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Introduction: Climate change and weather variability pose significant 
challenges to small-scale crop production systems, increasing the frequency 
and intensity of extreme weather events. In this context, data modeling 
becomes a crucial tool for risk management and promotes producer 
resilience during losses caused by adverse weather events, particularly within 
agricultural insurance. However, data modeling requires access to available 
data representing production system conditions and external risk factors. 
One of the main problems in the agricultural sector, especially in small-scale 
farming, is data scarcity, which acts as a barrier to effectively addressing these 
issues. Data scarcity limits understanding the local-level impacts of climate 
change and the design of adaptation or mitigation strategies to manage 
adverse events, directly impacting production system productivity. Integrating 
knowledge into data modeling is a proposed strategy to address the issue 
of data scarcity. However, despite different mechanisms for knowledge 
representation, a methodological framework to integrate knowledge into data 
modeling is lacking.

Methods: This paper proposes developing a methodological framework (MF) 
to guide the characterization, extraction, representation, and integration of 
knowledge into data modeling, supporting the application of data solutions for 
small farmers. The development of the MF encompasses three phases. The first 
phase involves identifying the information underlying the MF. To achieve this, 
elements such as the type of knowledge managed in agriculture, data structure 
types, knowledge extraction methods, and knowledge representation methods 
were identified using the systematic review framework proposed by Kitchemhan, 
considering their limitations and the tools employed. In the second phase of 
MF construction, the gathered information was utilized to design the process 
modeling of the MF using the Business Process Model and Notation (BPMN).
Finally, in the third phase of MF development, an evaluation was conducted 
using the expert weighting method.

Results: As a result, it was possible to theoretically verify that the proposed MF 
facilitates the integration of knowledge into data models. The MF serves as a 
foundation for establishing adaptation and mitigation strategies against adverse 
events stemming from climate variability and change in small-scale production 
systems, especially under conditions of data scarcity.

Discussion: The developed MF provides a structured approach to managing 
data scarcity in small-scale farming by effectively integrating knowledge into 
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data modeling processes. This integration enhances the capacity to design and 
implement robust adaptation and mitigation strategies, thereby improving the 
resilience and productivity of small-scale crop production systems in the face 
of climate variability and change. Future research could focus on the practical 
application of this MF and its impact on small-scale farming practices, further 
validating its effectiveness and scalability.

KEYWORDS

methodological framework, small-scale farming, risk management, knowledge 
management, data modelling

1 Introduction

The development of agricultural insurance requires access to 
comprehensive data that accurately represents the conditions within 
productive systems and accounts for external risk factors. Currently, 
insurers employ techniques based on statistical and actuarial concepts 
to assess the conditions of the granted insurance and fulfill their 
acquired commitments. In this process, deficiencies in the 
mechanisms for determining insurance determinants are evident, 
stemming from a lack of understanding of the risk factors associated 
with agricultural activity and the vulnerability conditions of producers 
(Carter et al., 2017). Additionally, the non-stationary spatiotemporal 
structure of the data used for risk assessment introduces high 
complexity when a non-linear relationship between events and crop 
yield is present. Therefore, traditional statistical methods or other 
models may not be appropriate (Ghahari et al., 2019). By this, it is of 
great importance to propose alternatives that support the design of 
agricultural insurance, considering factors of data accessibility and 
availability in the agriculture domain.

At the farm level, crop yield data are either scarce or unavailable, 
impeding the estimation of individual losses due to a lack of 
representation and selection bias due to the high scarcity and low 
credibility of data at the local scale. Data scarcity can arise from the 
phenology of the assessed crops, as some have an extended 
development period, mainly perennial crops, making it challenging to 
obtain a historical data series. Additionally, in some productive 
systems, crop intercropping or rotation occurs, resulting in 
inconsistencies in data recording (Porth et al., 2019). Meanwhile, low 
credibility can be  attributed to the fact that past data may not 
be representative of the current state of the productive system, owing 
to changes in management practices such as the use of technologies, 
application of agricultural inputs, and production arrangement, 
among others (Porth et al., 2014, 2019). These issues lead to the design 
of insurance being formulated based on regional or municipal data 
rather than local or farm scales, resulting in an aggregation bias. This 
bias may increase idiosyncratic risk by underestimating or 
overestimating the anticipated risk compared to the actual individual 
risk (Finger, 2012; Lyubchich et al., 2019), a situation known as base 
risk, one of the primary challenges associated with the design of 
agricultural insurance.

Base risk discourages producers from showing a low willingness 
to pay for agricultural insurance, owing to a lack of confidence in 
determining policy payments. In this regard, studies (Berg et al., 
2009; Ramasubramanian, 2012; Thompson, 2017) evaluated the 

payment capability of producers, finding that they encounter issues 
with the insurance design, considering that payment is made based 
on an index constructed with data at the municipal or regional scale. 
Additionally, there are difficulties in comprehending the mechanisms 
for determining insurance policy payments. Therefore, it is pertinent 
to evaluate analytical methods that enhance the relationship between 
the indices determining policy payments and individual losses and 
increase transparency and trust in the methods employed to 
determine the proposed indices to improve their acquisition 
by producers.

Techniques based on machine learning, statistics, mechanistic 
or empirical models, or the integration of expert knowledge have 
been proposed to address the issue of base risk. Independently, 
each of these techniques presents drawbacks in its application. 
Mechanistic or empirical models have a high capacity to represent 
the complex processes of the agricultural system; however, their 
conception requires a high degree of knowledge of the system’s 
processes, and their application necessitates specific input data 
for validation within new scenarios (Tartarini et al., 2021). Due 
to their high heterogeneity, statistical techniques have limitations 
when analyzing data with different structures, frequencies, and 
scales (Ghahari et al., 2019). On the other hand, machine learning 
techniques are constrained or yield inadequate results when 
insufficient data is available for training and validating the 
developed models or when their development or outcome lacks 
a rational explanation within the framework of natural laws or 
human regulation (Von Rueden et al., 2019; Roscher et al., 2020). 
Based on the preceding, there is a need to propose mechanisms 
that allow for mitigating the disadvantages presented by the 
individual application of techniques and to leverage the 
advantages each offers. Accordingly, this paper proposes a 
methodological framework (MF) to facilitate knowledge’s 
characterization, extraction, representation, and integration into 
data modeling. This framework serves as a tool to support 
agricultural insurance design, particularly under data scarcity 
scenarios. The paper is structured as follows, the initial phase 
entails identifying the foundational information of the MF, 
employing the systematic review framework proposed by 
Kitchemhan (Kitchenham et al., 2009). The second phase of MF 
construction involves utilizing the gathered information to 
design the process model of the MF using the Business Process 
Model and Notation (BPMN; Chinosi and Trombetta, 2012). The 
third phase, involving an evaluation, was conducted employing 
the expert weighting method.
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2 Materials and methods

A Methodological Framework (MF) provides the structure, 
elements, rules, and methods required to implement a particular 
process or a series of processes (McMeekin et al., 2020). Constructing 
an MF necessitates identifying data and information that underpin its 
development. In this regard, McMeekin et al. (2020) consolidates three 
phases from a literature review on MF development. The first phase 
corresponds to identifying evidence to inform the MF, initially 
considering the identification of utilized MFs, which will serve as the 
foundation for constructing the new framework. Secondly, unused 
data and information that aid in contextualizing the MF are identified. 
The second phase involves the development of the MF; in this phase, 
elements, processes, and techniques found in the recognized 
frameworks are adapted, combined, or complemented to structure the 
new framework.

