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Due to the imbalance in the supply and demand of agricultural land, there is an 
increasing trend of land resources being remoted utilized across regions. Within 
the context of regional trade, changes in the agroecosystem service value (ESV) 
can be used to assess consumer responsibility. However, the embodied flow of 
ESV and its driving factors have been largely unexplored. This paper, utilizing the 
latest Chinese multi-regional input–output tables and the equivalence factor 
method, explores the spatiotemporal characteristics of embodied agricultural 
land and ESV flow between Guangdong and 30 other provinces, and further 
seeks to construct three types of embodied ESV models to reveal the driving 
factors. The findings reveal that during the process of domestic trade in goods 
and services, Guangdong Province has an inflow of 2.10  ×  107  hm2 of land 
from other provinces, with arable land, forestland, and grassland accounting 
for 25, 61, and 14%, respectively. Guangdong’s utilization of ESV is mainly 
dependent on external inflows, with minimal local consumption and outflows. 
The embodied ESV between Guangdong and other provinces is 1626.10 billion 
yuan, with an outflow of 325.32 billion yuan. The “Y”-shaped region consisting 
of the northwest, northeast, southwest, and Hainan bears significant potential 
ESV losses for Guangdong Province. Population growth and the intensity of 
ESV loss will promote the flow of cropland and forestland ESV, while economic 
development has a certain inhibitory effect on ESV transfer. This paper provides 
a new analytical perspective on issues such as the spatial distribution mismatch 
of land resources and ecologically unequal exchange. These insights are pivotal 
for promoting sustainable utilization of land resources and regional equity.
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1 Introduction

Ecosystem service value (ESV) is a quantitative estimate of the potential service capacity 
of ecosystems (De Groot et al., 2012). Costanza et al. (1997) estimated the global annual 
average ESV to be 33 trillion US dollars, significantly higher than the global annual GDP of 
18 trillion US dollars, thus profoundly demonstrating the immense economic value inherent 
in ES. Since then, ESV research has experienced rapid development (Kubiszewski et al., 2013; 
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Zeng et  al., 2023). Land serves as the spatial carrier for primary 
economic activities of human society and is also the fundamental 
resource and material basis for human survival. In other words, land 
possesses not only socioeconomic attributes but also ecological values, 
including provisioning, regulating, supporting, and cultural services, 
i.e., ESV. In the prevailing economic organizational framework, 
characterized by expanding production networks and the realignment 
of resource supply to meet commodity demand, economically 
developed regions with large populations and relatively scarce land 
resources indirectly utilize the land resources of other regions through 
the trade of land intensive products, thereby alleviating land resource 
shortages and obtaining ecosystem services (Chen and Han, 2015). 
Existing research has shown that under the context of “ecologically 
unequal exchange, “developed economies inadvertently transfer 
ecological and environmental burdens to less developed economies. 
This transfer often manifests in the form of significant challenges like 
biodiversity loss, soil erosion, and food insecurity, exacerbating 
environmental issues in these underdeveloped regions (Shandra et al., 
2009; Marselis et  al., 2017; Dorninger et  al., 2021). However, this 
environmental damage remains uncompensated, whether through 
monetary transfers in trade or economic assistance. Therefore, 
accounting for the profit and loss of ESV resulting from trade 
interactions between different regions is of significant importance for 
regional equity and sustainable development.

Regional ESV can be transferred through two primary mechanisms: 
natural processes and trade activities. For example, ecosystem products 
can naturally move across regions through media such as water, air, and 
soil, leading to spatial transfers of ESV (Koellner et al., 2019). This type 
of research often falls under the theme of “ecosystem service flows” and 
is based on an overall research framework of “pattern analysis-flow 
simulation-supply and demand matching,” ultimately leading to ESV 
accounting (Villamagna et al., 2013; Cui et al., 2022; Liu C. et al., 2023). 
Alternatively, ecosystem products can be transferred in the form of 
entities (e.g., commodities) through trade networks. The embodied 
flow of ESV within trade activities has garnered increasing attention 
from domestic and international academia. For instance, Chen et al. 
(2019) used a multi-regional input–output model (MRIO) to explore 
interprovincial land consumption and ecosystem services remotely 
correlated in China, but did not valorize ecosystem services. Lin et al. 
(2020) employed an environmental impact assessment method and 
MRIO to establish an ecological compensation estimation framework 
for the Beijing-Tianjin-Hebei region in 2012, using the ratio of the 
number of adjacent regions to quantify the transfer of ESVs from 
neighboring regions. Zhang et  al. (2021) introduced research on 
ecologically unequal exchange from Ecological Marxism into the field 
of ecological compensation and proposed the use of currently more 
mature environmentally extended MRIO models to calculate the 
disparities in interregional unequal exchange. The MRIO models can 
track value chains and their feedback effects among multiple trading 
partners through interregional trade matrices, thereby revealing the 
ultimate consumers of products and the associated resource and 
environmental costs (Miller, 1969). However, research based on this 
model has primarily focused on accounting for embodied land resource 
at different scales (O’Brien et al., 2015; Bosire et al., 2016; Vivanco et al., 
2017). In summary, research related to the profits and losses of ESV 
from a domestic and international trade perspective is still in its early 
stages. The research topics, quantity, and targeted regions are relatively 
limited. The idea of measuring interregional ESV transfer based on 

embodied land research is reasonable and feasible (Zeng et al., 2023). 
Therefore, this study utilizes a MRIO model to assess the transfer of 
agricultural land and ESV between regions to address the shortcomings 
in the research on ecological compensation.

