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From the earliest origins of farming, agri-food production has undergone

transformational changes. These have permitted a steady output of nutrient-dense farm

produce to feed ever-growing human populations and to advance societal development.

Crop domestication and breeding, agricultural mechanization, agronomy, irrigation and

chemically synthesized fertilizers and pesticides have all progressively lifted productivity

levels (Pingali, 2012; Scott, 2017). Since the mid-1900s, substantial yield gain has

been achieved by deploying improved crop varieties under input-intensive management

schemes, for example, during the so-called “Green Revolution.” Although such packaged

“seed × chemical” technologies became hallmark features of global agriculture, depressed

food prices and thereby alleviated poverty, they also induced undesirable social-

environmental externalities (Pingali, 2012). In the world’s bread baskets, yields of prime

food staples are now stagnating while total factor productivity drops (Ramankutty et al.,

2018). Overreliance upon petroleum-derived inputs is broadening the environmental

footprint of global agriculture (Rockström et al., 2020), triggering biodiversity loss,

undermining resilience and promoting resistance to pesticides, while crops are increasingly

under pressure from pests and diseases, weather anomalies and a fast-degrading natural

resource base. There is growing global concern that the current status quo of input-

intensive agri-food production is insupportable (Dalin and Outhwaite, 2019).

Globally, food production relies on synthetic pesticides to tackle crop pests, diseases,

and weeds. The manufacture, distribution and application of these compounds is highly

energy-intensive, generating up to 6% of the greenhouse gas emissions from the world’s

cropland (Wyckhuys et al., 2022a). Since the 1940s, pesticide mass, usage intensity and

toxicity loading have progressively increased and these patterns are currently exacerbated

in the Global South (Bernhardt et al., 2017; Shattuck et al., 2023). Pesticide-intensive

agriculture is characterized by weakened trophic interactions and ecosystem function and

consequently it is vulnerable to climatic disruptions and pest shocks (Davis et al., 2021;

Bullock et al., 2022). Meanwhile, climate change deepens biotic losses by facilitating the

expansion of pest distributions, increasing pest survival and fostering pesticide resistance,

thereby constraining the efficacy of the crop protection tool most favored by farmers

(Ma et al., 2021). Thus, given fast-progressing global change, pesticide intensive pest

management is becoming ever more untenable.

Since the late 1980s, scientists and world leaders have stressed the importance

of implementing sustainable practices to secure current food production without

compromising natural capital (Brundtland et al., 1987). In 1996, a conceptual framework

was designed to analyse and implement a global transition toward the adoption of

agroecological practices (Hill and Macrae, 1996). This approach is now widely used to

position farming systems along an ecological intensification trajectory that ranges from
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increased efficiency of input use (i.e., shallow sustainability)

through input substitution to a radical, wholesale redesign of the

entire production system (i.e., deep sustainability). Here, we use

this framework to gauge how sustainable pest management science

has evolved over the past 50 years by examining relevant research

outputs for a devastating crop pest of global significance.

Endemic to the Neotropics, the fall armyworm (FAW),

Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is a

debilitating pest of forage and food crops such as maize, rice,

sorghum, and pasture grasses (Montezano et al., 2018). For as long

as we know, FAW has affected maize production in its center of

domestication and diversity. Since 2016, the pest has successively

invaded the African, Asian and Oceania continents and in each,

maize has been the most impacted crop (Day et al., 2017; Yan

et al., 2021; Volp et al., 2022). Crop losses of more than US$9

billion per annum have been inflicted in Africa alone (Kenis

et al., 2022). Its voracious feeding habits, long-range migration and

capacity to evolve resistance to xenobiotics have made FAW one of

the world’s most notorious pests. Pesticide-centered management

is increasingly challenging, as FAW currently presents 257 cases

of resistance against 45 different insecticide active ingredients

worldwide (Mota-Sanchez and Wise, 2024). Thus, FAW offers a

unique opportunity to understand how the scientific endeavor has

pursued its sustainable management over space and time, allowing

for an in-depth analysis of the emerging research foci as the pest

makes its appearance in new geographies.

We conducted a systematic literature review to characterize

global scientific progress on FAW pest management. Using the

search string TS = [(Spodoptera frugiperda) AND (pest∗)], we

interrogated the Web of Science (WoS) Core Collection for articles

published from the beginning of 1980 to 30 September 2023. For

each literature record, we logged geographical focus as that of

the first author’s principal affiliation. In addition, 100 publications

prior to 1980 were added manually by screening reference lists

in the existing literature collection for key publications with the

highest numbers of citations. Prior to 1980, the WoS database

did not include authors’ addresses and it was thus impossible

to geographically delineate the published research. Studies that

were not relevant to our investigation (i.e., those that did not

investigate a particular aspect of pest management) were excluded.