Additionally, critical data identified in the second instance of 
phase one are extracted. The extracted information must be analyzed, 
synthesized, grouped, or merged into categories that will support the 
new MF, following an iterative approach until consensus is reached 
with experts, which will serve as a basis for refining the proposed 
framework. Finally, the third phase corresponds to the process of 
evaluating the MF.

In this regard, a macro-process is proposed for constructing an 
MF to support the implementation of agricultural insurance under a 
data scarcity scenario within the informed data analytics framework 
(Figure  1). The MF will consider the integration of different 
methodologies, which will be adapted within the guidelines proposed 
by McMeekin et al. (2020). The schematization of diagrams follows 
the procedures offered by the American National Standards Institute—
ANSI (Zabinski, 2021).

In McMeekin et al. (2020), three (Porth et al., 2019) phases are 
established. The first corresponds to the identification of evidence to 
inform the MF (MFI), the second corresponds to the development of 
the MF (MFD), and the third corresponds to the evaluation and 
refinement of the MF (MFV). In MFI, one (Carter et al., 2017) macro-
process is considered. It involves identifying new information 
supporting the new MF’s development (P1). On the other hand, in 

MFD, one (Carter et al., 2017) macro-process is established, focused 
on the iterative development process of the MF (P2). Finally, in MFV, 
one (Carter et al., 2017) macro-process is found, oriented toward 
evaluating and refining the MF (P3).

2.1 Phase 1. Identification of new data to 
support the MF

To develop the macro-process (Figure 2), we consider the six 
steps for conducting a systematic review as established in the 
methodology proposed by Kitchenham (2004). The steps are the 
planning phase (SR-0), research identification (SR-1), primary study 
selection (SR-2), study quality assessment (SR-3), the relevant 
information is extracted from the preliminary studies (SR-4), and 
synthesis of the results found in the primary studies (SR-5). In the 
SR-0 phase, research questions and protocol design are established. In 
SR-1, the search strategy for the systematic review is generated, 
publication bias is identified, the bibliography management process 
is determined, and the search documentation mechanism is 
established. Additionally, in SR-2, inclusion and exclusion criteria are 
set for study selection. In SR-3, quality thresholds are defined, and 
instruments for their assessment are designed. In SR-4, relevant 
information is extracted from the primary studies; the formats 
established in the review planning are utilized to achieve this. Finally, 
in SR-5, a synthesis of the results found in the prior studies is carried 
out for a case study. The extracted information is tabulated in a way 
that consistently answers the research questions posed in the 
previous stages.

According to the review objectives, we present the plan to build 
that below.

2.1.1 PICOC
This study employs the PICOC framework (García-Peñalvo, 

2022), with the population defined as the agriculture and knowledge 
domain. The review is specifically directed toward identifying the 
elements utilized in knowledge management within the agricultural 
sector. Furthermore, the primary emphasis lies in identifying 

FIGURE 1

Phases and macro processes for the development of the methodological framework.
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techniques, methods, and tools employed for extracting and 
representing knowledge. The “Comparison” component has not 
been considered, as there is no requirement for a specific 
comparison of the results obtained by applying identified methods 
or techniques.

 • Population: Knowledge, agriculture
 • Intervention: Methods or techniques for knowledge management
 • Outcome: Describe methods or procedures for knowledge 

management in the field of agriculture
 • Context: Systematic Review of methods or techniques for 

knowledge management in the field of agriculture

2.1.2 Research questions
Four research questions have been formulated, which are 

related to identifying the type of knowledge and data structure 
managed in knowledge management processes and identifying 
methods or techniques for knowledge extraction and 
representation in agriculture. Additionally, the identification of the 
most used tools for knowledge representation and the limitations 
of each recognized knowledge representation method have 
been addressed.

R1. What methods or techniques have been used to extract the 
different types of knowledge in agriculture?

R2. What methods or techniques have been used to represent 
knowledge in agriculture?

R3. What are the most commonly used techniques for knowledge 
extraction and representation?

R4. What are the main limitations posed by knowledge 
representation methods?

2.1.3 Keywords and synonyms
Following the procedural steps, keywords were chosen for the 

proposed research questions. These keywords will be instrumental in 
formulating search equations within bibliographic sources. The 
selected keywords encompass all types of activities undertaken in a 
knowledge management process.

Keyword Synonyms

Agriculture Agricultural

Knowledge

Knowledge 

extraction

Knowledge discovery, Knowledge elicitation, Knowledge 

integration, Knowledge representation, knowledge acquisition, 

knowledge gathering, knowledge harvesting, knowledge revelation

2.1.4 Search string
An exploratory search equation was formulated, 

incorporating the critical term “agriculture” alongside all words 
associated with knowledge management processes. The equation 
was devised to address the review’s posed questions. The search 
scope did not concentrate on the agricultural insurance domain, 
as a preliminary review indicated insufficient data retrieval to 
inform the Methodological Framework (MF; agricultur*) AND 
(“knowledge elicitation” OR “knowledge harvesting” OR 
“expertise extraction” OR “expertise elicitation” OR “knowledge 
discovery” OR “knowledge extraction” OR “knowledge 
acquisition” OR “knowledge gathering” OR “knowledge 
revelation” OR “knowledge representation” OR “knowledge 
integration”) ≥ 2013.

FIGURE 2

Illustrates the defined processes for the macro-process.
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2.1.5 Sources
The bibliographic sources IEEE, Scopus, and Web of Science are 

selected for their outstanding reputation and extensive coverage of 
scientific articles. The IEEE source is pivotal as it focuses explicitly on 
papers related to the engineering and data analytics component, 
providing a solid foundation for research in this field. On the other 
hand, Scopus and Web of Science span all knowledge areas, ensuring 
a comprehensive and multidisciplinary view of research. It is crucial 
for contextualizing and enriching the work, enabling the identification 
of interdisciplinary connections and emerging trends that may 
significantly contribute to the study at hand.