There are three main methods for assessing ESV: the Integrated 
Valuation of Ecosystem Services and Tradeoffs (InVEST) model 
(Sharp et al., 2020), the energy-based accounting method (Yang et al., 
2019) and economic assessment. Specifically, the InVEST model 
focuses on obtaining the total value by quantifying the amount of 
ecosystem service functions and their unit prices. Such methods 
simulate ecosystem service functions at a local level by establishing 
production equations between individual service functions and local 
ecological environmental variables. The energy-based accounting 
method, from an ecological thermodynamics’ perspective, posits that 
everything necessary for human survival ultimately relies on natural 
resource provisioning, driven fundamentally by solar energy at 
different spatial and temporal scales (Franzese et al., 2017). Therefore, 
it can convert different types of incomparable energies into a 
comparable and standardized measure known as solar energy value. 
The method of equivalence factor belongs to the economic assessment 
category and is primarily represented by the global equivalent factor 
table developed by Costanza et  al. (2014) and the Economics of 
Ecosystems and Biodiversity (TEEB), as well as the national-level 
equivalent factor table developed by Xie et al. (2017). In provincial 
studies, the equivalent factor method is widely adopted due to its 
operability and efficiency. On one hand, the value of standard unit 
ESV equivalent factors can be adjusted based on the natural and socio-
economic characteristics of the consuming provinces to better reflect 
the actual values in unequal exchanges. On the other hand, when 
discussing specific compensation types, researchers can easily add or 
subtract ESV categories using this method.

In this study, agroecosystem services associated with Guangdong 
Province are selected as the main research object. Guangdong is the 
largest provincial economy in China with a large population and 
strong trade links with the rest of the country. On the other hand, 
among the various types of land implicit in regional trade, agricultural 
land is considered to have important ecological value, while 
construction land associated with industry and services has low ESV 
(Kubiszewski et al., 2020; Xiao et al., 2020). Guangdong is also an 
important agricultural production area in China, and the transferred 
ESV is not negligible. Therefore, assessing the profits and losses of ESV 
and its driving factors in Guangdong is representative and noteworthy. 
Based on the latest MRIO tables and equivalent factor method, this 
study examines the spatiotemporal characteristics of embodied 
agricultural land and ESV flow between Guangdong Province and 30 
other provinces, and seeks to construct three types of embodied ESV 
models to reveal the driving factors. This study provides a new 
analytical perspective for spatial mismatch of land resources and 
ecologically unequal exchange and offer theoretical and data support 
for achieving sustainable land resource utilization and regional equity.

2 Methodology and data

2.1 Transfer of agricultural land

The MRIO tables in China contain the input–output relationship 
among 31 provinces (excluding Taiwan, Hong Kong, and Macau) and 
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42 sectors. Following the approach by Shaojian and Jieyu (2023), the 
agricultural sector has been disaggregated into three types of 
agricultural land (arable land, forest land, pasture) to provide different 
land use coefficients for each type of land, and to estimate the 
embodied agricultural land flows between Guangdong province and 
other provinces. The MRIO model can be described as:
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where m represents the number of provinces and n represents the 
number of sectors. xir represents the total output of sector i in region 
r; aijrs  represents the value of output from sector j in region s that 
requires one monetary unit of output from sector i in region r, i.e., the 
direct input coefficient; yirs represents the final consumption of sector 
i in region s provided by region r; eir represents the products or 
services of sector i in region r supplied to the rest of regions. Eq. 1 can 
be simplified into a matrix to describe the entire input–output system 
as follows:

 x Ax Y= +  (2)

 x I A Y= -( )-1
 (3)

where x, A, and Y represent matrices for inputs, direct input 
coefficients, and final demand, respectively. Eq. 3 is a transformed 
version of Eq. 2, where (I-A)−1 is the Leontief inverse matrix, and I is 
the identity matrix. To calculate the hidden land used in the 
production of goods and services, Eq. 3 can be further extended by 
incorporating a land use coefficient matrix:

 L l I A Yk k= -( )-1
 (4)

where lk is the column vector representing the use of land type k 
by various economic sectors in each province, and Lk  is the flow 
matrix representing the land area of land type k used by various 
sectors in each province.