We also excluded works from Europe as FAW is not established

there (Kenis et al., 2022) and our objective was to compare

practices in regions where FAW has recently invaded and become

problematic (i.e., Africa, Asia, and Oceania) with those in its

native range. For each retained publication, we methodically

screened the abstract to capture the type and nature of the pest

management practice investigated. Next, we categorized this focal

practice using the sustainability framework of Hill and Macrae

(1996), positioning the practice along the framework’s efficiency-

substitution-redesign continuum.

Studies that implemented adjustments to reduce agrochemical

inputs, particularly pesticides, were considered to represent

efficiency, step 1 on the continuum. These comprised studies

addressing novel pesticide applicationmodes e.g., ultra-low volume

spraying, seed coating or drone-based pesticide delivery, pest

detection or surveillance to better target pesticide application,

pesticide resistance monitoring or outreach efforts. Studies that

replaced synthetic chemical products or practices with more

environmentally benign alternatives that promoted natural pest

regulation were defined as substitution (step 2); many publications

in this domain promoted biological pest control by a range of

microbial, invertebrate, or vertebrate agents. Finally reports of

research that radically modified conventional practices through a

wholesale re-building of the agri-production system were defined

as redesign (step 3). These comprised more extensive changes

in the farming system through crop diversification, reduced

tillage, ecological infrastructures to attract beneficial arthropods,

and conservation practices which consider the benefits of the

natural landscape (Wezel et al., 2013; Pretty, 2018). Lastly,

investigations that generated baseline biological and/or ecological

insights without specifically addressing in-field pest management,

though important, were not considered part of the sustainability

framework per se (step 0).

Our initial literature corpus contained 2,364 publications,

covering North America (n = 678), South America (562), Central

America (16), Main Asia (=Asia- excluding Southeast Asia; 638),

Southeast Asia (25), Africa (163), Middle East (15), Oceania

(25), and Europe (242). After excluding irrelevant works, a final

collection of 1,929 publications was obtained. Of these 39.6%

were categorized as reporting step 0 research while the remainder

(n = 1,136) reported on the three steps along the ecological

intensification continuum; efficiency (9.3%), substitution (48.3%)

and redesign (2.7%) (Figure 1A). Research on efficiency has mostly

been conducted in North America (n = 51) and Main Asia (n =

76), while progress on substitution has been primarily within South

America (n = 345 publications) and North America (n = 291),

consistent with the long biological control research trajectory in

the pest’s native range (Wyckhuys et al., 2024). Lastly, research

on farming system redesign has mainly been conducted in North

America (n = 18) and Africa (n = 13). A generalized linear model

(R2
= 0.5485) revealed how overall scientific output (i.e., average

number of publications) was determined by three variables (1)

ecological intensification (F = 22.441, P < 0.0001), (2) continent

(F = 7.190, P < 0.0001), and (3) publication year (F = 1.506, P

= 0.0269).

Globally, invertebrate biological control, biopesticides

(microbial and botanical) and pest-resistant crop varieties have

received critical amounts of scientific attention for themanagement

of FAW (Table 1). Since the earliest literature record analyzed in

this study (published in 1968), global scientific output has gradually

increased over time producing an average of 126.1 publications

per year over the decade 2013–2022. Temporal increases in

scientific output are most prominent for the substitution step in the

Americas (Figure 1B). Although maize-bean polycultures, widely

implemented during pre-Columbian times, suffer far less pest

problems than crops managed under pesticide-intensive methods

(Altieri et al., 1978), such “redesigned” systems barely feature

in the global FAW literature. This with the notable exception of

Africa where locally designed push-pull technologies developed

for the management of other cereal pests have been adapted to

provide cost-effective non-chemical control for FAW (Midega

et al., 2018). Importantly, research in the pest’s invasive range,

particularly in Asia, has focused on substitution and efficiency

of pesticide application (Table 1), largely mirroring that in the
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FIGURE 1

Spatio-temporal alignment of FAW pest management science with the e�ciency-substitution-design continuum. (A) Depicts a continental

breakdown of the total number of publications in three domains: enhanced e�ciency, input substitution and farming system redesign. (B) Shows

temporal patterns in publication outputs along the above continuum for Asia, Africa, Latin America and Oceania. Note that Asia only includes Main

Asia and SE Asia.
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TABLE 1 Continental-scale breakdown of the most extensively researched FAWmanagement practices in the Americas, Asia, Africa, and Oceania.