 • IEEE1

 • Scopus2

 • WoS3

2.1.6 Selection criteria
About the selection criteria, consideration is given to studies that 

introduce new methods or replicate existing methods for knowledge 
extraction and representation. Additionally, studies corresponding to 
systematic reviews of the proposed topics are included, as they can 
provide comparative analyses or facilitate the identification of studies 
not captured by the formulated search equation. As for exclusion 
criteria, articles inaccessible through available databases are excluded, 
as some databases may have partial accessibility. Studies lacking 
descriptions of knowledge extraction or representation methods, 
those outside the domain of agriculture, and those lacking a clearly 
defined methodological and formal process are also excluded, as they 
lack a scientific foundation conducive to replication.

Inclusion Criteria:

 • We select articles presenting novel methods or techniques for 
knowledge extraction or replicating existing ones.

 • We choose research with new methods or techniques for 
knowledge representation or replicating existing ones.

 • We pick papers incorporating a review as part of the research or 
where the review is the main objective.

 • Finally, we sort out the most current version of an article in case 
of duplication across multiple sources.

We exclude papers:

 • That is not accessible in the available databases.
 • Outside the field of agriculture.
 • That does not describe the required methods or techniques.
 • The informal literature does not have a clearly defined 

research process.

2.1.7 Quality assessment checklist
In the quality evaluation process, criteria are considered to 

ensure that articles contain the necessary elements for the data 
extraction process. In this regard, articles that describe the methods 
or techniques for knowledge management (characterization, 

1 https://ieeexplore-ieee-org.ezproxy.unal.edu.co/

2 https://www-scopus-com.ezproxy.unal.edu.co/

3 https://www-webofscience-com.ezproxy.unal.edu.co/

extraction, representation, and integration) are selected. These 
methods should not be solely based on expert opinions but should 
also offer sufficient information about the methodological process 
for obtaining the proposed results. The selected articles should also 
demonstrate that the methods or techniques used have been 
replicated in other studies or subjected to a rigorous evaluation. 
Furthermore, studies should acknowledge the limitations of the 
evaluated methods or approaches.

The established criteria are evaluated on a categorical scale, 
determining whether they fully, partially, or do not meet the specified 
criteria. Articles scoring equal to or above 4.0 are then chosen and 
proceed to the data extraction stage.

Questions:

 • Is there a description of the methods or techniques for 
knowledge management?

 • Are the results based on research rather than expert opinions?
 • Do the articles provide sufficient information about the 

methodology and data used to develop or adapt the methods?
 • Are the knowledge management methods presented in a 

practical case?
 • Do the articles clearly state the limitations of the evaluated methods?

Answers:

 • Yes
 • Partially
 • No

2.1.8 Data extraction form
Finally, to address the guiding questions of the review, the 

extraction of general information from the articles is considered to 
characterize the studies, such as the publication year and the specific 
application area within agriculture. Regarding the detailed required 
data, the type of data used in the analysis is considered to identify the 
handling of structured, unstructured, or semi-structured data. The 
kind of knowledge managed (explicit or implicit), the methods or 
techniques for knowledge extraction and representation, the tools 
(languages, software) used to apply methods, and the limitations 
identified in their application are also considered.

 • Year
 • Specific area of application
 • Type of data used.
 • Type of knowledge
 • Extraction method or technique
 • Representation method or technique
 • Tools, languages, software
 • Limitations

2.2 Phase 2. Development of the MF

Considering the information extracted, the development of the 
MF is constructed following the Business Process Notation and 
Modeling - BPMN. The Bizagi software (Bizagi, 2020) is employed to 
achieve this.
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2.3 Phase 3. Assessment and refinement of 
the MF

For the evaluation of the MF, the expert weighting method was 
employed, which considers the following steps under Ishizaka and 
Nemery (2013):

 • Expert Identification: assembling a group of experts in knowledge 
application and its integration into data analytics processes, 
especially in agriculture.

 • Definition of Evaluation Criteria: in this case, the following 
evaluation criteria were proposed, taking into consideration 
aspects of clarity and comprehensibility, relevance and 
pertinence, adaptability and flexibility, and feasibility 
of implementation:
 o  C1: Is the Methodological Framework (MF) formulated 

and easily understandable for users and experts in 
data modeling?

 o  C2: Does the MF adequately address challenges related to 
integrating knowledge in data modeling?

 o  C3: Can the framework be adapted and applied in various 
data modeling contexts and situations?

 o  C4: Is implementing and effectively implementing the MF 
in real-world settings feasible?

 o  C5: Does the MF demonstrate activities related to 
characterization, extraction, and representation 
of knowledge?

 o  C6: Are the potential advantages and benefits of applying 
the MF in the data modeling context identified?

 o  C7: Does the MF address potential challenges that may 
arise during the knowledge management process in 
data modeling?

 o  C8: Is it possible to consider adaptations or updates to the MF 
without compromising the overall proposed structure?

 • Definition of the Evaluation Scale: a scale from 1 to 5 was 
used, where 1 indicates low acceptance, and 5 indicates 
high acceptance.

 • Calculation of the Average: based on the evaluations provided 
by the experts, a total weighted score was determined for 
each criterion.

 • Verification of Consensus: a review of significant discrepancies 
between the weights assigned by the experts was conducted. If 
substantial differences are found, reaching a consensus with the 
experts is necessary. For evaluating the consistency between 
experts, the Intraclass Correlation Coefficient (ICCa) and 
Spearman’s coefficient were used. For the ICCa, the ranges 
established by Hills and Fleiss (1987) were considered (low if 
ICC < 0.40; good if 0.41 < ICC < 0.75; very good if ICC > 0.75). 
For Spearman’s coefficient, the correlation between experts 
ranges from 0 to 1, with values close to 1 indicating 
higher correlation.

 • Utilization of the Evaluation for Decision-Making: based on the 
conducted evaluation, a decision was made on whether the MF 
requires changes or if, on the contrary, it remains as initially 
established. It ensures an iterative process in the development 
of the MF.

3 Results

3.1 Identification of new data to support 
the MM

Applying the protocol outlined in Figure 2 and considering the 
elements established in the systematic review planning, articles about 
knowledge management in agriculture were assessed between 2013 
and 2023. A total of 481 articles were initially identified, resulting in a 
final count of 37 articles after removing duplicates, applying the 
defined exclusion and inclusion criteria, and conducting a quality 
assessment of the studies (Figure 3). This structure conforms to the 
requirements for an indexed journal submission.

Following the data extraction process, various types of knowledge, 
extraction methods, representation methods, their limitations, central 
areas of application, and the tools employed were identified. Regarding 
knowledge representation methods, it was observed that 40.4% of the 
studies utilized knowledge graphs, followed by ontologies at 34.6% 
and production rules at 25% (Figure 4).

