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Introduction: Coconut testa, a by-product of the coconut processing industry, 
is currently underutilised. This study aimed to extract a coconut testa-based 
food colourant using various organic solvents and physical methods, and to 
utilise this colourant in food product preparation.

Methods: Different organic solvents, along with various time and temperature 
combinations, were employed for colourant extraction using both a laboratory-
scale water bath and ultrasonication. The colour coordinate values (CIELab) of 
the testa-derived colourants were measured, and the colourants were screened 
for various phytochemicals. The in vitro antioxidant potential of the testa 
colourant was assessed by quantifying total phenolics, and the phytochemical 
composition, including monomeric anthocyanins, was evaluated.

Results: The study determined the optimal combinations of organic solvents, 
temperature and time to obtain extracts with maximum antioxidant activity 
and total phenolic content (TPC). Acidified ethanol-based extracts of testa 
colourants yielded highest polyphenol content (154.39  ±  2.63  mg GAE/g) and 
flavonoids content (53.65  ±  0.62  mg QE/g). Similarly, ethanol-based extractants 
of coconut testa produced high anthocyanin content [823.02  ±  1.81  mg Cy-3-
glc equivalents (C3GE)/100  g]. Acidified (0.3  M HCl) solvents at relatively high 
temperature and time combinations exhibited high antioxidant potential of 
testa colourant, as measured by CUPRAC, FRAP, and DPPH assays. Following 
the foam mat drying process of the colourant, a mature coconut water-based 
jelly was prepared by incorporating the testa colourant extracted with acidified 
ethanol.

Discussion: This study highlights the biochemical and antioxidant potential of the 
food colorant derived from coconut testa and explores its suitability for functional 
food applications. Therefore, coconut testa extract serves a dual purpose: it 
enhances the aesthetic appeal of food as a colourant and provides significant 
health-promoting properties due to its high anthocyanin content. Insights from this 
study could help in promoting the valorization of one of the beneficial by products 
of coconut industry.
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1 Introduction

The food industry uses synthetic colourants to meet consumers’ 
sensory expectations, restore lost color, enhance existing color, or 
make food and beverages more appealing. However, these artificial 
colourants come with negative health and environmental 
consequences, posing toxicological risks to human health, including 
the development of allergies and tumours (Mota et al., 2023). On the 
other hand biocolourants refer to pigments, whether isolated or 
derived, sourced from nature, including plants, microbes, animals, 
and minerals. These biocolourants are used to add, preserve, or impact 
colour to a range of products such as foods, feeds, drugs, or cosmetics. 
The biocolourant category also encompasses naturally occurring 
pigments that are chemically synthesised on an industrial scale 
(Maronpot et  al., 2020). Plant-derived natural colorants, are 
increasingly popular in products like food and beverages (Thakur and 
Modi, 2022), due to safety concerns related to synthetic colourants 
and a growing consumer focus on health (Rodriguez-Amaya, 2016). 
Beyond their role in pigmentation, plant-derived colourants often 
serve as reservoirs of substances with nutraceutical properties 
(Shegokar and Mitri, 2012; Weiss et al., 2023).

Natural food colourants are primarily derived from fruits, 
vegetables, algae, and spices, such as turmeric, beetroot juice, potatoes, 
sweet potatoes, cabbages, and spirulina. These sources not only provide 
vibrant colours but also offer health benefits. Numerous natural 
colorants, rich in anthocyanins, carotenoids (such as beta-carotene from 
carrots, carrot oil, corn endosperm, and bell pepper Capsicum annuum 
L.), chlorophylls from alfalfa (Medicago sativa), curcuminoids from 
turmeric (Curcuma longa L.), betalains from beet (Beta vulgaris L.) 
powder, and carminic acid from cochineal (Dactylopius coccus) extract, 
have been successfully commercialised globally (Luzardo-Ocampo 
et al., 2021). Spirulina (Arthrospira platensis) recently received FDA 
approval for use in candy and chewing gum (Shkolnikov Lozober et al., 
2023). In addition to their sensory attributes, natural pigments often 
provide additional health benefits, including antioxidant properties and 
effects such as anticancer, hepatoprotective, antimicrobial, anti-diabetic, 
and anti-inflammatory activities (Manzoor et al., 2021).

Coconut (Cocos nucifera L.) is a versatile plantation crop that 
provides a range of products with significant nutritive potential 
(Ramesh et al., 2021; Ramesh et al., 2023a; Ramesh et al., 2023b). The 
coconut testa, also known as the mesocarp, is the brown covering of 
the coconut endosperm or kernel. The testa, a by-product of coconut 
milk, desiccated coconut powder, and virgin coconut oil production, 
is typically discarded despite its contribution of a brown colour to 
these products. In India alone, the confectionery and baking industry 
consumes around 40,000 tonnes of desiccated coconut annually 
resulting in an estimated 4,000 tonnes of underutilised testa. India 
hosts over 150 desiccated coconut powder production units, with a 
total production capacity of approximately 0.1 million metric tonnes. 
The production potential for coconut testa in India is estimated to 
be around 88,000 tonnes (Appaiah et al., 2014). Therefore, between 
4,000 and over 80,000 tonnes of testa remain underutilised in India. 
Biochemical analyses have revealed that testa is rich in nutritive 
phenolic acids (16) and flavonoids (12), showcasing substantial 
antioxidant potential and colourant potential (Arivalagan et al., 2018). 
Although the nutritive potential of coconut testa is known, a large 
quantum of testa is diverted for the production of animal feed. These 
underutilised phytonutrients merit the development of appropriate 
processing technology to harness their benefits for incorporation into 

various food products (Ramesh et  al., 2023a). Consequently, this 
research aims to explore the utilisation of coconut testa in creating a 
biocolourant, to examine its biochemical characteristics, more 
specifically the colour conferring anthocyanin components, and to 
incorporate the extracted testa-colourant into a food product.

