zhang et al., 2023).

The research on greening agricultural production related to the 
AIS can be rooted in two-strand literature. One is the technological 
advancement that performs the roles to achieve a leap forward for 
agriculture operations (Xiao et al., 2022; Baig et al., 2024). Evidence 
from wheat production in India shows that technological factors, 
especially technological innovation, dominate agricultural production 
and can mitigate the adverse effects of climate change (Baig et al., 
2020, 2023). The argument that technological innovation positively 
impacts AGTFP using provincial data in China has also been verified 
(Liu D. et al., 2023). Another is the industrial structure that generates 
the “Green Paradox” (Wang X. et al., 2022). For instance, the industrial 
structure performs the catalytic effect on the AGTFP yet decreases 
agricultural efficiency through the increase in energy consumption 
(Wang X. et  al., 2022). When the industrial structure reaches the 
maturity stage, agricultural efficiency will exist (Wang X. et al., 2022). 
In general, most studies emphasize the driver determinants of AGTFP, 
such as governance management, technological innovation, and 
industrial structure, yet the analysis on the linkage between the AIS 
and the AGTFP.

As this brief review indicates, the studies highlight the change for 
the AGTFP and the need to transform from extensive to intensive. 
There is a lack of attention on the consideration of East China, such as 
Guangdong, given the role of the AIS despite the achievement of green 
production from industrial structure regulation. Due to the spatial 
heterogeneity in regional areas, the change for the AGTFP in 
Guangdong China is not equaled to that in the provincial dimension 
across China. Respectively, the spatial effect of the AIS on the AGTFP 
has received limited attention in previous studies (Wang F. et al., 2022; 
Liu D. et al., 2023). Hence, there is room for improving the accuracy 
of identifying the role of the AIS. Our study revisited the regional 
change of the AGTFP and the spatial effect of the AIS using the 
prefecture-level city data in Guangdong, China, with the 
Malmquist-DEA method and the Spatial Durbin Model, thus 
providing the practices on greening the agricultural production and 
shapes the structure dimension of the change of the 
agriculture efficiency.

3 Theory model

The two-sector growth model was built considering the urban and 
rural sectors, meeting the Cobb–Douglas production functions. If 
time t  is uninterrupted and t ≥ 0, the households’ preferences with the 

https://doi.org/10.3389/fsufs.2024.1384358
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Zhang et al. 10.3389/fsufs.2024.1384358

Frontiers in Sustainable Food Systems 04 frontiersin.org

consumption of agricultural goods, c ta ( ), and non-agriculture ones, 

c tm ( ) are reflected as 
0

∞
−∫ ( ) ( )( )e u c t c t dtt

a m
ρ

, , where 
u t , t wln t ³ w tc c c ca m a m( ) ( )( ) = ( ) −( ) + −( ) ( )( )1 ln  with the rate of 
the preference ρ > 0, the weight of agricultural goods w > 0, and the 
subsistence of ones γ > 0. Considering the production meets Cobb–
Douglas technology, no matter whether urban sector or rural one, the 
sectorial function can be denoted in Equations (1-3):

 c t A t k t l ta a a
a
a

a( ) = ( ) ( )  ( ) (1)

 
k A t k t l t c t v k tm m

a
m m

m= ( ) ( )  ( ) − ( ) − +( ) ( )δ  (2)

 k t( ) = ( ) ( ) + ( ) ( )l t k t l t k ta a m m  (3)

where δ > 0 and v > 0  are the depreciation rate and the growth 
rate of labor; the capital share aiand its ratio k ti ( ) are accessed; l ti ( ) 
is the employment share, l t l ta m( ) + ( ) =1.

Consider the choice made by policymakers based on the sequences 
c t c t k t k t l t ta m a m a( ) ( ) ( ) ( ) ( ) ≥{ }, , , , : 0 , given k t Bk ta m( ) = ( )  and 
B a a a aa m m a= −( ) −( )1 1/ , the Equation 4 imply:

 k t B l t k ta m( ) = −( ) ( ) +  ( )1 1  (4)

Assess the allocation between the consumption and capital ratio 
for the urban sector meets the standard Euler equation:

 

c t
c t
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m
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1 ρ δ
 

(5)

The normalization of non-agriculture goods consumption and the 

assessment of capital ratio is c t c Am m m
am



( ) = − −( )1 1/  and 
k k Am m m

am


= − −( )1 1/ . The AIS in the urban sector is exogenous 

compared to that in rural area, 
A t
A t
m

m
m



( )
( )

= µ . Let g am m m= −( )µ / 1 , 
then we get the Equation 6:

 k k l c v g km m
a

a m mm
 

= −( ) − − + +( )−1 1 δ  (6)

In the steady state, the Equation 5 is that:

 a k v gm m
a

mm − = + + +1 δ ρ  (7)

So, the rural employment share is that:
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(8)

Combined with Equations 7, 8, due to k t Bk ta m( ) = ( ) , the 
growth rate of agricultural production increases at a δ ρ+ + +v gm  
level when the AIS is innovated. When the clean technology by 
the AIS is adopted, gm  increases, which determines the green 

transformation of agricultural production. It is mentioned that 
AIS leads to different sub-sectors within the industry, drastic 
changes in product structure among enterprises, and changes in 
the input structure of production factors (Alhassan, 2021; Liu 
et  al., 2021; Tillaguango et  al., 2021; Qin et  al., 2022). In the 
process of AIS innovation, especially in structural upgrading, 
sectors or products with high added value and high technology 
intensity will occupy a favorable position, driving the 
technological progress of other sub-industries and improving 
agricultural efficiency.