On the other hand, Table 1 identifies the techniques employed 
in the data extraction process, noting the utilization of manual 
procedures such as interviews or the application of surveys with 
experts, alongside Natural Language Processing (NLP) techniques 
oriented toward entity recognition and relation extraction in 
unstructured data. Some of the tools employed for knowledge 
extraction and representation were also identified. There was a 
notable prevalence of the “Web Ontology Language - OWL,” used 
for knowledge representation in the Semantic Web, and the rule-
oriented programming language CLIPS or one of its adaptations, 
such as Jess Rule, for knowledge representation through rules. 
Furthermore, in knowledge graphs, the Resource Description 
Framework (RDF) was identified as the primary means of 
representation. Additionally, the query language SPARQL was 
highlighted as essential for accessing and extracting information 
from RDF datasets.

Additionally, the main areas of intervention within the field of 
agriculture were identified, with pest and disease management 
accounting for 53.8%, comprehensive crop management at 19.2%, and 
nutritional management at 11.5% (Figure 5).

Regarding the data structure, 75% of the articles contemplate 
using unstructured data, encompassing text, images, audio, and video. 
39% consider semi-structured data, and 12% pertain to structured 
data. Furthermore, the two types of knowledge considered in the 
knowledge management process were identified, with explicit 
knowledge comprising 92% of the studies and tacit knowledge 
accounting for 36% (Figure 6).

Finally, Table 2 presents some of the limitations of knowledge 
representation methods. At a general level, limitations were 
identified, such as the size of the knowledge base, the impact of 
the quality of input data on the reliability of the represented 
knowledge, the specificity of knowledge, which constrains its 
scalability, and the high requirement of experts for the creation 
and updating of the knowledge base. In ontologies, resistance 
may arise from formalizing specific agricultural domain 
knowledge, highlighting the challenge of representing knowledge 
with spatiotemporal characteristics.
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3.2 Development of the MF (P2)

Based on the information gathered during the systematic review 
process, the Knowledge Management Framework (MF) was proposed 

for subsequent integration into data analytics. Initially, the MF was 
proposed using the flow diagram standard, and subsequently, the 
refined process involved applying the Business Process Model and 
Notation (BPMN).

Knowledge Characterization and Knowledge Extraction (KC 
and KE): in the initial phase of the proposed MF, the 
characterization process of the data scarcity issue was considered, 
along with an assessment of the required knowledge type and the 
identification of available knowledge sources. These sources may 
contain either implicit or explicit knowledge. Therefore, a selection 
process was defined through a gate establishing an inclusive flow, 
meaning that both types may be  found within the same 
knowledge source.

In cases where the source contains tacit knowledge, an 
elicitation process was outlined to extract unstructured data, 
which is subsequently stored in a data repository. Next, an 
activity was defined to extract implicit knowledge from the 
unstructured data, utilizing the identified extraction methods. 
These methods align with the Natural Language Processing 
techniques described in Table  1 and any others that may 

FIGURE 3

Systematic review process for identification of new data to support the MM.

FIGURE 4

Knowledge representation distribution in the agriculture domain.
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be placed. This process yields semi-structured or structured data. 
In the event of semi-structured data, a normalization and 
transformation process were established to convert it into 
structured data. Conversely, if the extraction yields structured 
data, it is directly stored in a data repository.

Finally, in cases where the assessed knowledge is explicit, the type 
of data structure to be processed was determined through an exclusive 

gate. Depending on the structure, the same processes defined earlier 
will be followed.

Knowledge Representation (KR): in the second phase, 
corresponding to the knowledge representation process, the selection of 
the knowledge representation method was defined. This decision was 
informed by the data repository containing the various representation 
methods and their respective limitations (Table 2). These limitations were 

TABLE 1 Extraction techniques and tools used.

Citations Tools Extraction techniques

Balleda et al. (2014) CLIPS (C Language Integrated Production System) –

Ahsan et al. (2014) Protégé/OWL/RDF/SPARQL –

Gaikwad et al. (2015) LUCENE –

Bonacin et al. (2016) CMapTools/ yEd/ OWL/ RDF Manual

Abbal et al. (2016) GeNIe software, SMILE interface (Library) Manual

Gomez-Perez et al. (2017) GATE framework, Model View Controller, Apache Lucene, Spring MVC Common Pattern Specification Language - CPSL

Kalita et al. (2017) CLIPS (version 6.3), WxCLIPS Manual

Devi and Dua (2017) SPARQL/RDF/ Protégé Stanford Dependency Trees

Agustina et al. (2017) Prolog –

Chenglin et al. (2018) Neo4j, Cypher, RDF, and OWL

Named Entity Recognition (NER)

Entity Disambiguation (Linking)

Relation Extraction

Segementation

Chatterjee et al. (2019) –

Pattern recognition

Text analysis

Open information extraction

Predicate-Argument Structure (PAS)

Ballot et al. (2018) DEXi software Manual

Stucky et al. (2018) ELK Reasoner, OWL, OntoPilot, CyVerse, RDF –

Xiaoxue et al. (2019)

Protégé/ TopBraid/ Composer/ WebProtege

RDF/ OWL/ SPAQRL

Stanford CoreNLP/ GATE

Neo4j/ Virtuoso/ AllegroGrapf

Stardog/ Ontotext/ PoolParty

Conditional Random Field (CRF)

Syntactic Tree-based Relation Extraction

Yanchinda (2019) CommonKADS Manual

Aminu et al. (2019) Protégé/ OWL2/ RDF First-order logic (FOL)

Afzal and Kasi (2019)

SWRL (Semantic Web Rule Language)

Jess Rule

Reglas SWRL (Extensión de RDF)

Malik et al. (2021) OOPS! – OntOlogy Pitfall Scanner! / RDF –

Jearanaiwongkul et al. (2019) OWL –

Goldstein et al. (2019) OWL/ Protégé / RDF –

Rousi et al. (2021)
DF/OWL (GeoTriples, RML y R2RML) - GraphDB (almacenamiento) - 

SPARQL (stSPAEQL - GeoSPARQL) y OWL2-RLR
–

Gharibi et al. (2020) OWL, SPARQL, AGROVEC, ConceptNet API POS tagging, chunking, and Stanford Parser

Godara and Toshniwal (2020) –
Technique for Order of Preference by Similarity to Ideal 

Solution (TOPSIS)

Kung et al. (2021) SPARQL, TensorFlow

Lattice Long-Short-Term Memory (LSTM)

Structured Perceptron, bidirectional Gated Recurrent Init 

(bi-GRU)
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identified for each method (Table 2). Subsequently, the representation 
method was implemented, considering the data object containing the 
available tools (Table 1). Following this, an exclusive gate was set up to 
evaluate the response of the knowledge representation method to the 
defined data scarcity issue. Should the implementation of the 
representation method appropriately address the problem, the represented 
knowledge is then stored in a data repository.