2 Materials and methods

2.1 Chemicals

All phenolic acid and flavonoid reference standards, including 
gallic acid, quercetin, cyanidin 3 -O-glucoside chloride, along with 
DPPH (1,1-diphenyl-2-picrylhydrazyl), Trolox (6-hydroxy-2,5,7,8-
tetramethylchroman-2-carboxylic acid), TPTZ [2,4,6-tris(2-pyridyl)-s-
triazine], potassium persulphate, and neocuproine (2,9-dimethyl-1,10-
phenanthroline), and other reference standards such as anthraquinone, 
saponin, gallotannin, menthol were purchased from Sigma-Aldrich 
Co., St. Louis, MO, United States. Analytical grade ethanol, methanol, 
acetone, glacial acetic acid, sodium acetate, concentrated hydrochloric 
acid, ferric chloride, ammonium acetate, copper (II) chloride, Folin–
Ciocalteu’s phenol reagent, aluminium chloride, citric acid, sodium 
hydrogen phosphate, sodium azide and sodium carbonate were 
purchased from Merck KGaA, Darmstadt, Germany. All chemicals 
were of analytical grade and used as received, without any purification.

2.2 Testa preparation

Coconut fruits (cultivar West Coast Tall) were carefully dehusked at 
an appropriate stage of maturity, and the coconut kernel was separated 
from the shell using a coconut de-sheller. The in-house developed testa 
remover was used to remove the testa, and the resulting testa meal was 
dried in a mechanical tray dryer at 50°C. Testa remover features a circular 
wheel covered with emery cloth or sandpaper, which is rotated by an 
electric motor. The coconut kernel is pressed against the surface of the 
rotating wheel, either manually or with a fork to remove the testa which 
is collected at the bottom of the machine.1 Testa samples obtained from 
various lots of mature coconuts were mixed to ensure that the starting 
material was representative. After drying, the coconut testa was placed in 
a cellulose cartridge (Fisher Scientific catalogue number 12-101-100), 
and petroleum ether (boiling point 60–80°C) was used for a 5-h 
extraction of fat components in a Soxhlet apparatus. The defatted testa 
meal was finely ground using a ball mill (Mixer Mill MM400, RETSCH 
GmbH, Germany), and sifted through a 200-mesh screen to ensure a 
consistent particle size. This pre-processed testa was then utilised as the 
substrate for subsequent analyses (Ramesh et al., 2023b) (Figure 1).

2.3 Organic solvents-based extraction

An amount of 1.0 g of defatted coconut testa powder was combined 
with 10 mL of suitable solvents in amber-coloured centrifuge tubes. The 
mixture was then placed on a rotospin shaker (Tarsons Products Pvt. 
Ltd., Kolkata, India) and subjected to specified periods of agitation at 

1 https://cpcriagribiz.in/home/machinery
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room temperature for extraction. Details of the various organic solvents, 
treatment durations, and temperature combinations for both direct 
extraction and ultrasonication-assisted extraction (UAE) are provided 
in Supplementary Table 1. After extraction with organic solvents and 
UAE, the extracts were centrifuged, and the resulting supernatant was 
collected in amber reagent bottles. Filtrates from the three consecutive 
extractions were combined and used for subsequent analysis.

2.4 Colour measurement

Colour coordinate values (CIELab) of the testa extractants were 
measured using HUNTERLAB (aperture: 25 mm; Model 45/0, 
HunterLab Associates Laboratory Inc., Hong Kong, PRC) set to 
Illuminant D65 and 10° standard observer. Appropriate working 
standards (white tiles) of the instrument traceable to NIST standards 
were used to calibrate the instrument prior to measuring the colour of 
testa extracts. The testa-based extractants were placed in a clean sample 
cup, ensuring that the samples fully covered the bottom surface of the 
cup. The sample cup was covered with a white tile and then placed onto 
the sensor to measure the colour coordinates. The CIELab colour space 
system is based on a Cartesian representation of three orthogonal axes: 
L*, a*, and b*. The L* coordinate represents lightness (L* = 0 for black and 
L* = 100 for white), a* represents the green/red colour component (a* > 0 
for red and a* < 0 for green), and b* represents the blue/yellow colour 
component (b* > 0 for yellow and b* < 0 for blue). The parameters L*, a*, 
and b* were determined by measuring the transmittance from 380 to 
770 nm at 5-nm intervals (HunterLab, 2008).

2.5 Screening for phytochemicals

The phytochemical composition of the testa extractants was 
analyzed following the methods described by Trease and Evans (1996), 
Sofowora (1982), and Kazeem et al. (2013). Briefly, 0.5 mL of the extract 
was mixed with 5 mL of chloroform, and the resulting mixture was 
shaken for 5 min and filtered. The filtrate was then shaken with equal 
volume of 10% ammonia solution. A bright pink colour in the aqueous 