Farming
approach

Practice Number of publications Ranking (top 10) by continent

Total Americas Asia Africa Oceania Americas Asia Africa Oceania

Substitution Biopesticides -

botanical

177 137 28 12 0 1 3 4 -

Substitution Bt transgenics 144 128 11 4 0 2 - 8 -

Substitution Biological control -

parasitoids

90 47 30 13 0 5 2 3 -

Efficiency Pesticide

application

methods

77 33 41 3 0 8 1 9 -

Substitution Resistant varieties 70 53 9 8 0 3 - 5 -

Substitution Bt insecticidal

protein

64 51 12 1 0 4 10 - -

Substitution Biopesticides -

entomopathogenic

fungi

58 29 24 5 0 9 4 7 -

Substitution Biopesticides - virus 49 36 10 3 0 7 - 9 -

Redesign Crop habitat

management

47 23 10 14 0 10 - 2 -

Substitution Insecticide

Resistance

Management

45 20 17 3 6 - 8 9 1

Efficiency and

Substitution

IPM 41 13 11 15 2 - - 1 2

Substitution Effect of pesticides

on beneficials

40 37 2 1 0 6 - - -

Substitution Highly efficient

pesticides

40 16 19 5 0 - 6 7 -

Substitution Biological control -

predators

39 22 11 6 0 - - 6 -

Substitution Highly selective

insecticides

33 11 20 1 1 - 5 - 3

Substitution Biological control -

entomopathogenic

nematodes

29 13 14 2 0 - 9 10 -

Efficiency Improved

diagnostic methods

28 6 18 2 2 - 7 10 2

Farming approaches are listed by declining scientific attention across all four regions combined. Columns 2-5 report the number of times that a given pest management practice is cited in each

of the regions. The four columns at the right show the ranking of the 10 most common approaches in each region.

Americas decades previously (Figure 1B). However, positive effects

from these approaches, can easily become exhausted if they are

not integrated with or replaced by a larger set of ecologically

sound practices. Given the rapid chemical intensification of Asia’s

farmland, these developments are cause for concern and warrant

remediation, especially as research on highly efficient pesticides

regardless of their secondary effects is still prioritized (Table 1).

Similarly, the recent arrival of FAW in Oceania has seen research

focus on managing pesticide resistance (Table 1). Improved

efficiency of pesticide-centered approaches and management of

the resistance problems that typically ensue will not lead to the

required system changes needed to promote the adoption of

agro-ecological approaches and sustainability. Given the above,

bold awareness raising, regulatory caps and creative incentive

schemes are required to put crop protection more firmly on the

required agro-ecological track.

Pesticides are well recognized as drivers of biodiversity loss

and ecosystem collapse (Carson, 1962). An effective harnessing

of biodiversity and agroecological processes for crop protection

at field, farm and agro-landscape scales can greatly reduce our

reliance upon pesticidal entrants and bolster agro-ecosystem

resilience, even in the face of climate change (Heeb et al., 2019;

Bullock et al., 2022). Our work shows that the requisite research

to implement ecologically based pest management is steadily

increasing (Figures 1A, B). However, this progressive approach

must be interpreted with important caveats: (1) substitution

research is typically repeated as an invasive pest moves across

the globe (Figures 1A, B, cf. Asia and Africa and the Americas).
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Responses to recent outbreaks of S. frugiperda in newly invaded

areas in Africa, Asia and the eastern hemisphere follow the same

reductionistic approaches that have been applied for decades in the

Americas, denying opportunities to rethink and innovate intomore

sustainable forms of pest, crop or farm management. (2) There

is little effort to integrate these methods into redesigned systems.

Overall, research tends to study the constituent components of a

farming system in isolation, overlooking the myriad of interactions

and critical services that healthy ecosystems can provide and

thereby missing out on ways to transform a globally defunct model

of agri-food production.

All pieces are in place for a transition toward resilient, pest-

suppressive farming systems (Wyckhuys et al., 2022b). However,

the present-day scientific effort is constrained by conceptual

and thematic impediments. Not only is pest management

science hampered by abstraction and geared toward single-

factor solutions (Wyckhuys et al., 2023), but it also does

not pursue transformability. Transformation of present-day

farming systems and the necessary research to underpin it

require significant cultural and institutional shifts. These must

acknowledge the profound changes to the scientific enterprise and

the funding models that are needed to support it (Vanloqueren

and Baret, 2017; Ickowitz et al., 2022; Wyckhuys and Hadi, 2023).

Historically, science has compartmentalized problems, resulting

in disjointed research agendas or so-called “silos” that tackle

the various components of the broader issue in isolation rather

than in an integrative, holistic manner. Instead, to effectively

transform farming systems, future endeavors must bring together

stakeholders from all sectors (consumers, producers, scientists,

economists, social scientists and policy makers), consciously bridge

social and natural science disciplines and work across (ecologically)

relevant spatial and temporal dimensions. By doing so, one can

operationalize the concept of ecological intensification and increase

the odds of achieving a much-needed redesign of food production

systems at scale. Supportive policies, cross-regional South-South

learning and technology transfer can consolidate documented gains

and take crop protection science beyond this critical transition zone

(Tittonell, 2014). An unprecedented opportunity presents itself for

scientists and farmers to double down on efforts to take globally

relevant yet locally appropriate practices to scale. Now is the

time to co-learn, rethink and redesign climate-resilient and pest-

suppressive agroecosystems and strive together for our common

future (Brundtland et al., 1987).
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