Knowledge Integration (KI): in the third phase of the MF, 
corresponding to the process of knowledge integration in data 
modeling, the task of integrating the knowledge represented in one 
or more phases of data modeling was established. This selection will 
depend on the model optimization objectives. This task makes use of 
the data warehouse containing the represented knowledge. Similarly, 
the knowledge integration process is defined by an inclusive gate, 
allowing the integration of knowledge in one or more phases 
simultaneously. In this sense, the represented knowledge can facilitate 
business or data understanding, support the data preparation process, 
optimize the modeling process, or support the evaluation process of 
the generated models. Following the model evaluation, compliance 
with the established requirements for the model was defined through 
an exclusive gate to proceed with its deployment or iterate the 
evaluation process of the integration phase(s).

Finally, in Figure 7, the Methodological Framework is presented, 
articulating the three phases that support the knowledge management 
process and its integration into data analytics models.

3.3 Assessment and refinement of the MF

In this phase of the MF development process, the framework 
underwent evaluation and refinement conducted by four experts in 
the field of data analytics. Eight evaluation criteria were employed, 
encompassing aspects of clarity and comprehensibility, relevance and 
pertinence, adaptability and flexibility, and feasibility 
of implementation.

 o C1: Is the Methodological Framework (MF) formulated and 
easily understandable for users and experts in data modeling?

 o C2: Does the MF adequately address challenges related to 
integrating knowledge in data modeling?

 o C3: Can the framework be adapted and applied in various data 
modeling contexts and situations?

 o C4: Is implementing and effectively putting the MF into practice 
in real-world settings feasible?

 o C5: Does the MF demonstrate activities related to 
characterization, extraction, and representation of knowledge?

 o C6: Are the potential advantages and benefits of applying the MF 
in the data modeling context identified?

 o C7: Does the MF address potential challenges that may arise 
during the knowledge management process in data modeling?

 o C8: Is it possible to consider adaptations or updates to the MF 
without compromising the overall proposed structure?

Following the evaluation conducted by experts (Figure 8), the 
highest weighted scores were assigned to criteria 3 (Lyubchich 
et  al., 2019), 4 (4.4), 5 (4.4), and 8 (4.4), reflecting aspects of 
adaptability, flexibility, relevance, and reliability in implementation. 
On the other hand, criteria 1 (3.4), 2 (3.4), 6 (3.2), and 7 (3.8) 
yielded lower averages, although not falling below the mean 
evaluation level. These criteria are associated with the clarity, 
comprehensibility, and relevance of the Methodological Framework 
(MF). The lowest weighted score was attributed to criterion 6, 
which pertains to identifying the advantages and benefits of 
applying MF in data analytics. Furthermore, considering the 
indicators used to evaluate the consistency among experts, the 
ICCa was satisfactory, with a value of 0.41. Additionally, the average 
Spearman coefficient among all experts was 0.85, indicating a high 
level of concordance.

Furthermore, in addition to the assigned rating for each established 
criterion, the experts provided recommendations to be considered in 
addressing the weaknesses identified in the MF (Table 3).

Based on the consolidated information, modifications were made 
to the MF (Figure 9):

 • Specific conditions were established at each output of the 
inclusive gateway for knowledge integration in data modeling, 
defining the objectives sought through the implementation of 
knowledge in data modeling.

FIGURE 5

Study area application.

FIGURE 6

Data structured and knowledge classification.
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 • A “data object” was added to describe various available methods 
for knowledge integration in data modeling.

 • Stages of the knowledge management process were delimited and 
named using lanes.

 • An activity was included to support the verification process of 
extracted tacit knowledge.

 • The order for activities of knowledge characterization 
was reorganized.

4 Discussion

4.1 Knowledge characterization and 
extraction

The integration of knowledge into data modeling allows for a 
reduction in data dependence, an improvement in the precision and 
robustness of models, and, in some cases, confers physical meaning 
to the obtained results (Willard et  al., 2020). Also, knowledge 
management strategies are critical for making decisions in climate 
change mitigations and adaptations to ensure better practices in small 
farming (Chisita and Fombad, 2020). In this context, some authors 
propose general frameworks for knowledge integration in data 
modeling, such as in Von Rueden et al. (2019), where the information 
flow in a process called informed machine learning is defined. This 
process generally involves problem identification and the search for a 
joint solution where data and prior knowledge are integrated, 
presenting some mechanisms for representing knowledge and its 
integration into data modeling. Similarly, in Roscher et al. (2020), an 

approach is proposed where the integration of domain knowledge is 
considered to improve the explainability of data models. Additionally, 
in Karpatne et al. (2017), despite not presenting a guide for knowledge 
management or its integration into data modeling, the paradigm of 
theory-guided data science is referred to, where the use of explicit and 
tacit knowledge is considered for refining the results of data models 
to be consistent with the understanding of physical phenomena.

Similarly, the proposed Methodological Framework (MF) is based 
on the general approach of integrating knowledge into data modeling. 
However, it delves into the processes by presenting specific activities 
to support the characterization, extraction, and representation of 
knowledge and its subsequent integration into data modeling. It 
considers the type of knowledge required, the type of data structure, 
and methods of knowledge extraction and representation, allowing for 
the support of the optimization of data models in their different 
development phases.

Regarding the characterization and extraction of knowledge, 
according to its origin and considering the types usually defined in the 
knowledge management area, it is classified as explicit and tacit 
knowledge (Hajric, 2018). Explicit knowledge, formalized and 
encoded, is called “Know-What.” This type of knowledge is found in 
the content of indexed journals, databases, public documents, reports, 
videos, and images, among others. Explicit knowledge is contained in 
files with different formats of structure, known as structured, semi-
structured, or unstructured data, and treated by various methods to 
carry out the extraction process. For the extraction process of explicit 
knowledge, the MF considers the identification of the type of data 
structure where it is contained. Data extraction and direct storage are 
proposed when dealing with structured formats, thinking they possess 

TABLE 2 Limitations of knowledge representation methods.

Citations Knowledge 
representation 
methods

Limitations

Balleda et al. (2014); Devraj and 

Deep (2015); Agustina et al. (2017); 

Gomez-Perez et al. (2017); Godara 

and Toshniwal (2020); Zhai et al. 

(2021); Nismi Mol and Santosh 

Kumar (2023)

Rules

 • Knowledge Base Size

 • Metadata can be unreliable due to incomplete or incorrect information.

 • Their approach is specific to one domain and might not apply to others.

 • Incomplete meta-data may lead to unreliable knowledge.

 • Uncommon terms cause ambiguity in symptom description

 • Depends on helpline data quality, prone to errors and biases.

 • Rule-based models can be limited by the quality of the rules and the need for manual intervention to 

update the rules

Ahsan et al. (2014); Bonacin et al. 

(2016); Devi and Dua (2017); 

Chenglin et al. (2018); Stucky et al. 

(2018); Goldstein et al. (2019); 

Jearanaiwongkul et al. (2021); Malik 

et al. (2021); Rousi et al. (2021); 

Bhuyan et al. (2022)

Ontologies

 • Meta-data may contain incomplete or incorrect information.