layer indicates the presence of anthraquinones. For flavonoids, a known 
quantity of testa extract was heated with 10 mL of ethyl acetate over a 
steam bath for 3 min. The mixture was filtered, and 4 mL of the filtrate 
was shaken with 1 mL of dilute ammonia solution. The development of 
yellow colouration indicated the presence of flavonoids. To test for 
saponins, around 2 mL of testa extract was filtered, and the filtrate was 
mixed with 5 mL of distilled water, shaken vigorously and observed for 
a stable persistent froth. The froth was then mixed with a few drops of 
olive oil, shaken vigorously again, and observed for the formation of an 
emulsion, which indicates the presence of saponins. For steroids, 
0.5 mL of extract was mixed with 2 mL of concentrated sulphuric acid 
(H2SO4) and 2 mL of acetic anhydride. A colour change from violet to 
blue or green indicates the presence of steroids. To test for tannins, 
around 2 mL of testa extract was filtered, and the filtrate was mixed 
with a few drops of 0.1% ferric chloride. The formation of brownish-
green or blue-black coloration indicates the presence of tannins. For 
terpenoids, 0.5 mL of coconut testa extract was mixed with 2 mL 
chloroform, followed by slow and careful addition of 3 mL H2SO4 to 
form an interface layer. A reddish-brown colour at the interface 
indicates the presence of terpenoids. Appropriate standards were used 
as controls for all the phytochemical colour reactions.

2.6 Estimation of total phenolics content

The colour extract from the testa was diluted with the same 
organic solvents used in the extraction process. Specifically, 100 μL of 
the diluted extract was taken and adjusted to 1 mL. To this, 250 μL of 
Folin-Ciocalteau Reagent (FCR/Water, 1:1.25 v/v) was added. After a 
3-min interval, 500 μL of a 7% Na2CO3 solution was introduced into 
the mixture. The contents were thoroughly mixed and left to stand for 
45 min at room temperature in the dark. The total phenolic content 
(TPC) was determined by measuring the absorbance at 745 nm using 
a Shimadzu UV-160 A, UV–Visible recording spectrophotometer 
(P/N 204–04550, Shimadzu, Tokyo, Japan). A calibration curve was 
established using gallic acid as a standard, and the results are expressed 
as milligrammes of gallic acid equivalent (mg GAE) per gramme of 
dry weight of defatted testa (Arivalagan et al., 2018).

FIGURE 1

Coconut testa powder prior to defatting (A) and defatted coconut testa powder (B). Coconut testa was defatted using petroleum ether to remove the 
fat and the defatted testa powder was used as substrate for organic solvent and ultrasonication assisted extraction of colourant.
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2.7 Estimation of total flavonoid content

The diluted extract was used to determine the total flavonoid 
content (TFC) by assessing the intensity of the yellow-coloured 
flavonoid-aluminum complex formed in an alkaline environment 
(Zhishen et  al., 1999). Briefly, 250 μL of extract was mixed with 
1.75 mL of distilled water, followed by the addition of 300 μL of 5% 
NaNO2. The tubes were kept in the dark at room temperature. After 
5 min, 300 μL of 10% AlCl3 solution was added, and the mixture was 
left to stand for another 5 min. Subsequently, 2.5 mL of 1 M NaOH was 
added. The absorbance was measured after 10 min at 510 nm using a 
Shimadzu UV-160 A, UV–Visible recording spectrophotometer (P/N 
204–04550, Shimadzu, Tokyo, Japan). A calibration curve was 
generated with quercetin as the standard, and the results are expressed 
as milligrammes of quercetin equivalents (QE) per gramme of testa 
samples (Arivalagan et al., 2018).

2.8 Determination of monomeric 
anthocyanins

The monomeric anthocyanin content in testa extracts was 
determined using the pH-differential method described by Lee et al. 
(2005), employing two buffer systems: potassium chloride buffer at pH 
1.0 (0.025 M) and sodium acetate buffer at pH 4.5 (0.4 M). The 
concentrated testa extracts were appropriately diluted, and a 0.1 mL 
aliquot was transferred to a 10 mL volumetric flask, which was then 
filled to10 mL with corresponding buffer. The absorbance was 
measured at 510 and 700 nm. Total anthocyanins were calculated as 
cyanindin-3-glucoside (C3G) equivalents (C3GE) as follows:

 

A MW DF 10 ^ 3Total Anthocyanin
1

× × ×
=

ε×

Where A = (A520nm-A700nm) pH 1.0-(A520 nm-A700nm) pH 4.5.
 MW (molecular weight) = 449.2 g/mol for cyanidin −3-glucoside 
(cyd-3 glu).
DF = dilution factor.
1 = path length in cm.
 € = 26,900 molar extinction coefficient in mol−3 for 
cyanidin−1glucoside (cyd-3-glu).
10^3 = conversion from g to mg.

2.9 Determination of in vitro anti-oxidant 
potential

The radical scavenging activities of testa extractants were assessed 
by measuring the reduction in absorbance of DPPH when it came into 
contact with the testa extractants, following the method described by 
Brand-Williams et  al. (1995) and Arivalagan et  al. (2018). The 
Scavenging Concentration (SC50), indicating the sample concentration 
required to scavenge 50% of the DPPH●, was determined using Trolox 
as a positive control, and the results were expressed in micromoles of 
Trolox equivalents per gramme (μmol TE/g). Additionally, the Ferric 
Reducing Antioxidant Power (FRAP) and Cupric Ion Reducing 
Antioxidant Capacity (CUPRAC) assays were conducted following 

established protocols (Benzie and Strain, 1996; Apak et  al., 2004; 
Arivalagan et  al., 2018). Trolox served as the reference, and the 
outcomes were presented as μmol TE/g of the sample.