2.2 Calculation of ESV

Ecosystem services can be classified into four main categories 
with nine service functions, including provisioning services (food 
production, raw material production), regulating services (gas 
regulation, climate regulation, hydrological regulation, waste 
treatment), supporting services (soil conservation, biodiversity), and 
cultural services (aesthetic landscape) (Xie et al., 2008; Leemans, 
2009). The ESV coefficients per unit area for arable land, forest land, 
and grassland were revised based on the geographical location and 
natural conditions of Guangdong Province (Zhang et al., 2022; Liu 
Z. et al., 2023), resulting in comprehensive coefficients of 1.946, 
39.368, and 16.338, respectively. Because arable land is primarily 
used for productive activities, this study assumes that only 
provisioning ESV are transferred in trade, while other services are 
used locally. It is also assumed that all four categories of ESV for 

forest land and grassland are transferred or lost in trade when 
products and services are moved and no longer function locally. 
Although forest land and grassland may continue to provide some 
ecosystem services after being converted into commodities and 
services in trade, due to data constraints, these assumptions are 
necessary. The standard unit ESV equivalence factor in this study is 
calculated using Guangdong Province’s major cereal crops, mainly 
rice and potatoes (Zhao and Su, 2022). Through calculation, the 
economic value of one standard unit ESV equivalence factor in 
Guangdong is determined to be 2870.73 yuan/hm2, and this value is 
used in conjunction with the hidden land matrix and value 
coefficients to calculate the transfer of ESV between regions. The ESV 
calculation formula is as follows:
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where ESVk
rs represents the ESV of land type k transferred from 

province r to province s; Sk  is the area of land type k transferred; Vk is 
the comprehensive coefficient of ESV per unit area of land type k; D 
is the economic value of one standard unit ESV equivalence factor in 
Guangdong Province.

2.3 STIRPAT model

York et al. transformed the classic IPAT equation (York et al., 
2003; Lohwasser et al., 2020), which states that environmental impact 
(I) is equal to the product of population (P), affluence (A), and 
technological level (T), into a stochastic regression impact model 
known as the STIRPAT model to reveal the influence of socio-
economic factors on the ESV (I). The formula is as follows:

 I a bP cA dT e= + + + +  (6)

where a is a constant; the coefficients for P, A, and T are 
represented as b, c, and d, and e is the error term. When analyzing the 
factors affecting ESV transfers using Eq.  6 (Luo et  al., 2020), I 
represents the ESV value transferred from a province to Guangdong. 
An increase in population size leads to an expansion of production 
scale, thus transferring ESV through trade relationships. Therefore, 
this study uses population size to represent P. Affluence represents the 
region’s level of economic development and income, influencing 
production structure and ESV gains and losses. This study uses per 
capita consumption expenditure, urbanization rate, and GDP to 
characterize A. Additionally, following the research of Zhu et al., the 
ESV loss caused by trillion GDP is used as an indicator of technological 
level (Zhu et al., 2019). According to Eq. 7, if two of the three driving 
factors, P, A, and T, remain constant, the impact of the remaining 
factor on environmental changes is considered as its contribution to 
environmental change.

2.4 Data

The MRIO table contains the interregional input–output table of 
31 provinces in mainland China, which was published by the China 
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Emission Accounts & Datasets1 (Zheng et al., 2021). Land use data is 
sourced from the “China Statistical Yearbook.” Grain crop data and 
the proportion coefficients for the disaggregation of the agricultural 
sector are obtained from the ‘China Rural Statistical Yearbook’ and the 
‘Guangdong Rural Statistical Yearbook.’ The grain crop data (unit 
output value and the proportion of planting area for rice and potatoes) 
are used to calculate the economic value of the equivalence factor. The 
proportion coefficients for the disaggregation of the agricultural sector 
are based on the percentages of the four agricultural sectors 
(agriculture, forestry, animal husbandry, and fishery) recorded in the 
‘China Rural Statistical Yearbook,’ which are used to divide the 
‘agriculture, forestry, animal husbandry, and fishery products and 
services’ sector in the input–output table into the four sub-sectors for 
each province. This division aligns with the categories of land use 
(arable land, forest land, pasture, and fishery land) and provides a 
more accurate estimate of land use coefficients for the sub-sectors. 
Population, GDP, per capita consumption expenditure, and other data 
are sourced from the ‘China Statistical Yearbook.’ All data in this study 
are from the year 2017.

3 Results

3.1 Embodied flow of agricultural land in 
Guangdong

Figure 1 illustrates the inflow and outflow of agricultural land 
caused by final demand in Guangdong Province in 2017. In 2017, the 
areas of arable land, forest land, and pasture in Guangdong Province 
were 2.60 × 106 hm2, 1.08 × 107 hm2, and 3.1 × 103 hm2, respectively, 
with pasture land being relatively scarce. As one of the most developed 
provinces in China, Guangdong Province has a significant amount of 
embodied inflow land in the process of domestic trade in goods and 
services. The total land gains and losses in Figure  1A show that 
Guangdong Province had a total of 2.10 × 107 hm2 of three types of 
embodied land, with only 3.53 × 106 hm2 outflowed, resulting in an 
inflow–outflow ratio of 5.96. Among these, Yunnan, Guangxi, Inner 
Mongolia, Guizhou, and Heilongjiang are the largest sources of supply 
for the province’s agricultural sector, accounting for 15.20, 13.36, 
12.22, 10.70, and 8.31% of the total inflow, respectively. The five 
provinces with the smallest inflow areas are Shanghai, Beijing, Tianjin, 
Ningxia, and Shanxi, collectively accounting for only 0.83% of the 
total inflow. On the other hand, the top five provinces to which 
Guangdong transfers its agricultural land are Zhejiang, Henan, 
Jiangsu, Beijing, and Yunnan, with the outflow to Zhejiang accounting 
for 43.87% of the total. The five provinces with the smallest outflow 
areas are Qinghai, Tibet, Hainan, Ningxia, and Tianjin, together 
accounting for only 2.58% of Guangdong’s total outflow.