 • Certain agricultural knowledge types resist formalization using ontologies.

 • Results may vary based on data quality, keywords, and domain expertise.

 • Integration may encounter inconsistencies, errors, and missing data.

 • Ontology focuses on a specific domain.

 • The knowledge related may be insufficient.

 • Spatial–temporal knowledge representation is a challenge

Groumpos and Groumpos (2016); 

Yingying et al. (2017); Chenglin 

et al. (2018); Chatterjee et al. (2019); 

Xiaoxue et al. (2019); Gharibi et al. 

(2020); Kung et al. (2021)

Knowledge Graphs

 • Meta-data may have unreliable, incomplete, or incorrect information.

 • Rules for diagnostic knowledge have limitations due to system complexity.

 • Meta-data can provide unreliable knowledge.

 • Method effectiveness varies across domains.

 • Annotated data is crucial for training.

 • Experts identify costly semantic relations

 • Tool quality depends on input knowledge.

 • Tool’s performance is affected by input complexity
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a formal structure (Hajric, 2018). The performance of a normalization 
and transformation process from semi-structured to structured data 
is presented for semi-structured data. It is suggested by some authors 
who carry out the knowledge extraction process from HTML formats 
refined for the identification of concepts with the help of experts 
(Ahsan et al., 2014; Bonacin et al., 2016), the use of web crawlers to 
extract information directly from pages in HTML or XML formats 
(Baumgartner et al., 2005; Lin et al., 2018; Zhai et al., 2021) or the 

process of manual error correction, normalization, and standardization 
of semi-structured data to structured data suggested by Chenglin et al. 
(2018). This procedure is necessary to obtain data in a formal structure 
to be worked with using knowledge representation methods.

Similarly, tacit knowledge, known as “Know-How,” corresponds 
to that found in the minds of individuals and has not been quantified 
or represented in any accessible format. It is manifested through 
practices and experiences in the application domain (Rhem, 2005; 
Becerra-Fernandez and Sabherwal, 2014) and possesses defining 
characteristics such as difficulty in communication, practicality, 
experiential nature, unconsciousness, and personalization (Pérez-
Fuillerat et al., 2019). In the MF, when the process of extracting tacit 

FIGURE 7

Methodological framework to support the integration of knowledge into data modeling under data scarcity scenarios.

FIGURE 8

Methodological framework evaluation through expert weigh 
method.

TABLE 3 Expert recommendations to improve the MF.

Expert Recommendations

1

The impact of knowledge on the dataset for modeling (data 

modification, variable selection, dataset creation) is not elucidated. 

It is essential to delineate the stages of knowledge management 

explicitly. Does the Methodological Framework (MF) exclusively 

address the issue of data scarcity, or does it also encompass other 

challenges where knowledge integration might prove beneficial?

2 It should be an extracted knowledge verification process.

4

Starting with the assumption that an organization is facing a data 

scarcity issue by characterizing the problem constrains the use cases 

of the Methodological Framework (MF).

If “Identifying sources of knowledge” is addressed later, could the 

organization ascertain the data scarcity issue as early in the model?

The pathways of knowledge integration into data modeling are not 

clearly understood.
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knowledge is carried out, knowledge elicitation methods are used, 
which involve storing extracted knowledge from experts in 
non-structured formats (Jakus et  al., 2013). The use of elicitation 
methods depends on the characteristics of the users with whom the 
process will be developed. In the case of agriculture, some studies 
suggest the application of techniques such as knowledge harvesting 
(Frappaolo, 2008), storytelling (Whyte and Classen, 2012; 
Prasarnphanich et al., 2016; Zammit et al., 2018), interviews (Ferrari 
et al., 2016), and video sharing (Zammit et al., 2018).

Subsequently, when knowledge is contained in a non-structured 
data format, either through elicitation or explicit knowledge in this 
structure, the MF proposes a process of extracting knowledge 
considered implicit knowledge. It refers to patterns or relationships 
between data that are not evident to humans (Frappaolo, 2008). For 
this purpose, a tacit knowledge extraction task is established and 
supported by a data object containing extraction methods identified 
in the agriculture domain. Among the recognized methods, some 
studies report the use of manual tasks to carry out the extraction and 
categorization of data (Devraj and Deep, 2015; Bonacin et al., 2016; 
Goldstein et  al., 2019; Admass, 2022). Similarly, some authors 
mention Natural Language Processing (NLP) techniques, such as the 
“Stanford Dependency Trees” structure used for extracting entities 
from the agricultural knowledge domain (Devi and Dua, 2017), 
Named Entity Recognition (NER) used for identifying and classifying 
entities from text into predefined categories (Chenglin et al., 2018), 
Predicate-Argument Structure (PAS) used to represent relationships 
between the predicate and its arguments (nouns, prepositional 
phrases, etc.) in a sentence (Chatterjee et  al., 2019), Conditional 
Random Field (CRF), which corresponds to a probabilistic graphical 
model used for sequence labeling, and Syntactic Tree-based Relation 
Extraction, which uses syntactic trees to extract relationships between 
named entities in text (Xiaoxue et al., 2019). There are also tasks 
proposed by Gharibi et al. (2020), such as POS tagging, chunking, 
and Stanford Parser, which allow the identification of relevant words, 
their grouping into meaningful phrases, and the provision of a 
syntactic structure for understanding relationships between words. 
Finally, other authors mention the use of neural networks such as 
Lattice Long Short-Term Memory (LSTM), Structured Perceptron, 
or Bidirectional Gated Recurrent Init (bi-GRU; Kung et al., 2021; Zhu 

et al., 2021), used to process sequences of data in texts. These methods 
are necessary to identify patterns that are not explicit to humans and 
are present in the unstructured data used in the knowledge 
characterization process.

4.2 Knowledge representation

On the other hand, following Bergman (2018), knowledge 
representation is the description of an object through different 
elements. Knowledge representation comprises three main aspects: 
concepts as basic units of knowledge, associations or relationships 
between concepts, and a dynamic structure built by the concepts 
and their associations (Gutiérrez, 2012). Knowledge representation 
methods are applied to logical language resources, that is, formal 
and explicit language. Therefore, the Methodological Framework 
(MF) establishes a series of activities to extract and transform 
knowledge from unstructured and semi-structured data into a set 
of structured data that possess the required characteristics to 
implement representation methods (Staab and Studer, 2009). In this 
context, the MF delineates activities for selecting the knowledge 
representation method and its subsequent implementation. It is 
supported by data objects containing representation methods, their 
limitations, and the tools available to carry out the process.