2.10 pH stability of colourant

The coconut testa-derived 0.3 M acidified ethanol extract 
colourants were standardised to an absorbance of 1.50 ± 0.02 at 
525 nm. The standardised colourant preparations were subjected to 
various pH treatments in McIlvaine buffer (Indrawati et al., 2017) with 
slight modifications. Briefly, buffered solutions of various pH levels 
were prepared using citric acid (2% w/v), sodium hydrogen phosphate 
(2% w/v), and sodium azide (0.02% w/v). The preparations were 
stored in a dark place at both cold storage (4°C) and room temperature 
(26.0 ± 0.5°C) for 15 days.

2.11 Foam mat drying and incorporation of 
testa colourant in coconut water jelly

Foam mat drying, an alternative to spray drying, was applied for 
the production of coconut testa colourant powder using sodium 
caseinate (5% w/v), maltodextrin (6% w/v) and 0.5% of carboxymethyl 
cellulose (CMC) following the protocol described by Beegum et al. 
(2022). A mature coconut water-based jelly, comprising 15% (w/v) 
refined sugar, 1.65% (w/v) China grass (sea weed, agar), and 2.5% 
(v/v) lime juice, was prepared by incorporating the testa colourant 
obtained through acidified ethanol-based extraction using 
hydrocholoric acid and phosphoric acid (Beegum et al., 2021).

2.12 Statistical analysis

The data was analyzed an unbalanced factorial CRD template. 
Analysis of variance was performed using R software version 4.0.3 (R 
Core Team, 2020). Summary statistics and the significance of 
differences between treatment means and their interactions were 
determined using the Fisher-LSD test in the agricolae package (De 
Mendiburu and Simon, 2015). Bartlett’s test of homogeneity of 
variances was performed to ensure that the distributions of the 
outcomes in each independent group were comparable. The 
relationships amongst the studied parameters were further explored 
using principal component analysis (PCA). The results of PCA were 
visualised with a biplot constructed between the first two principal 
components (Dim 1 and Dim 2) using the “factoextra” package in R 
(Kassambara and Mundt, 2020).

3 Results and discussion

The exploration of natural colourants is a broad and dynamic field 
of research, driven by the increasing interest in replacing synthetic 
colourants, which have harmful effects on human health (Thakur and 
Modi, 2022). In the food industry, carotenoids and anthocyanins are 
the primary vegetable-derived colourants (Nabi et  al., 2023). 
Anthocyanins are characterised by their antioxidant activity, which 
helps prevent various health issues such as neuronal and cardiovascular 
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diseases, cancer, and diabetes (Mattioli et al., 2020). Numerous studies 
have examined the impact of anthocyanins on cancer treatments 
(Khoo et al., 2017), human nutrition (Duchowicz et al., 2019), and 
their biological activity (Szymanowska et  al., 2015). Given the 
considerable potential of natural anthocyanins as health-promoting 
pigments, a growing body of literature addresses various aspects of 
human health. These include the development of analytical techniques 
for purification and separation and applications in food (Hu et al., 
2014); identification and distribution in plants; monitoring colour and 
pigment changes; biosynthesis; and quantitative analysis using 
chromatographic and electrophoretic techniques, and the impact on 
stress (Rahman et  al., 2006; Coklar and Akbulut, 2017) amongst 
others etc., Various studies have elucidated the biochemical 
characteristics of anthocyanins derived from a diverse array of plant 
species, including onions (Zhang et al., 2016), Mahonia aquifolium 
(Coklar and Akbulut, 2017), Lycium ruthenicum Murray and Nitraria 
tangutorum (Hu et al., 2014), blue corn (Nankar et al., 2016), potatoes 
(Heinonen et al., 2016), pomegranates (Ambigaipalan et al., 2017), 
blueberries (He et al., 2016) mulberries (Espada-Bellido et al., 2017), 
jamun (Jampani et  al., 2014), and others. Hence, this study was 
formulated with the objective of exploiting the health-promotional 
biochemical components of coconut testa, the anthocyanins, to 
develop a food biocolourant. Additionally, unlike existing 
non-conventional methodologies such as super-critical fluid 
extraction, pressurised liquid extraction, and microwave or enzyme-
assisted extraction, the method described in this work used a 
laboratory-scale water bath to extract colourant from coconut testa. 
This highlights the utility, applicability, and scalability of the method 
for operational ease.

3.1 Features of coconut testa derived 
colourant

The CIE LAB colour space values of various testa-based colourants 
obtained using different organic solvents in laboratory-scale water 
bath and ultrasonication are shown in Supplementary Table  1. 
Acidified organic solvents in water bath yielded dark brownish or 
reddish-coloured extracts (Supplementary Figure 1). On the other 
hand, extracts obtained from the ultrasonication process were more 
visually appealing, with dark pink, orange colours. Measurement of 
L*a*b* values of the extractants revealed that L* values were positive, 
with the highest L* values of 14.03 and 12.73 obtained when extracted 
with acidified ethanol (acidified with 0.3 M phosphoric acid and 0.1 M 
citric acid, respectively) in a water bath. Further, comparable L* values 
in the range of 10.55–11.47 were obtained when the extraction was 
performed under ultrasonication using acidified ethanol and acetone 
as solvents. Incorporation of red and purple potatoes derived natural 
colourants in the preparation of soft drinks showed L* values of 
around 25.00 suggesting relative blackness of testa based colourants 
(Sampaio et  al., 2021). More positive a* values, corroborated the 
presence of magenta/red colour in the ethanol-based extracts (both in 
water bath and ultrasonication process) compared to the solvent 
acetone. Extraction using 0.3 M HCl-acidified ethanol in the lab water 
bath showed an increasing trend in the magenta/red colour (increase 
in a*) with an increase in temperature from 60 to 75° C. Similarly, 
extracts based on acidified ethanol (0.3 M HCl) as a solvent in 
ultrasonication process showed upward trend in a* values (7.35, 10.84, 