4 Empirical method and data source

To estimate the agricultural efficiency, the input on capital and 

labor can be reflected dk
k
= ( )

=
∑
i

N
i i is dk k

1

/  and dl
l

s dl l
i

N
i i i= ( )

=
∑
1

/ . With 

the above construction, the places are more significant on the change 
of the AIS. Agricultural efficiency is characterized by the AGTFP 
using the DEA Model following the Solow residual approach (Solow, 
1957). A few studies calculated the change in agricultural technology 
and ATFP using the stochastic frontier approach (SFA) as a parametric 
method (Wang Q. et al., 2012; Zhang, 2021). Compared with the SFA, 
the DEA does not set a production function as is suitable for the 
multi-input and –output, a nonparametric method, modeling the 
production frontier for the productivity efficiency referring to the 
Malmquist index by Chung and Fare (1997) with the consideration for 
the undesirable output such carbon emission (Zhang, 2021).

4.1 Agricultural total factor productivity 
estimation model

A Malmquist index is an indicator based on the input–output 
relationship, which uses panel data to calculate total factor productivity 
change (tpch), technological change (techch), pure technical efficiency 
change (pech), and scale efficiency change (sech) (Li et al., 2015). 
Combined with DEA, it is widely used to evaluate industrial and 
agricultural production productivity changes. Assuming that x yt t,( ) 
is the input and output in period t, and x yt t+ +( )1 1,  is the input and 
output in period t + 1, the change of input–output from period t to 
period t + 1 is the total factor productivity change (tfpch); the ratio of 
two different distances between the decision making unit (DMU) 
production frontier and the actual output is the Malmquist index, 
which is also the total factor productivity change (tfpch). When the 
scale returns are constant, the Malmquist index of real factor 
productivity change (tfpch) can be expressed as:

 

M
D x y

D x y

D x y

D x y
t t

t t t

t t t

t t t

t t t
, +

+ + + + +

+
=

( )
( )

×
( )
( )

1

1 1 1 1 1

1

,

,

,

,
 

(9)

If the Malmquist index is greater than 1, the improvement in total 
factor productivity is evident. If the index is less than 1, the 
deterioration of total factor productivity emerges; if the index is equal 
to 1, total factor productivity remains unchanged. To illustrate the 
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contribution of technical efficiency change and technological change 
to total factor productivity, Equation 9 can be decomposed as follows:

M
D x y

D x y

D x y

D x y
t t

t t t

t t t

t t t

t t t0

1 0

1 1 1

0

0

0

1

, +
+ + +

+
=
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( )

×
( )
( )

×
,
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,
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t t t

t t t
0

1 1

0

1 1 1

+ +

+ + +

( )
( )

,

,
 

(10)

The first term in Equation 10 is the technical efficiency change, 
and the second is the technological change. When the scale returns are 
variable, the total factor productivity change (tfpch) also has the 
contribution of scale economy, and the Malmquist index further 
develops as follows:

M t t
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Dn
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1 1
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,
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(11)

The first and second terms in Equation 11 are the decomposition 
of the first term in Equation 10, which shows that when the scale 
returns are variable, the change in technical efficiency is caused by the 
joint effect of pure technological efficiency change (pech) and scale 
efficiency change (sech), which can be called comprehensive efficiency 
change (effch). Therefore, total factor productivity change (tfpch) can 
be decomposed into pure technical efficiency change (pech), scale 
efficiency change (sech), and technological change (tech), expressed 
by the formula as denoted in the Equation 12:

 tfpch effch tech pech sech tech= × = × ×  (12)

The Malmquist index in the DEA method is a crucial method 
widely used in the nonparametric DEA method to measure total 
factor productivity. Therefore, this paper mainly uses DEA-Malmquist 
to measure the utilization efficiency of an agricultural green total 
factor in Guangdong Province.

4.2 Spatial Durbin Model

Based on the measurement of the AGTFP of each city in Guangdong, 
China, this paper selects the innovation of AIS in Guangdong Province 
as the explanatory variable and studies the impact of the AIS innovation 
in Guangdong China on the AGTFP in the province. The econometric 
equation is as denoted in the Equation 13:

 TE IND x= + + +β β γ ε0 1  (13)

where the TE is the agricultural production efficiency, IND  the 
agricultural industrial structure change, Xi the control variable; β0, β1
, and γ  are the parameters to be estimated, and ε  the residual term of 
the OLS model.