The methods identified are production rules, generally used for 
procedural knowledge representation (Yingying et  al., 2017), i.e., 
methods or processes for performing a task (Gutiérrez, 2012). In 
agriculture, it has been widely used, especially for supporting pest and 
disease management (Balleda et al., 2014; Devraj and Deep, 2015; 
Kalita et al., 2017; Yingying et al., 2017; Admass, 2022). In some cases, 
production rules are used with other knowledge representation 
methods, as in Yingying et al. (2017), where rules are combined with 
knowledge graphs to design an expression and reasoning model for 
diagnosing diseases in tomato cultivation. In Afzal and Kasi (2019), a 
knowledge model based on ontology was developed to support rice 
production, using rules to keep the reasoning process of the knowledge 
base created through ontology. Additionally, in Sottocornola et al. 
(2023), rules are employed to support the explanation process of 
diagnosis in treating diseases in apple cultivation.

FIGURE 9

Methodological framework for knowledge characterization, extraction, representation and integration into data modeling.
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However, the use of production rules in agriculture has 
limitations, such as the relatively small size of the constructed 
knowledge bases (Balleda et al., 2014); moreover, when working 
with semi-structured or unstructured data, metadata may 
be derived from unreliable sources due to incomplete or incorrect 
information (Gomez-Perez et al., 2017). Rule-based systems are 
limited to the dataset used for constructing the knowledge base, 
which may not represent all the dynamics of the addressed 
problem (Godara and Toshniwal, 2020). Similarly, rule-based 
models are limited by the quality of the rules and require 
extensive expert intervention in the domain for rule maintenance 
and updating. They also face challenges when attempting to scale 
to other problems, either within the same domain or outside of it 
(Nismi Mol and Santosh Kumar, 2023).

On the other hand, ontologies can be defined as a formal and 
explicit specification of a set of related concepts (Jakus et al., 2013). 
Some studies in agriculture have proposed the use of ontologies to 
improve semantic interoperability between developed systems and data 
sources (Bonacin et al., 2016; Stucky et al., 2018), design and build a 
knowledge base to support query systems (Devi and Dua, 2017; Aminu 
et al., 2019; Jearanaiwongkul et al., 2019), support the development of 
knowledge graphs serving as a design layer (Chenglin et  al., 2018; 
Xiaoxue et al., 2019), provide lexical modeling and conceptualization 
to extracted knowledge (Yanchinda, 2019) or propose a semantic 
representation of IoT device data to reduce the need for human 
intervention (Afzal and Kasi, 2019). However, ontologies have 
limitations in their application, such as linguistic disambiguation. 
Expert keyword selection and query formulation may affect the quality 
of results, requiring a high availability of experts for any system scaling 
process. Many resources are needed for knowledge base maintenance.

Additionally, there is a low standardization of concepts in the 
agriculture domain, affecting ontology understanding and consistency, 
along with language barriers in which concepts used for ontology 
construction are found (Ahsan et  al., 2014; Bonacin et  al., 2016; 
Goldstein et al., 2019; Fahad et al., 2021; Kung et al., 2021; Malik et al., 
2021). These limitations have led to the development of graphs as a 
novel mechanism for knowledge representation. It involves the 
extraction of entities, attributes, and their relationships, integrating 
knowledge through entity alignment and association with ontologies. 
Moreover, it facilitates the completion of the knowledge update and 
retrieval processes (Xiaoxue et al., 2019).

Like ontologies, knowledge graphs serve as a structured semantic 
knowledge base that describes concepts and their relationships in 
symbols (Xiaoxue et al., 2019). In this sense, graphs can be represented 
with varying levels of formalization, depending on whether one desires 
a lighter and more flexible representation or aims for knowledge 
representation with semantic consistency, integrating with an ontology 
that serves as a design layer for the knowledge graph (Chenglin et al., 
2018). Under this, some authors have proposed the use of knowledge 
graphs with semantic support through ontologies to assess the impacts 
of agriculture and climate change on water resources (Bonacin et al., 
2016), represent knowledge at a general level in the agricultural field 
(Ahsan et al., 2014; Devi and Dua, 2017; Chatterjee et al., 2019; Malik 
et  al., 2021), automatically generate agrometeorological reports 
(Chenglin et al., 2018), address fertilization and soil management in 
corn cultivation (Aminu et al., 2019), support decision-making in pest 
and disease management (Goldstein et al., 2019; Jearanaiwongkul et al., 
2021), and precision agriculture (Fahad et al., 2021).

Similarly, studies have been proposed to consider using knowledge 
graphs to support the wine sector, employing a lighter and more 
flexible representation, i.e., without being supported by an ontology 
(Abbal et al., 2016; Groumpos and Groumpos, 2016). Finally, like 
ontologies and production rules, knowledge graphs present similar 
limitations, such as low scalability to other knowledge domains and 
even to different areas within the same knowledge domain. The quality 
of the represented knowledge depends on the input data to the system 
(Chenglin et al., 2018), the need for labeled data for the application of 
machine learning models for entity and relationship extraction, and 
the necessity of domain knowledge experts for identifying or verifying 
meaningful semantic relationships among extracted concepts, which 
can consume significant resources (Chatterjee et al., 2019); moreover, 
graphs must undergo constant maintenance and updates, requiring a 
substantial allocation of resources due to the need for a high level of 
expertise in the knowledge domain (Xiaoxue et  al., 2019). When 
selecting a knowledge representation method, the limitations of its 
application must be considered to address the problem appropriately.

4.3 Knowledge integration

Integrating knowledge into data modeling is of great interest, 
particularly in scenarios where data might be inaccessible, unavailable, 
or of low quality (Porth et al., 2019). Knowledge integration can occur 
at any phase of modeling (Von Rueden et al., 2023). Therefore, within 
the MF (Methodological Framework), a flow is established through an 
inclusive gate that allows the inclusion of knowledge represented in 
any data modeling phase. The conditions set in the inclusive gate 
include data generation (data understanding), model evaluation 
(model assessment), parameter adjustment (model development), 
scientific consistency (business understanding and model evaluation), 
and attribute selection (data preparation). In this regard, studies have 
been proposed related to knowledge integration in the data acquisition 
phase (Hain et al., 2011; Wang et al., 2017; Read et al., 2019; Yu et al., 
2019; Clemens and Viechtbauer-Gruber, 2020; Downton et al., 2020; 
Zhao et al., 2020; Sepe et al., 2021; Yu et al., 2021; Raymond et al., 
2022; Schröder et al., 2022), data preparation phase (Froehlich, 2020; 
Mudunuru and Karra, 2021; Bajracharya and Jain, 2022; Fuhg and 
Bouklas, 2022; Kohtz et al., 2022), optimization process of machine 
learning algorithms (Anoop Krishnan et al., 2018; Azari et al., 2020; 
Chadalawada et al., 2020; Huang et al., 2020; Qian et al., 2020; Sun 
et al., 2020; Tartakovsky et al., 2020; Jurj et al., 2021; Lu et al., 2021; 
Soriano et al., 2021; Kim et al., 2022), and as support for explaining 
data model results (MacInnes et al., 2010; Read et al., 2019).