and 12.53, respectively, for 60, 90, and 120 min-treatments) with an 
increase in duration of treatment from 60 to 120 min. However, for a 
similar treatment profile, acidified acetone-based extracts yielded a 
maximum a* of 6.24 (for 120 min treatment) suggesting ethanol is a 
suitable solvent for increased red/magenta colour in the extract. 
Green-red colour component (a*) of red and purple coloured potato-
based soft drinks were high (not <25) compared to the testa-based 
colourants (Sampaio et  al., 2021). Acidified ethanol (0.3 M HCl) 
showed an increase in the yellow colour of the extracts (b* values 
ranged from 4.50 to 6.76) until the temperature was 70°C, beyond 
which a decline in b* (consequently a decrease in yellow) was 
observed. As previously proven colour of the extract is affected by the 
temperature profile during extraction process, explaining the decline 
in yellowness (Aykın-Dinçer et al., 2021). Acidified ethanol (0.3 M 
phosphoric acid, 0.1 M citric acid, and 0.1 M HCl) yielded relatively 
high b* values (indicating increased yellowness) in the range of 9.29–
12.27, compared to extracts obtained from 0.3 M acidified ethanol or 
acetone. Similarly, in the ultrasonication process, acidified ethanol 
(0.3 M HCl) yielded relatively high b* values of 14.64 compared to 
acidified acetone (0.3 M HCl) with b* values of 13.75 
(Supplementary Figure 1). Comparing the CIE L*a*b* results of testa 
colourant with that of commonly used natural food colourants reveal 
the need for further in-depth analysis of its phytoconstituents. For 
instance, depending on the curcumin content, the L* values of 
turmeric colourant varied from 32.6 to 54.7 (lighter values); a* varied 
from 17.5 to 39.1 (reddishness); b* from 31.5 to 46.1 (yellowness) as 
it increased L* and b* and decreased a* values (Singhee and Sarkar, 
2022). Similarly, bixin concentration in annatto colourant decreased 
b*/a* values suggesting yellow colouration (Singhee and Sarkar, 2022). 
On the application front, extraction of biocolourant from red and 
purple-fleshed potatoes and their addition in soft drink formulations 
not only provided stable colourant but also an appreciable sensory 
profile to the product (Sampaio et al., 2021). Anthocyanin-rich extract 
of jabuticaba epicarp was incorporated into macaron to yield 
delphinidin-3-O-glucoside and cyanidin-3-O-glucoside enriched 
bakery product (Albuquerque et al., 2020).

3.2 Phytochemical composition of testa 
colourant and anthocyanins

The coconut testa extractants, obtained using various solvents 
(0.3 M HCL-acidified acetone, ethanol, and 0.5 M phosphoric acid-
acidified ethanol), were screened for biochemical constituents, 
revealing the presence of flavonoids, tannins and anthocyanins whilst 
anthraquinones, steroids, saponins and terpenoids were conspicuously 
absent (Supplementary Table 2; Supplementary Figure 2).

Table 1 shows the total anthocyanin content of the testa-based 
colourants extracted using various organic solvents and ultrasonication 
assisted extraction (UAE). Extraction of colourant from testa using 
0.3 M HCl acidified ethanol for 60 min at 70°C yielded highest 
anthocyanin content of 723.71 ± 2.19 mg Cy-3-glc equivalents (C3GE) 
per 100 g, whereas the lowest anthocyanin content was obtained for 
0.3 M HCl-acidified ethanol for 60 min at 60°C (714.07 ± 1.26 mg 
C3GE/100 g). Amongst the extracts derived from the ultrasonication 
process, acidified-ethanol at 60°C for 90 min yielded an anthocyanin 
content of 718.20 ± 2.09 mg C3GE/ 100 g. Statistically comparable 
levels of anthocyanins were obtained with 60 min at 60°C 
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(715.19 ± 1.62 mg C3GE/100 g) in UAE and when 0.3 M acidified-
ethanol was used for extraction under two conditions (65°C for 
60 min and 60°C for 60 min). Overall, acidified acetone yielded lower 
anthocyanin content compared to extracts from acidified-ethanol. 
Hence, to improve the functional components in the coconut testa-
based colourant, the use of acidified ethanol as organic solvent, either 
in water bath or UAE method, is suggested. Additionally, extraction 
of anthocyanins in conventional solvent extraction and UAE did not 
show appreciable differences. Similarly, anthocyanin-based colourants 
from strawberry fruit were incorporated into the development of 
naturally coloured yoghurt (Benchikh et  al., 2021). However, the 
anthocyanin content was found to be very low (38.04 mg C3GE/100 g 
FW), suggesting coconut testa as a novel potential source of 
anthocyanins. A functional drink developed from the colourants of 
Rubus fruticosus L. and Morus nigra L showed a considerable increase 
in the content of total anthocyanins (70–90 mg/100 g), revealing 
unexplored variations in anthocyanins content from plant sources 
(Vega et al., 2021). On the other hand, incorporation of anthocyanins 
derived from black goji berry (Lycium ruthenicum) yielded a 
functional food product (yoghurt) containing total anthocyanin 
content of 131.6 ± 5.93 mg C3GE/kg (Gamage et al., 2024). Enhanced 
stability of apigeninidin, an anthocyanin extracted from red sorghum, 
was observed at high or alkaline pH levels by Akogou et al. (2019).
Also, high colour stability (for 30 days) of a soft drink product was 
observed when anthocyanin-rich natural colourants from coloured 
potato fleshes were supplemented (Sampaio et  al., 2021). A 
preliminary assessment of the role of pH in determining the stability 
of anthocyanins derived from coconut testa was performed. It was 
found that the colourants were stable for 15 days under at cold storage 
(4°C); however, colourants beyond pH 7.5 showed a slight bluish tinge 
after 7 days of storage due to degradation of anthocyanins. However, 
acidified organic solvents have yielded appreciable quantities of 
anthocyanins from coconut testa, as an increased pH is expected to 

have an unfavourable effect on the stability of anthocyanin. These 
results also suggest that further in-depth metabolite profiling studies 
are required, considering the considerable pH stability of coconut 
testa-derived colourant over a wide range of pH.