As shown in Figure 1B, the domestic inflow of arable land into 
Guangdong Province amounts to 5.16 × 106 hm2, while the outflow 
from Guangdong is 6.84 × 105 hm2, resulting in an inflow–outflow 
ratio of 7.55. The top five provinces with the highest inflow of arable 
land into Guangdong are Guizhou, Heilongjiang, Yunnan, Guangxi, 
and Jilin, accounting for 14.20, 12.93, 11.89, 11.55, and 7.46% of the 

1 http://www.ceads.net/

total inflow, respectively. The five provinces with the smallest inflow 
of arable land into Guangdong are Shanghai, Tibet, Beijing, Qinghai, 
and Tianjin, with Shanghai having the smallest inflow of only 
1626.70 hm2. Figure 1C indicates that the domestic inflow of forest 
land into Guangdong Province amounts to 1.29 × 107 hm2, while the 
outflow from Guangdong is 2.84 × 106 hm2, resulting in an inflow–
outflow ratio of 4.53. The top five provinces with the highest inflow of 
forest land into Guangdong are Yunnan, Guangxi, Guizhou, Inner 
Mongolia, and Heilongjiang, accounting for 19.96, 17.21, 11.70, 8.66, 
and 8.03% of the total inflow, respectively. The five provinces with the 
smallest inflow of forest land into Guangdong are Shanghai, Tianjin, 
Beijing, Ningxia, and Jiangsu, collectively accounting for only 0.58% 
of the inflow. Figure 1D shows that the domestic inflow of pasture land 
into Guangdong Province amounts to 3.01 × 106 hm2, while the 
outflow from Guangdong is 817.27 hm2, resulting in a significant 
disparity between inflow and outflow quantities. Provinces with a 
relatively large amount of embodied pasture land from outside 
Guangdong include Inner Mongolia, Xinjiang, Qinghai, Tibet, and 
Sichuan, accounting for 40.79, 18.71, 13.75, 10.05, and 5.16% of the 
total inflow, respectively. The five provinces with the least inflow of 
pasture land into Guangdong are Tianjin, Shanghai, Jiangsu, Beijing, 
and Fujian, with almost no inflow. Due to the similar trade structure 
of Guangdong’s agricultural sector with other provinces, the 
characteristics of outflows of arable land, forest land, and pasture land 
from Guangdong are consistent with the overall outflow 
characteristics. Overall, Guangdong has a relatively large embodied 
land exchange with Yunnan Province, while it has a smaller exchange 
of embodied land with Ningxia and Tianjin.

3.2 Embodied flow of ESV in Guangdong

Guangdong Province locally produced and possessed ESV 
amounting to 684.51 billion yuan, while the embodied flow ESV with 
other regions totaled 1,625.10 billion yuan, with an outflow of 325.32 
billion yuan. The utilization of ESV in Guangdong relies primarily on 
imports from other regions, with local production and a small amount 
of exports playing secondary roles. A comparison of the proportion 
of land sources reveals that Guangdong’s ESV supply from arable land 
is the most stable, followed by forest land, while the ESV from pasture 
land is more dependent on specific provinces. In Guangdong’s trade 
with other provinces, Hainan, Guizhou, Guangxi, and Yunnan 
transferred 33.92, 16.23, 13.60, and 9.90% of their own ESV, 
respectively (Figure 2A). As shown in Figure 2B, Guangdong Province 
locally produced and possessed ESV from arable land valued at 46.27 
billion yuan. The combined embodied ESV from arable land of 
provinces amounts to 28.85 billion yuan, with Guizhou having the 
highest embodied ESV at 4.10 billion yuan, and eight provinces 
including Heilongjiang (3.73), Yunnan (3.43), Guangxi (3.33), Jilin 
(2.15), Henan (1.54), Hainan (1.37), Inner Mongolia (1.28), and 
Shaanxi (1.06) having embodied ESV exceeding 1 billion yuan. These 
nine provinces account for 76.24% of the total ESV inflow to 
Guangdong Province. The outflow of ESV from Guangdong’s arable 
land amounts to 3.82 billion yuan. As depicted in Figure  2C, 
Guangdong Province locally produced and possessed ESV from forest 
land valued at 684.43 billion yuan. The combined embodied ESV from 
forest land of provinces totals 1455.15 billion yuan, with Yunnan 
having the highest embodied ESV at 290.43 billion yuan. Provinces 
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with ESV exceeding 100 billion yuan include Guangxi (250.41), 
Guizhou (170.23), Inner Mongolia (126.04), and Heilongjiang 
(116.89). These five provinces with ESV account for 65.56% of the 

total ESV inflow to Guangdong, while 19 provinces with ESV 
exceeding 10 billion yuan collectively account for 96.47% of the total 
ESV inflow. The outflow of ESV from Guangdong’s forest land totals 

FIGURE 1

Embodied agricultural land inflows/outflows in Guangdong Province in 2017. (A) Total land area. (B) Arable land. (C) Forest land. (D) Pasture.