Ontologies and knowledge graphs can support interoperability 
among knowledge domain datasets, verify the quality of extracted 
data, classify data, extract attributes or relationships, or facilitate 
working with heterogeneous data (Robinson and Haendel, 2020; 
Sahoo et al., 2022; Mummigatti et al., 2023). Furthermore, axioms 
established in an ontology can support constructing new ontologies 
by inducing the reuse of existing knowledge or verifying the 
consistency of the new ontology (Smith et al., 2007; Mungall et al., 
2011). They can also expand or enrich the characteristics used in a 
machine learning model without finding relationships from the data, 
ensuring consistency or coherence through context rules (Kulmanov 
et al., 2021; Shrivastava and Deepak, 2023). Similarly, ontologies and 
graphs can be used for task prediction (Mazandu et al., 2017; Chen 
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et al., 2021), text clustering (Wei et al., 2015; Ruas and Grosky, 2018; 
Mehta et  al., 2021), or to support attribute reduction or selection 
(Garla and Brandt, 2012). These integrations are typically achieved 
through entity similarity or embedded entity methods (Deepa and 
Vigneshwari, 2019; Sun et al., 2020; Mežnar et al., 2022). Therefore, 
ontologies and knowledge graphs are highly useful in supporting the 
development of data models, especially in contexts such as small-scale 
agriculture, where historical data series are mostly unavailable, or the 
available data is of low quality.

On the other hand, in some cases, knowledge can be explicitly 
represented, allowing its integration into data modeling phases 
without any characterization or extraction process. In this regard, 
hybrid models that integrate results from mechanistic or empirical 
models have been developed, either for generating training data or for 
model evaluation data (Ji and Lu, 2018; Feng et al., 2019; Maya Gopal 
and Bhargavi, 2019; Saha et  al., 2020; Sansana et  al., 2021). 
Additionally, the integration of algebraic or differential equations has 
been proposed, which can be used to condition policy in learning, 
modify the error function, function parameterization, or as restrictive 
functions (Mangasarian and Wild, 2008; Karpatne et al., 2017; Lu 
et  al., 2017; Muralidhar et  al., 2019; Ramamurthy et  al., 2019; 
Asvatourian et al., 2020; Gupta and Das, 2020; Meng et al., 2022). 
Similarly, invariance properties have been proposed to enhance the 
performance of machine learning models (Ling et al., 2016; Wu et al., 
2018). Lastly, expert knowledge has been incorporated to ensure that 
results generated by machine learning models have scientific 
consistency (Brown et al., 2012; Choo et al., 2013; Spinner et al., 2020). 
Thus, knowledge integration depends on the improvement objectives 
sought concerning data models.

4.4 The methodological framework as a 
tool for risk management in small-scale 
farming

The increase in variability and climate change, diseases, and pests, 
among other problems, negatively impacts agriculture, particularly 
affecting small-scale producers who are highly vulnerable and have low 
resilience. Additionally, food security relies on the adaptive capacity of 
small-scale producers to address such events (Hatfield et al., 2020). A 
significant amount of research has proposed data methods to 
contribute to solving these problems (Xie, 2011; Ghahari et al., 2019) 
(Dalhaus et al., 2018; Wang et al., 2018; Mangani and Kousalya, 2019; 
Roznik et al., 2019; Shirsath et al., 2019; Boyd et al., 2020; Zhang et al., 
2020). However, the information used has different temporal and 
spatial resolution, affecting its correct application at the local level. At 
the local level, farmers possess knowledge about practices and 
techniques; however, this local knowledge can vary from one 
agricultural region to another. In this context, knowledge extraction 
and representation can be  useful for storing knowledge from 
heterogeneous sources and sharing it with farmers (Jearanaiwongkul 
et al., 2019; Haider et al., 2021). Furthermore, there is an exponential 
amount of data about farm management and system conditions, 
necessitating proper methods to represent and share this data to 
support farmers’ activities (Aminu et al., 2019; Goldstein et al., 2019; 
Bhuyan et al., 2022). For this reason, in the context of small-scale 
farming, it is necessary to complement data analysis with knowledge 

that can support model development, considering data scarcity 
and heterogeneity.

Another problem where the Framework can be  useful is 
addressing the lack of financial data to support risk management in 
the context of financial inclusion. In this sense, knowledge about 
system conditions or agronomic management may be necessary for 
develop new instruments for improvement. The Methodological 
Framework (MF) can facilitate the extraction and representation of 
knowledge from various sources to build new tools, such as credit 
scoring, while considering the heterogeneity of diverse agricultural 
systems (Simumba et al., 2018; Bunnell et al., 2021).

In the context of agricultural insurance, the management and 
integration of knowledge in data modeling will enable the proposition 
of agricultural insurance design solutions, facilitating the reduction of 
aggregation bias by considering specific characteristics of the 
production system. These include crop phenology, access conditions 
or availability of primary resources and implementing techniques or 
practices that enhance or diminish producers’ adaptive capacity. 
Additionally, it may facilitate the integration of area-related 
knowledge, such as agroecological classifications or soil types. This 
adjustment would fine-tune the utilization of the proposed parametric 
index, consequently mitigating idiosyncratic risks. It also aims to 
minimize gaps in insurance acquisition stemming from poor design 
comprehension or a weak correlation between premium payments 
and individual-level losses (Berg et al., 2009; Ramasubramanian, 2012; 
Thompson, 2017; Fonta et al., 2018; Madaki et al., 2023).

The optimization of data models through knowledge can provide 
producers with more adaptive tools to enhance their resilience against 
variability and climate change events, diseases, pest control, and all 
agronomic management factors contributing to food security and 
economic growth in small-scale agriculture.

5 Conclusion and recommendations

The Methodological Framework (MF) is a tool designed to guide 
researchers in knowledge management. It defines techniques and 
methods for knowledge characterization, extraction, representation, 
and integration into data modeling to support data model development, 
particularly in risk management in small-scale agriculture. One of the 
main challenges in knowledge representation is that knowledge can 
be specific to one domain and might not apply to others. Therefore, it 
is essential to increase research on methods for data interoperability 
and knowledge sharing and evaluate reasoning characteristics.

Additionally, it is crucial to continue research on techniques for 
knowledge extraction, considering the significant amount of 
heterogeneous data and information sources (such as images, text, 
audio, and video) that can support development in the agricultural 
sector. Particular attention should be given to methods or techniques 
used for knowledge extraction from unstructured data.

It should be noted that the Methodological Framework (MF) was 
evaluated through an expert consensus. For this reason, it is 
considered a proposal, and it is crucial to apply the framework to 
address problems in small-scale farming, especially when there is a 
significant lack of consistent and high-quality data available. An 
example of such application is the design of agricultural insurance in 
small-scale farming, with an emphasis on the processes of index 
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selection, data preparation, and determination of optimal triggers, exit 
thresholds, and premium calculation.
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