3.3 Polyphenol and flavonoid contents of 
testa biocolourant

Total polyphenol content (TPC) of testa extractants is presented 
in Table 2. The TPC in testa extracts varied from 52.94 ± 2.33 (mg 
GAE/g) (0.1 M phosphoric acid-acidified ethanol) to 154.39 ± 2.63 mg 
GAE/g (0.3 M HCl-ethanol). An increase in temperature increased the 
TPC of extractants, yielding a maximum of 127.24 ± 2.89 mg GAE/g 
with 0.1 M HCl-acidified ethanol and 154.39 ± 2.63 mg GAE/g using 
0.3 M HCl-acidified ethanol. This suggests the role of temperature and 
acidification of organic solvents in extracting the bound phenolic 
components in testa. The improvement in the yield of TPC utilizing 
UAE was also observed with increased acidification of solvents. Thus, 
the acidification of organic solvents enabled maximum extraction of 
conjugated phenolic complexes from coconut testa (Arivalagan et al., 
2018). Increase in temperature conditions beyond 70° C when 
acidified-acetone was used as a solvent did not cause any significant 
change in TPC. On the other hand, acidified-ethanol when used in 
combination with temperature conditions above 70°C yielded 
significantly higher TPC (154.39 ± 2.63 mg GAE/g). Similarly, the 
effect of acidification of organic solvents in obtaining total flavonoid 
content (TFC) was also evident, as 0.3 M acidified ethanol yielded a 
maximum TFC of 53.65 ± 0.62 mg QE/g of testa. Overall, the TFC of 
testa varied from 7.54 ± 0.49 mg QE/g (1% citric acid-acidified 
ethanol) to 53.65 ± 0.62 mg QE/g (0.3 M HCl-acidified ethanol). Thus, 
Bartlett’s test of homogeneity of variances between the acidified 
acetone and acidified ethanol extracts reveal that the latter method 
yielded statistically significant high TPC and TFC contents across the 
temperature and time combinations (Table 2). Comparison of TPC 
between organic solvent-based extraction (OSE) and UAE revealed 
that the conventional technique of organic solvents yielded higher 
values (154.39 ± 2.63 mg GAE/g) than UAE (140.54 ± 1.73 mg GAE/g). 
A similar trend was observed with TFC between OSE and UAE in 
coconut testa. However, Swer and Chauhan (2019) reported the 
advantage of enzyme-assisted extraction (EAE) in enhancing the 
anthocyanin content of Prunus nepalensis L. compared to conventional 
solvent extraction. It was also observed that EAE further improved 
phenolic content by releasing it from bound forms.

Acidified ethanol yielded the maximum TPC and TFC in coconut 
testa-based colorants. Nevertheless, studies have indicated that 
aqueous ethanol and water are suitable solvents for extracting 
phenolics from wheat bran (Verma et al., 2008) and sorghum leaves 
(Agbangnan et  al., 2012), respectively. Additionally, 80% acetone 
acidified with 0.3 M HCl and 80% methanol were found to be suitable 
for extracting maximum phenolics and flavonoids from coconut testa 
(Arivalagan et al., 2018). Classical solvent extraction and UAE of 
bioactives from the corms of saffron (Crocus sativus) also showed 
comparable quantities of TPC (Swer and Chauhan, 2019; Esmaeelian 
et  al., 2021). However, the flavonoid contents of coconut testa 
samples, reported herein, are relatively high. Comparing the reported 
TPC of saffron (Crocus sativus) (89.280 ± 0.88 to 100.396 ± 0.58 mg 
GAE/100 g dry saffron), the values reported herein are very high 

TABLE 1 Anthocyanin content [expressed as Cy-3-glc equivalents (C3GE)] 
of coconut testa-based colourant extracted using organic solvents in 
water bath and ultrasonication based extraction (UAE) (Bartlett test of 
homogeneity of variances was performed for the data: for 0.3  M acidified 
ethanol: Bartlett’s K-squared  =  3.1018, p  =  0.8754; for 0.3  M acidified 
acetone: Bartlett’s K-squared  =  2.3269, p  =  0.9396; the same superscript 
across the column denotes non-significant values).

Time 
(min)

Temp 
(°C)

Organic solvents

0.3  M acidified 
ethanol

0.3  M 
acidified 
acetone

mg C3GE/100  g
mg C3GE 

/100  g

60 60 714.07 ± 1.26b 614.69 ± 0.31b

60 65 715.67 ± 0.97c 717.31 ± 1.04c

60 70 723.71 ± 2.19d 718.85 ± 0.76f

60 75 823.02 ± 1.81f 815.96 ± 1.21f

90 75 820.54 ± 2.07e 715.17 ± 0.76e

Ultrasonication assisted extraction (UAE)

60 60 715.19 ± 1.62b,c 714.37 ± 1.30b,c

90 60 718.20 ± 2.09d 713.23 ± 0.60d

120 60 670.34 ± 2.21a 713.50 ± 0.84a
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(154.39 ± 2.63 mg GAE/g) for defatted dried coconut testa 
(Esmaeelian et  al., 2021). However, such high values of TPC in 
coconut testa (as much as 167 mg GAE/g) and the resultant 
antioxidant activities have been reported (Arivalagan et al., 2018). 
Therefore, coconut testa exemplifies a natural reservoir of diverse 
phenolic acids and flavonoids, showcasing robust antioxidant 
capabilities. These inherent compounds offer a promising alternative 
to synthetic antioxidants in food formulations, establishing 
themselves as a noteworthy natural source of antioxidant properties.