FIGURE 2

Embodied EVS inflows/outflows in Guangdong Province in 2017. (A) Total land area. (B) Arable land. (C) Forest land. (D) Pasture.
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321.46 billion yuan. In contrast, Guangdong Province lacks abundant 
pasture land resources, with locally produced and possessed ESV from 
pasture land amounting to only 0.08 billion yuan, while the embodied 
ESV from pasture land outside the province reaches 141.1 billion yuan 
(Figure 2D). Provinces with ESV exceeding 5 billion yuan in this 
category include Inner Mongolia, Xinjiang, Qinghai, Tibet, Sichuan, 
Gansu, and Shaanxi, totaling 95.84% of the total ESV inflow to 
Guangdong. The outflow of ESV from Guangdong’s pasture land 
amounts to 0.04 billion yuan.

Furthermore, we used a quantile method to categorize the ESV 
transfer deficit (i.e., outflow minus inflow) into five classes to explore 
its spatial distribution characteristics (Figure  3). As shown in 
Figure 3A, provinces in the first tier with a deficit in arable land ESV 
compared to Guangdong Province include Heilongjiang and Jilin in 
the Northeast, Henan in the central region, Yunnan, Guangxi and 
Guizhou in the Southwest and Hainan. Provinces with a surplus in 
arable land ESV compared to Guangdong Province include Zhejiang, 
Beijing, Shanghai, and Tibet. Provinces with a larger deficit in forest 
land ESV compared to Guangdong Province are Heilongjiang, Inner 
Mongolia, Shaanxi in the northern region, Yunnan, Guangxi, 
Guizhou, and Hainan in the Southwest (Figure 3B). Provinces with a 
surplus in forest land ESV compared to Guangdong Province are 
primarily economically developed areas, such as Zhejiang, Beijing, 
Jiangsu, Shanghai, Shandong, and Tianjin. Figure  3C reveals that 
provinces with a significant deficit in pasture land ESV compared to 
Guangdong Province are more concentrated in the northwest region, 

while some provinces in the southeastern part have a small surplus 
compared to Guangdong Province. Figure 3D shows the ESV transfers 
and total deficits between Guangdong and other provinces. Although 
Yunnan, Shaanxi and Xinjiang are transferred more ESV from 
Guangdong, they are still in a weaker position of ESV deficit in trade 
with Guangdong. Overall, due to the relatively high ESV of forest land, 
the overall ESV deficit pattern in Guangdong Province is mainly 
influenced by the deficit in forest land ESV. In national trade, the 
‘Y’-shaped region encompassing the Northwest, Northeast, Southwest, 
and Hainan incurs potential ESV losses for Guangdong Province.

3.3 Driving forces of embodied ESV

The arable land ESV (Ic), forest land ESV (If), and pasture land 
ESV (Ig) transferred from other provinces to Guangdong are selected 
as dependent variables in 2017. The independent variables include 
population (P), per capita consumption expenditure (A1), urbanization 
rate (A2), GDP (A3), and trillion GDP-ESV loss (T). Based on the 
variables, three STIRPAT models for ESV transfer are constructed. 
Descriptive statistics for the indicators are provided in Table 1.

Table  2 presents the regression results for three models. It’s 
worth noting that in the ESV transfer regression models, the 
influencing factors are used as the difference between the 
transferring province and Guangdong Province, along with the value 
of the transferring province itself. The results indicate a strong 

FIGURE 3

Transfer deficit of ESV in Guangdong province (GD) in 2017. (A) Arable land. (B) Forest land. (C) Pasture. (D) Total land area.
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collinearity between the two, so only the value of the transferring 
province itself is used as the influencing factor. In the arable land 
ESV transfer regression model, a stepwise regression was performed 
for the affluence indicators, and GDP, population, and technological 
indicators can explain 82.08% of the arable land ESV transfer, 
indicating a good fit.

 I P A Tc = - + -18 18235 1 134745 1 148807 25367 393. . . .  (7)

From Eq. 7, it can be  seen that the main factors affecting the 
transfer of arable land ESV are population, GDP, and trillion 
GDP-ESV loss. For each increase of 10,000 people in population, the 
arable land ESV transfer will increase by 181.8 thousand yuan. For 
each increase of 10,000 yuan in trillion GDP-ESV loss, the arable land 
ESV transfer will increase by 11.5 thousand yuan. Conversely, for each 
increase of 100 million yuan in GDP, the arable land ESV transfer will 
decrease by 11.3 thousand yuan.