The spatial commonality of adjacent regions is greater than 
that of distant areas, and there are spatial interactions and 

spillover effects. The correlation coefficient between the error 
term and the explanatory variable of the OLS model is not equal 
to 0, which will cause bias in the OLS regression coefficient. The 
spatial weight is added to the econometric model to correct the 
classical regression model, and the model expression is as denoted 
in the Equation 14:

 
TE W TE N In= × × + ( )ρ ε ε σ, ~ 0

2
,

 
(14)

where W  is the spatial distance standardized weight matrix, In the 
unit matrix, σ  the standard deviation of the residual, n the dimension 
of the spatial matrix, and the parameter ρ  the spatial lag coefficient. 
The ′W  is the transpose matrix of the spatial distance standardized 
weight matrix, TE′  the transpose matrix of the column matrix of the 
observed values of AGTFP of prefecture-level cities, and the parameter 
ρ  estimated by the Equation 15:

 
ρ = ′ × ′( ) ×( )




− × ′×( )TE W W TE TE W TE,

 
(15)

The function is constructed by using the maximum likelihood 
estimation method as presented in the Equation 16:

 

L TE I W
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n n|ρ σ
πσ
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σ
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,

exp

/
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Where TE W TE− × ×( )ρ  is the transpose matrix of 
TE W TE− × ×( )ρ , and the estimate of the independent variable can 

be  obtained by finding the maximum value of the function. The 
Spatial Lag Model (SLM) and the Spatial Error Model (SEM) can 
eliminate the spatial interaction. However, the SLM and SEM may 
exist simultaneously in the regression model, affecting the estimation 
of the relevant parameters of the regression model. The Spatial Durbin 
Model (SDM) is constructed to test the spatial spillover effect of AIS 
innovation on AGTFP of prefecture-level cities. The model is as 
presented in Equations 17 and 18:

 

TE W TE RLM X
W RLM WX

it it it it
it it i t it

= × × + + +
× × + + + +

ρ β γ
β ϑ µ θ ε

1

2  (17)

 ε ρ τit jt itW TE= × × +  (18)

where β1, γ , and ϑ are the parameters to be estimated; ε  and τ  the 
residual term following a standard normal distribution. The model 
evolves spatial fixed effects ∝i  and time fixed effects θt; subscript i 
denotes the i − th prefecture-level administrative region, subscript j  
denotes the j − th  prefecture-level administrative area, and subscript 
t represents the t − th  year. By decomposing the estimation 
results of AIS innovation on AGTFP of prefecture-level cities into 
direct effect, indirect effect, and total effect, they are, 
respectively, fii i imW TE IND( ) = ∂ ∂/ , fij i jmW TE IND( ) = ∂ ∂/ ,  
and Total f= ( ) + ( )ii ijW f W .
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4.3 Variable

This paper takes 2004–2022 as the research period, and the data 
are from the Guangdong Rural Statistical Yearbook (2005–2023), 
Guangdong Statistical Yearbook (2005–2023), China City Statistical 
Yearbook (2005–2023), and Statistical Yearbooks of various cities in 
Guangdong Province (2005–2023). The data from multiple statistical 
yearbooks are matched and merged by city name, and the samples 
with more missing indicator values are deleted. Some missing data are 
supplemented by the linear interpolation method, and panel data of 
21 cities in Guangdong Province from 2004 to 2022 are obtained.

Dependent variable: AGTFP. Based on the research of Praveen 
et al. (2022) and Baig et al. (2024), environmental pollution, energy 
consumption, cultivated land area, and total water consumption are 
evolved in the total factor productivity accounting framework system, 
and the DEA-Malmquist productivity index method in data 
envelopment analysis is used to measure the AGTFP index in 
Guangdong Province. In this paper, the total factor productivity is 
calculated by cumulative value. First, the total factor productivity 
value in 2002 is set at 1, then used as the benchmark value. Each year’s 
total factor productivity values are multiplied by the Malmquist index 
value of the previous year and then converted into cumulative values 
as empirical data, which is also the common practice of existing 
literature (Wang Y. et al., 2022).

The selection of input and output indicators is defined as follows: 
(1) Input variables: taking agriculture as the research object, seven 
input indicators are selected: agricultural machinery, land, fertilizer, 
irrigation, labor force, pesticide, and agricultural film. Among them, 
the agricultural machinery indicator is the total power of agricultural 
machinery, and the unit is ten thousand kilowatts; the land indicator 
is cultivated land area, the unit is a thousand hectares; the fertilizer 
indicator is annual fertilizer application amount (pure amount), the 
unit is ten thousand tons; irrigation indicator is annual actual effective 
irrigation area, the unit is a thousand hectares; labor force indicator is 
agricultural workers, considering that official statistical data do not 
provide agricultural labor force data, according to the common 
practice in academia, it is represented by multiplying the number of 
workers in agriculture, forestry, animal husbandry, and fishery by the 
proportion of agricultural output value in agriculture, forestry, animal 
husbandry, and fishery, the unit is ten thousand people; pesticide 
indicator is pesticide consumption, unit is ton; agricultural film 
indicator is agricultural film consumption, unit is ton. Considering 
the data availability and the decreasing role of draft animals, the input 
indicators do not include draft animals’ input. (2) Output variables: 
including expected output and unexpected output. The expected 
output variable is the total agricultural output value, and the unit is 
$13.79 million. As carbon emission represents the output of 
agricultural cultivation on the environment (Gu et  al., 2024), the 
unexpected output is measured by agricultural carbon emission in 
units of ten thousand tons. Agricultural carbon emission sources are 
diversified and complex. The carbon emission directly generated by 
six categories of fertilizer, pesticide, agricultural film, agricultural 
irrigation, agricultural tillage, and diesel in the agricultural production 
process is mainly calculated.