3.4 Antioxidant profile of testa-colourants

The antioxidant potential of the testa-based colourants is 
presented in Table  3. The antioxidant potential of the testa-based 
colourant extractants was assessed for their reducing power using 
CUPRAC and FRAP assays. Acidified solvents (0.3 M HCl) at 
relatively high temperature and time conditions exhibited high but 
comparable CUPRAC values of 323 and 346.4 μmol TE/g. Similarly, 
the ferric-reducing capability of the extract was found to be high 
(194.08 and 209.7) when acidified organic solvents were utilised. The 
antioxidant potential of the testa colour extracts, as measured by 
DPPH, varied from 171.9 μmol TE/g to 248.6 μmol TE/g. Acidification 
of organic solvents significantly increased the DPPH activities of the 
extracts. The DPPH radical scavenging activity of yoghurt prepared 
from black goji berry-derived anthocyanins demonstrated 
considerably higher antioxidant potential compared to the functional 

food product developed from purple sweet potato (Gamage et al., 
2024). The trolox equivalent anti-oxidant capacity (TEAC) of black 
coloured carrot infused yoghurt was in the range of 37.83–50.21 μg 
TEAC/g suggesting the high anti-oxidant potential of coconut testa 
derived colourant (Baria et al., 2021).

3.5 Principal component analysis

The principal component loadings for testa colourant quality 
characteristics are shown in Figure 2. Principal component analysis 
(PCA) was used to study the relationship between the quality 
characteristics of testa colourant obtained from various solvent 
treatments. PCA revealed that the initial four principal components 
defined 100% of the total variance in the testa colourant quality 
characteristics. The first principal component (PC1) represented 
78.7% of total variability, the second principal component (PC2) 
accounted for 13.4% of total variability, and the third principal 
component represented 6% of the variability. Figure  3 shows the 
correlation biplot (score plot) of the testa colourant quality features on 
the first two principal components. The correlation score plots 
distinguished between various combinations of organic solvent, time 
and temperature used in producing the testa colourant. PCA biplot 
analysis reveals a positive correlation between TPC, TFC, and 
antioxidant assay values DPPH, CURRAC, and FRAP.

Foam mat-dried colourant was utilised as an ingredient in the 
production of coconut water-based jelly (Figure  3). Similarly, 

TABLE 2 Total polyphenol content (TPC) and total flavonoids content (TFC) of testa-based colourant extracts obtained using various organic solvents 
and ultrasound assisted extraction (UAE).

Treatments Total polyphenol 
content (mg GAE/g)

Total flavonoid 
content (mg QE/g)Organic solvent(s) Temperature (°C) Time (min)

0.3 M HCl acidified acetone 60 60 74.38 ± 2.07c 17.65 ± 0.58c

65 60 98.22 ± 1.37d 23.96 ± 0.69d

70 60 123.71 ± 4.14e 26.45 ± 0.74e

75 60 121.19 ± 1.93d,e 24.91 ± 0.76d,e

75 90 127.24 ± 2.89d,e 25.32 ± 0.91d,e

0.3 M HCl acidified ethanol 60 60 117.95 ± 2.53f 35.47 ± 0.81f

65 60 117.85 ± 1.37g 37.94 ± 0.74g

70 60 127.76 ± 2.81h 46.06 ± 0.39h

75 60 141.56 ± 6.72h 47.97 ± 0.79h

75 90 154.39 ± 2.63i 53.65 ± 0.62i

0.1 M HCl acidified ethanol 65 60 77.49 ± 1.13b 11.54 ± 0.44b

0.1 M phosphoric acid acidified ethanol 65 60 52.94 ± 2.33a 8.64 ± 0.41a

1% citric acid acidified ethanol 65 60 55.02 ± 2.13a 7.54 ± 0.49a

Ultrasonication assisted extraction (UAE)