The factors in the forest land ESV transfer regression model can 
explain 77.38% of the forest land ESV transfer, indicating a good fit 
for the equation. However, due to the concentration of provinces 
transferring embodied pasture land ESV to Guangdong Province, the 
fit for the pasture land ESV transfer regression model is only 33.83%. 
Therefore, no further analysis is conducted for this model.

 I P A Tf = - + -987 0835 61 8079 1 202565 21421173. . .  (8)

As shown in Eq. 8, there are three main factors influencing the 
transfer of forest land ESV. Among these factors, the effects of 
population and trillion GDP-ESV loss are positively, while the effect 
of GDP is negative. For each increase of 10,000 people in population, 
the transfer of forest land ESV will increase by 9.87 million yuan. For 
each increase of 100 million yuan in GDP, the transfer of forest land 
ESV will decrease by 618.1 thousand yuan. For each increase of 10,000 
yuan in trillion GDP-ESV loss, the corresponding ESV transfer 

TABLE 1 Descriptive statistics of indicators.

Provinces Ic If Ig P A1 A2 A3 Tc Tf Tg

Beijing-Guangdong 1,357 137,514 10 2,171 37425.34 86.5 28014.94 484 49,086 3

Tianjin-Guangdong 5,803 54,805 0 1,557 27841.38 82.93 18549.19 3,128 29,546 0

Hebei-Guangdong 78,219 1,882,793 40,398 7,520 15436.99 55.01 34016.32 22,995 553,497 11,876

Shanxi-Guangdong 14,052 551,730 981 3,702 13664.44 57.34 15528.42 9,049 355,303 632

Inner Mongolia-Guangdong 128,376 12,603,752 5,755,589 2,529 18945.54 62.02 16096.21 79,755 7,830,260 3,575,742

Liaoning-Guangdong 84,818 2,539,931 460 4,369 20463.36 67.49 23409.24 36,233 1,085,012 197

Jilin-Guangdong 215,248 5,639,139 61,055 2,717 15631.86 56.65 14944.53 144,031 3,773,380 40,854

Heilongjiang-Guangdong 373,127 11,689,061 216,451 3,789 15577.48 59.4 15902.68 234,631 7,350,371 136,110

Shanghai-Guangdong 909 9,777 0 2,418 39791.85 87.7 30632.99 297 3,192 0

Jiangsu-Guangdong 42,632 329,979 7 8,029 23468.63 68.76 85869.76 4,965 38,428 1

Zhejiang-Guangdong 21,795 1,471,399 32 5,657 27079.06 68 51768.26 4,210 284,228 6

Anhui-Guangdong 85,746 1,328,556 57 6,255 15751.74 53.49 27018.00 31,737 491,730 21

Fujian-Guangdong 7,747 1,083,730 14 3,911 21249.35 64.8 32182.09 2,407 336,750 4

Jiangxi-Guangdong 39,089 2,767,221 70 4,622 14459.02 54.6 20006.31 19,538 1,383,174 35

Shandong-Guangdong 43,079 401,130 274 10,006 17280.69 60.58 72634.15 5,931 55,226 38

Henan-Guangdong 154,252 2,003,127 51 9,559 13729.61 50.16 44552.83 34,622 449,607 11

Hubei-Guangdong 18,876 638,935 61 5,902 16937.59 59.3 35478.09 5,320 180,093 17

Hunan-Guangdong 41,409 2,537,933 1,135 6,860 17160.40 54.62 33902.96 12,214 748,587 335

Guangxi-Guangdong 333,276 25,040,646 3,306 4,885 13423.66 49.21 18523.26 179,923 13,518,488 1785

Hainan-Guangdong 136,870 8,336,645 30,547 926 15402.73 58.04 4462.54 306,708 18,681,390 68,452

Chongqing-Guangdong 24,813 893,243 3,998 3,075 17898.05 64.08 19424.73 12,774 459,848 2058

Sichuan-Guangdong 53,256 3,932,158 728,441 8,302 16179.94 50.79 36980.22 14,401 1,063,314 196,981

Guizhou-Guangdong 409,761 17,023,164 55,001 3,580 12969.62 46.02 13540.83 302,612 12,571,733 40,619

Yunnan-Guangdong 343,149 29,042,881 68,149 4,801 12658.12 46.69 16376.34 209,539 17,734,660 41,614

Tibet-Guangdong 1,060 868,926 1,417,482 337 10320.12 30.89 1310.92 8,089 6,628,366 10,812,879

Shaanxi-Guangdong 105,739 6,642,504 483,534 3,835 14899.67 56.79 21898.81 48,285 3,033,272 220,804

Gansu-Guangdong 60,392 2,377,519 558,108 2,626 13120.11 46.39 7459.90 80,956 3,187,066 748,145

Qinghai-Guangdong 3,342 938,472 1,939,595 598 15503.13 53.07 2624.83 12,732 3,575,364 7,389,411

Ningxia-Guangdong 10,865 305,896 105,484 682 15350.29 57.98 3443.56 31,552 888,314 306,323