The core explanatory variable is the proportion of the primary 
industry GDP structure (ind). The AIS is explained from the 
perspectives of rationalization and advancement. The former claims the 
resource allocations of various sectors in the agricultural industry chain, 

and the latter focuses on the structure transformation of the agricultural 
sector (Wang F. et  al., 2022). When selecting the indicators of AIS 
innovation, this paper considers that the agricultural carbon emissions 
measured in this paper mainly come from the planting industry, and 
the scope of labor input and output statistics is the primary industry, so 
it chooses the output structure of the primary sector as the explained 
variable, that is, it selects the output of the primary sector and its 
proportion in the total production of the three industries.

The studies on the determinants of the AGTFP have found that 
natural resource endowment, government industrial policy, 
agricultural technology diffusion, and spillover are vital factors 
(Polyzos et al., 2007; Han et al., 2018; Wang X. et al., 2022). Referring 
to a large number of literature studies (Shao et al., 2023), this paper 
selects the control variables according to their methods and combines 
them with the research content of this paper. The control variables 
we focused on are government intervention, economic development, 
information level, education, regional openness, scientific technology, 
and human capital. The reason for the chosen government 
intervention is that the Chinese government emphasizes the decisive 
role of the market in resource allocation, and the objective existence 
of local government “GDP competition” will inevitably impact 
economic growth. Hence, the proportion of government fiscal 
expenditure to GDP is selected to denote government intervention 
(gov) in the economy. Regarding economic development (pgdp), each 
prefecture-level city’s real per capita GDP is selected. In response to 
the information that promotes the exchange between industries, the 
per capita postal and telecommunication volume is used to measure 
the information level ( fin) of each prefecture-level city’s administrative 
region. Out of the prefecture-level city’s culture, education (edu), 
regional openness ( fdi), scientific technology (tech), and human 
capital (lab) are the significant factors affecting the production (Gu 
et al., 2024). Fiscal input and expenditure on education were selected. 
The regional openness is characterized by foreign capital that year and 
scientific technology by fiscal spending on scientific and technological 
innovation. Additionally, the proportion of employed persons in the 
primary industry and the total number of employed persons in three 
sectors is selected as the indicator of human capital.

5 Results

5.1 Analysis of AGTFP in Guangdong, China

The AGTFP of each city in Guangdong Province from 2004 to 
2022 was calculated as shown in Figure  1. The AGTFP of 
Guangdong Province from 2004 to 2022 showed a wave-like 
superimposed trend. The lowest productivity in the measured 
period was 0.952 in 2008–2009, followed by three consecutive years 
of rising from 2009 to 2012, reaching the second highest point of 
1.159. After that, it has been showing a “decrease–increase-decline-
slow” state, and it was 1.077 in 2022, slightly improved compared 
with 1.021 in 2003. The AGTFP has varied at an approximate rate 
of 2 percent a year since 2012. The average AGTFP of 1.064 is lower 
than that of 1.165 measured by Peng et  al. (2020), which may 
be mainly due to the large outflow of agricultural workers and the 
reduced cultivated area (Table 1).

The DEA-BCC and DEA-MALMQUIST methods were applied to 
measure the AGTFP of each city in Guangdong, China, from 2013 to 
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2022. The results are shown in Table 2. Overall, the average AGTFP in 
each town in Guangdong, China, is 1.065, which is higher than 1, 
indicating that the overall AGTFP of Guangdong, China is relatively 

high. Among them, the average pure technical efficiency is 0.963, 
higher than the average scale efficiency of 0.845. From the perspective 
of coefficient of variation, the “SE < PTE < TE” indicates less difference 

FIGURE 1

Changes in the AGTFP in various cities of Guangdong, China, from 2004 to 2022.

TABLE 1 Input–output indicators of AGTFP.

Description Mean Std.

Output indicators
Expected output Gross agricultural production value/$13.79 Million 89.88 77.06

Non-expected output Carbon emission/10,000 tons 16.47 10.79

Input indicators

Mechanical input Total power of agricultural machinery/10,000 kW 103.96 77.50

Land input Cultivated land area/1,000 hectares 126.61 98.41

Fertilizer input Fertilizer application /10,000 tons 11.08 9.59

Irrigation input Effective irrigated area/1,000 hectares 92.72 51.19

Labor input Agricultural employees/10,000 people 34.66 24.93

Pesticide input Pesticide usage/tons 4881.03 3459.52

Agricultural film input Agricultural film usage/tons 1839.75 1237.58

TABLE 2 Descriptive statistics of variables.