0.3 M HCl acidified acetone 60 60 94.87 ± 1.64d 22.30 ± 0.35d

60 90 94.92 ± 0.53d 23.71 ± 1.11d

60 120 125.10 ± 1.85d,e 34.93 ± 0.32f

0.3 M HCl acidified ethanol 60 60 122.68 ± 2.33d,e 34.72 ± 0.49f

60 90 135.40 ± 0.54h 40.17 ± 0.22g

60 120 140.54 ± 1.73h 44.45 ± 0.80h

Values are Mean ± SD (n = 3) (Bartlett test of homogeneity of variances was performed the data. For TPC Bartlett’s K-squared value is 10.53, p = 0.5696; For TFC the Bartlett test statistic values 
are 2.977 and p = 0.9957; the same superscript across the column denotes non-significant values).
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incorporating C-phycocyanin, a protein-based bioactive compound 
extracted from cyanobacteria, in ice cream provided a stable blue dye 
with enhanced antioxidant activity, suggesting utility in terms of 
colour and biological activities (de Amarante et al., 2020). Bioactives 
such as betalains from beet root powder have been exploited in the 
development of a stable chocolate (Baycar et al., 2021). Additionally, 
apigeninidin extract from sorghum leaf sheaths has been proven to 
be a bioactive red biocolourant with potential application in fermented 
foods (Akogou et al., 2019). Plant-derived anthocyanin extracts have 
multiple functional properties besides their conventional use as food 
colourants, including anti-microbial properties, anti-oxidant 
attributes, use as preservatives, and other health-promoting benefits 
(Arruda et al., 2021). Anthocyanin -rich plants such as red or purple 
potatoes, red cabbage, black carrots, purple corn, and sweet potatoes 
predominantly contain acylated anthocyanins that impart high 
stability during the processing and storage, thereby enhancing the 
bioavailability of these components (Arruda et al., 2021; Kaur et al., 
2024). As discussed above, biochemical characterisation of coconut 
testa-derived anthocyanins for further use in food products as a 
functional ingredient at an industrial scale is warranted.

4 Conclusion

The natural colourant extracted from coconut testa is notably 
rich in anthocyanin, phenolics, exhibiting significant antioxidant 

potential. The anthocyanin content of testa contributes to its 
distinct colour. Extraction conditions reveal that ethanol is an 
effective solvent for enhancing the red/magenta hue in the extract, 
whilst acidified ethanol (0.3 M HCl) increases the yellow colour 
of the extracts. Phytochemical screening of the coconut testa 
colourant shows a substantial presence of anthocyanins, total 
phenolics, and flavonoids, highlighting its remarkable antioxidant 
and colourant potential. This colourant has been successfully 
incorporated into coconut water-based jelly, demonstrating its 
utility in food product development. Therefore, coconut testa 
extract serves a dual purpose: it enhances the aesthetic appeal of 
food as a colourant and provides significant health-promoting 
properties due to its high anthocyanin content. Several factors 
have impeded the commercial development of natural pigments 
thus far. These include the limited range of natural colours 
approved for food use, the lengthy regulatory approval process for 
new colorants, their higher cost compared to synthetic 
alternatives, and the substantial volumes of biomass needed to 
extract a given amount of natural colorant. However, as stated 
elsewhere around 4,000 tonnes of underutilised coconut testa in 
the country offers unique opportunity to exploit this biowaste into 
a useful food product. The colourants remained stable for 15 days 
in cold storage. However, after 7 days, those with a pH above 7.5 
showed a slight bluish tinge due to the degradation of 
anthocyanins. These findings indicate the need for further 
in-depth metabolite profiling studies, given the considerable 

TABLE 3 Anti-oxidant profile of testa-based colourant extracts obtained using various organic solvents and UAE.

Treatments CUPRAC  
(μmol TE/g)

FRAP (μmol 
TE/g)

DPPH (μmol 
TE/g)Organic solvents Temp (°C) Time (min)

0.3 M HCl acidified acetone 60 60 160.65 ± 2.52c 134.32 ± 0.49c 186.15 ± 4.95b

65 60 273.20 ± 2.69e 160.29 ± 1.33d 194.09 ± 0.60b,c

70 60 317.33 ± 3.61g 193.88 ± 0.90e 195.38 ± 2.58b,c

75 60 328.80 ± 1.17h,i 195.08 ± 1.24e 197.68 ± 0.62c

75 90 323.03 ± 2.61g,h 196.20 ± 0.28e 194.67 ± 1.50b,c

0.3 M HCl acidified ethanol 60 60 299.82 ± 0.34f 202.93 ± 3.87f 194.24 ± 3.18b,c

65 60 299.36 ± 1.30f 208.50 ± 1.81f,g 188.87 ± 1.74b,c

70 60 328.06 ± 2.60 h,i 195.99 ± 0.46e 190.99 ± 2.37b,c

75 60 335.29 ± 2.66i 202.81 ± 0.90f 213.77 ± 4.86d

75 90 347.30 ± 1.43 210.30 ± 1.52g 233.06 ± 4.10e

0.1 M HCl acidified ethanol 65 60 168.73 ± 1.65d 139.18 ± 0.69c 171.24 ± 1.22a

0.1 M phosphoric acid acidified ethanol 65 60 127.12 ± 1.68a 116.15 ± 1.16a 186.14 ± 1.20b

1% citric acid acidified ethanol 65 60 139.28 ± 1.91b 125.20 ± 0.33b 193.52 ± 1.74b,c

UAE

0.3 M HCl acidified acetone 60 60 288.98 ± 1.76e,f 197.18 ± 0.89e 188.70 ± 0.68b,c

60 90 297.17 ± 1.18f 198.82 ± 2.10e 188.93 ± 2.41b,c

60 120 335.81 ± 5.62i 208.17 ± 0.69f,g 222.55 ± 2.20d,e

0.3 M HCl acidified ethanol 60 60 295.06 ± 4.41f 205.44 ± 1.30f 188.79 ± 2.54b,c

60 90 318.66 ± 2.58g 250.07 ± 0.58h 229.94 ± 1.45d,e

60 120 341.55 ± 1.36i 293.67 ± 5.57i 249.82 ± 0.72f

Values are Mean ± SD (n = 3) (Bartlett test of homogeneity of variances revealed Bartlett’s K-squared value of 3.7827, p = 0.987 for CUPRAC. Similarly, for FRAP, Bartlett test statistic values are 
9.409 and 0.6676; for DPPH the respective statistic values are 7.0015, 0.8575; the same superscript across the column denotes non-significant values).
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stability of coconut testa-derived colourant across a wide 
pH range.
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colourant obtained from ultrasonication assisted extract.
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