Xinjiang-Guangdong 46,127 2,442,172 2,639,731 2,445 15087.30 49.38 10881.96 42,389 2,244,239 2,425,787
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increases by approximately 12.0 thousand yuan. The factors 
influencing the transfer of arable land ESV and forest land ESV are 
consistent, indicating similarities in the development of the 
agricultural sector. After removing extreme outlier values, the 
influence of pasture land ESV transfer also converges with the 
previous two. Regarding the population indicator, an increase in 
population leads to increased employment and public fiscal 
expenditure pressure, which may prompt local efforts to develop 
advantageous industries and increase foreign trade, thereby increasing 
ESV transfer (Reid et al., 2005; Salman et al., 2022). In the case of 
technological backwardness, it implies that production and trade 
activities may cause significant ecological damage, and the delayed 
industrial upgrading due to technological issues may result in a focus 
on low-threshold primary industries, thereby increasing ESV transfer 
(Wang and Liu, 2020). For the affluence indicator, provinces with 
higher GDP tend to have more advanced industrial structures. On one 
hand, local fiscal dependence on agricultural trade revenue decreases, 
and on the other hand, these provinces often have more intensive land 
use and better-developed industries, which can reduce ESV transfer 
to some extent (Chen et al., 2022). Comparatively, the population size 
has a greater impact on ESV transfer than GDP. Therefore, to better 
balance socio-economic development and ecological environmental 
protection, local governments should transform their development 
concepts from high-speed growth to high-quality development and 
increase per capita GDP.

4 Discussion and conclusions

4.1 Discussion

4.1.1 Policy implications
Ecosystem services refer to the benefits that humans directly or 

indirectly derive from ecosystems (Bolund and Hunhammar, 1999). 
Quantifying their value helps us understand the direct connection 
between the natural environment and human well-being, raising 
awareness about the potential loss of usable value to the environment 
due to its degradation during the process of socio-economic 
development. This, in turn, positively influences people’s behaviors, 
lifestyles, and approaches to environmental transformation (Posner 
et al., 2016). From a trade perspective, accounting for the gains and 
losses of ecosystem services resulting from interregional interactions 
is a beneficial endeavor guided by the United Nations Sustainable 
Development Goals (SDGs). SDG 10, “Reducing inequality within 

and among countries,” and SDG 12, “Ensuring sustainable 
consumption and production patterns,” imply that various costs exist 
in quantifying regional trade relationships. Exploring optimal 
production and distribution patterns on this basis is necessary.

For provinces with an ESV deficit position in interprovincial 
trade, ESV outflows have both positive and negative implications. On 
one hand, it implies that the province bears a greater share of 
production functions on its land, potentially leading to the inability to 
convert some potential ecosystem services into human well-being, as 
well as bearing the pollution that may arise from the production 
process. On the other hand, trade brings investments and returns that 
stimulate local economic development, increase residents’ income, 
and create employment opportunities. Therefore, for provinces like 
Heilongjiang, Shaanxi, and Yunnan, which have significant ESV 
outflows, it is important to strengthen research on ecological 
sensitivity and ecological-economic marginal effects. This can help in 
accelerating industrial transformation and upgrading GDP, thereby 
avoiding irreversible damage to the ecological environment. Referring 
to the relationship between water resources and agricultural 
production, the loss of ESV may be exacerbated in some provinces 
(Zhao et  al., 2019). Specifically, since the land productivity gap 
between non-agricultural and agricultural production is much larger 
than the regional water scarcity gap, water-rich regions are more 
willing to use their land resources for non-agricultural production and 
import agricultural products from other regions. As a result, regions 
with relative water scarcity are forced to engage in agricultural 
production. Combined with the 2017 Bulletin of Annual Evaluation 
Results of Ecological Civilization Construction released by the China 
Statistical Bureau, some provinces that have large ESV deficits in trade 
but are not in a good ecological situation should be given further 
attention. For example, Henan, Heilongjiang, and Guizhou with high 
ESV losses in arable land, Heilongjiang, Guizhou, Shaanxi, and Inner 
Mongolia in forest land, and Xinjiang, Tibet, Gansu, and other 
northwestern provinces in pasture land. Measures that can be taken 
include tilting ecological restoration funds to these provinces, 
transforming the industrial structure accordingly, and launching 
counterpart ecological compensation pilots.

The results of the study on embodied ESV transfers can be used 
to measure and monetize responsibility directly from the perspective 
of consumption (Naeem et al., 2015), contributing to the realization 
of PES mechanisms and helping to estimate and determine “who, what 
and how much to pay, the mechanism of payment, etc.” Resource and 
environmental problems caused by land mobility in a region do not 
only need to be solved locally, but also require the responsibility of the 

TABLE 2 Regression results.