Variable Obs. Mean Std. Min Max

gtfp 399 1.09 0.38 0.36 3.98

lnind 399 13.40 9.72 0.30 40.60

lnlab 399 34.29 19.19 0.85 71.31

gov 399 11.62 6.35 2.18 40.10

lnpgdp 399 11.54 0.99 9.98 13.66

lnfin 399 8.79 1.051 6.86 11.32

tech 399 10.80 2.15 6.73 15.17

fdi 399 12.22 1.10 10.36 14.35

lnedu 399 11.68 1.31 9.36 14.35
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in scale efficiency among regions, while there is more difference in 
comprehensive technical efficiency.

The agricultural productions of eight cities consisting of Shenzhen, 
Zhuhai, Shantou, Foshan, Dongguan, Zhaoqing, Chaozhou, Jieyang, 
and Yunfu have reached DMU total efficiency, which can fully utilize 
the input factors in terms of agricultural production scale and 
technology level. As for the inefficient DMU, Shaoguan, Heyuan, and 
Zhongshan have scale efficiencies close to or equal to 1. In contrast, 
their pure technical efficiencies are low, indicating that the low level of 
technology is the main factor leading to the low efficiency of 
agricultural production in these three regions. Improving agricultural 
production technology and management should be  their future 
direction. Guangzhou, Maoming, and Zhongshan have pure technical 
efficiencies close to or equal to 1, but their scale efficiencies are low 
(Figure 2).

To clearly show the regional differences of AGTFP in Guangdong 
China, we divide Guangdong China into four regions: Pearl River 
Delta, Eastern Wing, Western Wing, and Mountainous Area. Among 
them, the Pearl River Delta region includes Guangzhou, Shenzhen, 
Foshan, Dongguan, Huizhou, Jiangmen, Zhongshan, Zhuhai, and 
Zhaoqing; the Eastern Wing region includes Shantou, Chaozhou, 
Jieyang and Shanwei; Western Wing region includes Maoming, 
Yangjiang and Zhanjiang; Mountainous Area region includes 
Shaoguan, Meizhou, Qingyuan, Heyuan and Yunfu. As can be seen 
from Table 3, the regional imbalance of AGTFP in Guangdong China 
is not apparent, and the overall AGTFP shows a pattern of “Pearl 
River Delta region > Eastern Wing region > Western Wing 
region > Mountainous Area region.” Among them, the AGTFP of the 
Pearl River Delta region shows a slightly downward fluctuating trend; 
the AGTFP of the Mountainous Area and Eastern Wing regions shows 
a somewhat upward fluctuating trend; the overall fluctuation trend of 
AGTFP in the Western Wing region remains unchanged. However, 
the growth level of AGTFP in the Mountainous Area and Eastern 
Wing regions is lagging behind the provincial average level, and the 
improvement of green technical efficiency is still not ideal.

5.2 Spatial autocorrelation test

The selection of the spatial weight matrix is based on the spatial 
weight matrix embedded in economic geography, and the spatial 
weight matrix is row-standardized. The relevant data are from 21 cities 
in Guangdong Province, and the related operations are performed.

To analyze whether AGTFP has spatial dependence, the LM test 
was employed to inspect its spatial correlation. The Global Moran’s 
I index of AGTFP from 2004 to 2022 is 10.963, and the p value is 0.000, 
which significantly rejects the null hypothesis at the 1% confidence 
level, indicating that it has a spatial error. The LM index is 3.149, and 
the p value is 0.076, rejecting the null hypothesis at the 10% confidence 
level, indicating that it has spatial lag; both the SEM and SAR models 
are suitable, so the SDM is applied to conduct comprehensive test. The 
global Moran’s I homogenizes the differences among cities and cannot 
reflect the local spatial correlation of AGTFP in each city. Therefore, a 
regional spatial correlation analysis is conducted. We  selected the 
annual data from 2004 to 2022 and calculated the local Geary’s C to 
obtain each year’s local spatial correlation situation. The test results are 
shown in Table 4. The Geary’s C are all significant. Therefore, the test 
results preliminarily indicate spatial autocorrelation among AGTFP in 
various cities in Guangdong, China.

5.3 Spatial Durbin Model spatial effect 
results

The SDM is used to analyze the spatial spillover effect of AGTFP 
in Guangdong, China, for regression operation. The regression results 
are shown in Table 5.

According to the estimation results in Table 5, the R-square result 
is 0.5603, and the log-likelihood value is significant, indicating the 
model has high fit and reliability. The p-value of the spatial autoregressive 
coefficient λ is 0.080, compelling at the 10% level, and its coefficient is 
0.296, which is positive. The study shows regional externalities impact 

FIGURE 2

Decomposition and index of green total factor productivity of agriculture in four regions of Guangdong Province from 2004 to 2022.
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AGTFP, while previous studies often ignore regional externalities (Liu 
Y. et  al., 2023). When studying AGTFP in Guangdong Province, 
location factors and the influence of spatial effects cannot be ignored. 
From the β values statistically in Main, the p-value of lnlab is significant 
at the 1% level. Apart from these, the fdi, lnind, and lnpgdp are effective 
at the 5% level, while lngov , tech , and lnedu  are not substantial. The 
coefficient of lnlab is −0.096, indicating that lnlab harms AGTFP while 
the rest performs a positive effect. The Wx term can better explain the 
spatial transmission effect than the coefficient of a local variable. The 

p-values of Wlnind , Wlnedu , and Wlngov  are 0.009, 0.022, and 0.053, 
respectively, indicating they are significant at the 1, 5, and 10% levels. 
The coefficients are 0.743, 0.140, and −1.704, respectively, meaning that 
lnind  and lnedu  have positive spatial spillover effects, and the 
surrounding areas have a positive transmission effect on the locally 
explained variable AGTFP. The coefficient of lngov  is negative. As a 
result, the AIS innovation and the expenditure on education have a 
positive spatial effect on AGTFP’s economic development. Regarding 
the direct effect, AIS, technology, economic development, regional 

TABLE 3 Results of agricultural production efficiency measurement of 21 cities in Guangdong, China, from 2013 to 2022.

DMU AGTFP TE PTE SE RTS

Guangzhou 1.059 0.933 0.994 0.938 drs

Shenzhen 1.034 1.034 1.000 1.000 –

Zhuhai 1.101 1.000 1.000 1.000 –

Shantou 1.087 1.000 1.000 1.000 –

Foshan 1.087 1.000 1.000 1.000 –

Shaoguan 1.056 0.690 0.691 0.998 irs

Heyuan 1.047 0.675 0.678 0.996 irs

Meizhou 1.075 0.538 0.576 0.934 drs

Huizhou 1.062 0.817 0.861 0.948 drs

Shanwei 1.055 0.756 0.776 0.974 drs

Dongguan 1.091 1.000 1.000 1.000 –

Zhongshan 1.087 0.874 0.882 0.991 irs

Jiangmen 1.019 0.594 0.678 0.877 drs

Yangjiang 1.086 0.825 0.838 0.985 drs

Zhanjiang 1.053 0.577 0.816 0.707 drs

Maoming 1.072 0.946 1.000 0.946 drs

Zhaoqing 1.080 1.000 1.000 1.000 –

Qingyuan 1.047 0.673 0.699 0.963 drs

Chaozhou 1.050 1.000 1.000 1.000 –

Jieyang 1.048 1.000 1.000 1.000 –

Yunfu 1.039 1.000 1.000 1.000 –

Mean 1.065 0.845 0.874 0.963

Std. 0.021 0.167 0.145 0.069

Cov. 0.020 0.198 0.166 0.071

TABLE 4 Results of Geary’s C test from 2004 to 2022.

Year Geary’s C p-value Year Geary’s C p-value

2004 0.736 0.452 2014 0.870 0.660

2005 1.091 0.521 2015 1.394 0.406

2006 1.207 0.496 2016 1.354 0.391

2007 0.865 0.650 2017 1.480 0.074

2008 1.190 0.612 2018 1.257 0.662

2009 1.200 0.477 2019 0.359 0.388

2010 1.376 0.510 2020 1.090 0.798

2011 0.672 0.218 2021 1.221 0.618

2012 1.083 0.750 2022 1.351 0.263

2013 0.646 0.353
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openness, and education expenditure can positively affect the AGTFP, 
whereas human capital transfer negatively affects AGTFP.

6 Discussion

The AGTFP was calculated using Malmquist-DEA with the data 
covering Guangdong from 2004 through 2022, showing a fluctuating 
growth trend with an average value of 1.068 from 2004 to 2022. 
Technological progress is the main driving force behind the 
improvement of AGTFP in Guangdong, China. Among them, before 
2007, the inter-annual changes in the technological progress index 
were relatively smooth, and after 2007, especially from 2013 to 2019, 
the inter-annual differences in the technological progress index 
fluctuated wildly. On the contrary, the overall fluctuation of technical 
efficiency is relatively smooth, with an average annual growth of 
1.74%. Generally speaking, at this stage, the growth of agricultural 
GTFP in Guangdong Province is continuously improving, and its 
growth mainly depends on technological progress. The inhibitory 
effect of technical efficiency is pronounced, which is consistent with 
the research results (Wang Y. et  al., 2019; Wei et  al., 2021; Yang 
et al., 2022).

Presenting the regional change of each prefecture-level city 
toward the AGTFP is an essential issue in identifying the regional 
balance of agricultural efficiency with the method of DEA-BCC. It 
is noted that Zhongshan is in the stage of increasing returns to scale, 
while Guangzhou and Maoming are in decrease, indicating that 
Zhongshan can appropriately expand the scale of agricultural 
production to improve efficiency. At the same time, Guangzhou and 
Maoming need to reduce their agricultural output’s scale adequately. 
Respectively, Jiangmen and Zhanjiang have low pure technical and 
scale efficiency and need to improve from both aspects of improving 
technology level and appropriately expanding agricultural 
production scale. Regarding the spatial distribution of agricultural 
production efficiency, DMU effective regions are primarily 
concentrated in eastern Guangdong and Pearl River Delta regions, 
while the production efficiency in western Guangdong and northern 
Guangdong areas still needs improvement.