Indicators
c f g

Coef. Std. Err. t stata Coef. Std. Err. t stata Coef. Std. Err. t stata

Constant −25367.39 9543.096 0.013 −2,142,117 1,204,458 0.087 −2,166,065 3,107,502 0.492

P 18.18235 6.546705 0.010 987.0835 417.3616 0.026 123.3331 145.9781 0.407

A1 – – – – – – −62.1788 80.71891 0.449

A2 – – – – – – 57652.32 73759.01 0.442

A3 −1.134745 0.7449869 0.140 −61.8079 46.25253 0.193 −17.7248 16.33193 0.289

T 1.148807 0.254927 0.000 1.202565 0.311073 0.001 0.355464 0.204432 0.095

Rc
2 = 0.8208, R

f

2 = 0.7738, and Rg
2 = 0.3383.
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rest of the region that consumes the land in the region. In addition, 
since regional ESV estimates may be higher than regional GDP, policy 
makers can learn from the experience of carbon markets to set tax 
rates to improve the feasibility of inter-regional mutual aid (Lin 
et al., 2020).

4.1.2 Uncertainty and future studies
There are some uncertainties in this study. First, the MRIO table 

is only updated to 2017, and the findings are susceptible to changes in 
trade structure. However, the pattern of combining previous studies 
(Cai et  al., 2020) can still be  followed. From 2002 to 2012, the 
Northeast and Northwest were the main exporters of embodied 
agricultural land, while the East Coast and South Coast were the main 
importers. Guangdong, which is on the South Coast, remained the 
main importer in 2017, in line with this general trend. Net exports of 
embodied agricultural land increased further over the study period 
from the Northeast and Northwest to the East and South Coasts. 
Inland regions such as Inner Mongolia, Heilongjiang and Xinjiang are 
the main exporters of embodied agricultural land, which also matches 
the findings of this study. We thus have reason to believe that there is 
some path dependence on the robustness of the 2017 data and the 
embodied agricultural land transfer.

In addition, the traditional STIRPAT model cannot cover all the 
influencing factors of ESV changes. We  only considered socio-
economic factors such as technology, economy and population, and 
lacked consideration of variations in natural factors. While this paper 
quantifies the gains and losses of ESV in Guangdong Province, the 
ESV transferred out by exporting provinces should be further explored 
in future research. Taking forested land as an example, protective 
forests and economic forests may have different levels of utilization 
intensity. Protective forests may continue to provide services like gas 
regulation and climate regulation without being destroyed when 
exporting goods and services, whereas economic forests may 
be damaged, resulting in the loss of potential ESV value. Therefore, 
subsequent more refined accounting for ESV gains and losses will 
contribute to developed regions taking responsibility for the land and 
environmental damage caused by urbanization and industrialization 
processes in underdeveloped areas, increasing their willingness to pay, 
and achieving sustainable land resource utilization and regional equity.

5 Conclusion

Using the MRIO model and equivalent factor method, this study 
investigated the provincial-level embodied ESV flows between 
Guangdong Province and other provinces in China. Based on the 
overall situation of embodied ESV transfer, we constructed STIRPAT 
regression models to reveal the driving forces for ESV transfer, and 
provided a new perspective for regional equity and sustainable 
development. The main conclusions are as follows:

During the process of domestic trade in goods and services, 
Guangdong Province has an inflow of 2.10 × 107 hm2 of land inflow from 
other provinces, with arable land, forestland, and grassland accounting 
for 25, 61, and 14%, respectively. Within Guangdong, these three types 
of land amount to 1.34 × 107 hm2, with approximately 56% being used 
locally and 26% flowing out to other provinces. Yunnan, Guangxi, Inner 
Mongolia, Guizhou, and Heilongjiang are the largest sources of 
embodied land supply for Guangdong’s agricultural sector, while the top 

five provinces to which Guangdong transfers land out of the province 
are Zhejiang, Henan, Jiangsu, Beijing, and Yunnan. Guangdong 
Province locally produces and utilizes ESV totaling 684.51 billion yuan, 
while the embodied ESV amounts to 1625.10 billion yuan, with an 
outflow of 325.32 billion yuan. The utilization of ESV in Guangdong is 
mainly dependent on external inputs, with minimal local consumption 
and outputs. When comparing the proportions of ESV sources, 
Guangdong’s arable land ESV supply remains the most stable, followed 
by forest land. Notably, pasture land ESV exhibits a higher dependence 
on specific provinces, with seven provinces—Inner Mongolia, Xinjiang, 
Qinghai, Tibet, Sichuan, Gansu, and Shaanxi—contributing over 5 
billion yuan, accounting for 95.84% of the total inflow.

The provinces that experience an ESV deficit compared to 
Guangdong Province are mainly located in the northeast, southwest, and 
northwest regions, where ecological endowments are relatively favorable 
but economic development is slower. Conversely, the provinces with an 
ESV surplus are mainly located in coastal areas. Due to the relatively 
high ESV of forested areas, the overall ESV deficit pattern is primarily 
influenced by the ESV deficit in forested areas. In the national trade 
context, the “Y”-shaped region encompassing the northwest, northeast, 
southwest, and Hainan Island has incurred significant potential ESV 
losses for Guangdong Province. The main factors affecting the transfer 
of arable and forest land ESV are population, GDP, and trillion 
GDP-ESV loss. Among these factors, the effects of population and 
trillion GDP-ESV loss are positively, while the effect of GDP is negative.
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