Furthermore, the regional imbalance heterogeneity in Guangdong 
has been verified, characterized as “Pearl River Delta > Eastern 

Wing > Western Wing > Mountainous Area.” The reason for this can 
be attributed to the “dual-wheel” drive of green frontier technological 
progress and green technical efficiency that leads to the mismatch with 
the agricultural production resources in the distribution of regional 
areas (Li et al., 2023). Out of the advantageous locater nearer to Hong 
Kong and Macao, the achievement of agricultural production has 
formed an outward-oriented green technology-driven management 
model. However, the agriculture-economic scale of Eastern Wing, 
Western Wing, and Mountainous is relatively tiny and poses severe 
constraints on greening the agricultural production, especially from 
the siphoning effect in the Pearl River Delta Area.

Using the Spatial Autocorrelation Test, we validated the spatial 
existence of the AGTFP. The changes in AGTFP are not randomly 
distributed but have a specific spatial dependence, accounting for the 
spatial proximity of geographical location. Due to geographical 
proximity, adjacent counties have similar natural resource conditions 
for agriculture, thus showing similar characteristics of agricultural 
production factor input, which promotes the existence of spatial 
correlation in AGTFP growth.

Assessments of the consequences of agricultural efficiency and its 
determinants following the perspective of the AIS using SDM have 
been designed. The AIS innovation has a positive effect on the AGTFP, 
as consistent with the finding that AIS reduces agricultural carbon 
emissions caused by raw materials (such as chemical fertilizer, 
pesticides, irrigation, etc.) (Liu et al., 2021; Hua et al., 2022; Yang et al., 
2022). With the emergence of new industries and new technologies 
through AIS, energy saving and emission reduction are promoted, 
improving agricultural productivity (Robertson and Swinton, 2005; 
Laborde et  al., 2021; Raihan et  al., 2022). Respectively, the AIS 
innovation can improve the AGTFP indirectly through the technology 
diffusion in neighbor areas, as found from the spatial positive effect of 
AIS in Table 5, indicating that AIS enhances network connection 
among neighboring regions (Chen A. et al., 2021; Jiang et al., 2022; 
Wu et  al., 2022). For agriculture that highly depends on natural 
resources, its consequence is that a change in AIS in an area will not 
only cause a change in local AGTFP but also form a competitive and 
cooperative interaction relationship within the agriculture industry 
between regions and surrounding regions (Duranton and Puga, 2000; 
Chang et al., 2022; Liu D. et al., 2023), then neighboring regions’ 
AGTFP will also change accordingly.

TABLE 5 SDM model based on the regression results of AGTFP in Guangdong, China.

Main p-value Coeff. Wx p-value Coeff.

lnind 0.049 0.153 Wlnind 0.009 0.743

lnpgdp 0.035 0.461 Wlnpgdp 0.661 0.215

lngov 0.230 0.261 Wlngov 0.053 −1.704

tech 0.072 0.001 Wtech 0.221 −0.04.

fdi 0.062 0.007 Wfdi 0.195 0.022

lnedu 0.345 0.019 Wlnedu 0.022 0.140

lnlab 0.003 −0.096 Wlnlab 0.362 0.008

λ 0.080 0.296

R-square 0.5603

Log-L 81.0485

Obs. 399
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Apart from the promotion effect of the AIS innovation, the 
adoption of technology, economic level, and regional openness also 
improve the AGTFP. This finding also provides evidence for the 
agglomeration effect expounded by the central place theory and the 
new economic geography to some extent. Additionally, human capital 
transfer significantly inhibits local AGTFP, indicating that excessive 
labor force input might lead to self-exploitation in agricultural 
production, thus showing a sharp decline in marginal productivity. 
This spatial influence effect is positive but insignificant due to 
agricultural productive services being restricted by regional 
agricultural production factor market transaction costs and regional 
geographical barriers, affecting the efficiency of agricultural 
production factor allocation in various cities in Guangdong, China.

7 Conclusion, recommendations, and 
limitation

7.1 Conclusion

We revisit the change in agricultural efficiency and its 
determinants by considering the spatial features, emphasizing the 
innovative role of the AIS in the green transformation of agriculture 
cultivation. Following the existing literature on greening agricultural 
production, concerns are addressed about the adjusted change of 
agricultural efficiency, the driving force of the AIS, and the factors that 
help in neighboring areas. Our data allow us to address these concerns, 
assess the driving role of AGTFP, and thus identify the regional 
imbalance in greening agricultural production. Based on the panel 
data of 21 prefecture-level cities in Guangdong, China, from 2004 to 
2022, this paper calculates the AGTFP using DEA-BCC and 
Malmquist-DEA and studies the spatial spillover effect and regional 
difference of AIS innovation on AGTFP exploiting the Spatial 
Durbin Model.

The main findings are as follows: First, the AGTFP of Guangdong 
China from 2004 to 2022 shows a fluctuating trend and remains the 
steady growth line overall. The AGTFP of Guangdong Province 
increased from 0.968 in 2004 to 1.078 in 2022, with an average annual 
growth rate of 0.537%. After 2012, the AGTFP varies a “decrease–
increase-decline-slow” state and grows at 2 percent yearly. Moreover, 
the growth of AGTFP in Guangdong, China, is continuously 
improving, and its growth mainly depends on technological progress. 
The inhibitory effect of technical efficiency is noticeable.

Second, from the perspective of regional distribution, DMU 
effective regions are primarily concentrated in the eastern wing and 
Pearl River Delta regions, while the production efficiency in the 
western wing and mountainous areas still needs to be improved. From 
2004 to 2022, there has been a regional imbalance in the AGTFP 
within Guangdong, China, characterized as “Pearl River 
Delta > Eastern Wing > Western Wing > Mountainous Area.” The 
reason for the highest AGTFP of the Pearl River Delta region is its 
agricultural-economic scale, which is relatively more significant than 
other areas in Guangdong and plays a siphoning role due to its 
location nearer to Hong Kong and Macao.

Third, the estimation results of the spatial Durbin model show 
that the direct impact of agricultural the AIS innovation on 
agricultural GTFP in Guangdong Province is significantly positive at 
the 1% statistical level, indicating that AIS innovation can substantially 

improve the factor allocation efficiency of AGTFP among prefecture-
level cities in Guangdong China. From the perspective of spatial 
econometrics, neighboring cities’ AIS innovation has a significant 
spatial spillover effect on the agricultural production efficiency of 
local counties.

Apart from the increase in the role of AIS innovation, economic 
development, technology usage, and regional openness have a 
significant positive effect on AGTFP. Besides, human capital has a 
significant inhibitory impact, attributed to the self-exploitation in 
agricultural production that excessive labor force input brings. In 
neighboring cities, government intervention harms AGTFP, which 
could be promoted by spending on education.

7.2 Recommendations and limitation

The AIS innovation can be paid attention to while emphasizing 
the inter-industry change within the primary industry and the 
synchronous growth of corresponding labor productivity. The 
combination of market demand and policy guidance can 
be encouraged to ensure the reasonable development and structure 
optimization of each agriculture sub-sector and avoid the restriction 
of AGTFP improvement due to the self-exploitation from the excessive 
labor force input in agricultural operations. While promoting the 
refinement of local AIS, the complementary and coordinated 
development of AIS in neighboring areas can be encouraged to avoid 
unreasonable competition and spatial negative externalities caused by 
adjustment and a unified coordination mechanism among local 
governments to ensure a broader range of industrial structure macro-
control jointly.

To improve technology support and fiscal transfer payment, a new 
mechanism for communicating and coordinating government 
interests between regions needs to be  established. Due to the 
distinctive characteristics of “Pearl River Delta > Eastern 
Wing > Western Wing > Mountainous Area,” various measures to 
clarify the cities’ positioning in the green transformation of 
agricultural production are adopted to adapt to local conditions, 
namely weakening the “siphon effect” in the Pearl River Delta region 
and ensure the sustainable development of small and medium-sized 
cities. Because of the similarity of AGTFP between Eastern Wing and 
Western Wing, the exchanges between the two regional areas are 
strengthened to improve agriculture resource allocation and promote 
the AGTFP through the free flow of production factors. For the 
Mountainous Area, the support of the Pearl River Delta is enhanced 
to provide clean technological assistance for agricultural efficiency.

For most areas of agricultural green production, technological 
innovation can be strengthened to optimize the allocation of input 
factors, reduce agricultural carbon emissions, and increase the 
contribution rate of the AIS. Out of the positive spatial effect of AIS 
innovation, policymakers are advised to create practical institutional 
arrangements to deepen the promotion of technology and spillover. 
Technological innovation is encouraged to be  accelerated for 
ineffective areas of agricultural green production via the technical 
efficiency to promote intensive input factor utilization, reduce carbon 
emissions, and increase agricultural desirable output value.

Although we tried to assess the calculation of the AGTFP, its 
change features, and its determinants following the perspective of 
AIS innovation as comprehensively as possible, the current study 
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has certain limitations that should be noted. Due to the cultural 
difference and regional heterogeneity, our estimates focus on the 
changing trend of the AGTFP, on which the AIS innovation has, 
and fail to provide valuable information about other areas. 
According to the Rice Theory proposed by Talhelm et al. (2014), 
collectivism in southern China and individualism in the northern 
part shape different production behaviors and have differentiated 
demands for division of labor and cooperation in agricultural 
operations. Future work will consider the potential effects of 
cultural differences, such as collectivism and individualism, on the 
AGTFP to validate the kinds of greening of agricultural production 
that can be drawn from this study.
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