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Introduction: With increasing demand for food and changing environmental

conditions, a better understanding of the factors impacting wheat yield is

essential for ensuring food security and sustainable agriculture. By analyzing the

e�ect of multiple factors on wheat yield, the presented research provides novel

insights into the potential impacts of climate change on wheat production in

India. In the present study, datasets consisting of countrywide environmental

and agronomic factors and wheat yield were collected. In addition, the study

also analyzes the e�ect of information demand of farmers on production.

Methodology: The study employs a regional analysis approach by dividing

the country into five zonal clusters: Northern Hills, Central India, Indo-

Gangetic Plains, North-Eastern India, and Peninsular India. Correlation and

Principal Component Analysis (PCA) were performed to uncover the month-

wise key factors a�ecting wheat yield in each zone. Furthermore, four

Machine Learning/Deep Learning-based models, including XGBoost, Multi-layer

Perceptron (MLP), Gated Recurrent Unit (GRU), and 1-D Convolutional Neural

Network (CNN), were developed to estimate wheat yield. This study estimated

partial derivatives for all factors using Newton’s Quotient Technique, a numerical

method-based approach.

Results: The analysis focused on applying this technique to the best-performing

wheat yield estimation model, which was the GRU-based model (with RMSE and

MAE of 0.60 t/ha and 0.46 t/ha, respectively).

Discussion: In the later sections of the article, multiple policy recommendations

are communicated based on the extracted insights. The results of the presented

research help inform decision-making regarding the development of strategies

and policies to mitigate the impacts of climate change on wheat production in

India.
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1 Introduction

Wheat, a vital crop globally, ensures food security for millions.
India, ranking second in wheat production after China (Shukla
et al., 2022), contributes ≈8% of the world’s annual production,
yielding around 105 million tonnes. Over the years, the wheat
cultivation area in India has expanded, covering more than 30
million hectares (Ramadas et al., 2019). For farmers, particularly
in northern and central regions, wheat serves as a crucial source of
income.

In this scenario, the Indian government has implemented
various policies and programs to promote wheat cultivation and
increase production, such as the National Food Security Mission
and the Pradhan Mantri Fasal Bima Yojana (Chopra, 2022).
However, the crop is also affected by various environmental
and agronomic factors, which can impact yield. Understanding
these factors is essential for improving crop productivity
and addressing food insecurity in India. In this context,
the presented study aims to identify the factors affecting
wheat yield in India and analyze their impact on production
using Machine Learning/Deep Learning (ML/DL)-based
models.

The existing studies have found that changes in average
minimum and maximum temperatures can directly impact wheat
yield (Asseng et al., 2011). This highlights the vulnerability of
agricultural systems to changes in temperature patterns and the
need to adapt to such changes to ensure food security. Secondly,
changes in rainfall patterns also impact wheat yield (Birthal et al.,
2021). Of all the factors at play, rainfall and temperature are deemed
the most pivotal variables affecting wheat yield, owing to their
direct impact on crop growth and development (Birthal et al.,
2021). Adequate rainfall ensures sufficient water availability for
plant growth, while optimal temperature ranges promote optimal
physiological processes. Considering these factors allows for an
accurate wheat yield estimation, which is crucial in determining
crop productivity. However, understanding the factors affecting
wheat yield is a complex task. The complexity of the crop’s biology
and the dynamic interactions between various factors make it
challenging to identify the most critical factors affecting yield (He
et al., 2022). Additionally, various regions in India with different
climates, soil types and farming practices make the analysis of
factors affecting yield more complex (Bhardwaj et al., 2022).

The concept of crop yield estimation utilizing remote sensing
data was first introduced in the late 1970’s, with MacDonald and
Hall (1980) pioneering the estimation of harvests in strategically
significant counties. Moreover, process-oriented crop simulation
models, such as DSSAT, APSIM, WOFOST, MCWLA, and
AQUACROP, can provide improved crop yield estimation when
combined with remote sensing data (Lobell, 2013; Sakamoto et al.,
2013; Huang et al., 2015; Lobell et al., 2015). These models can
adapt to changes in location, weather conditions, and timing of
images to produce yield estimates for each pixel. However, these
models often require more in-depth input data, including site-
specific soil and daily weather information. This, coupled with the
computational costs, can make it challenging to scale the approach
to cover multiple crops, regions, and years without incurring
significant time, monetary, and labor investments.

On the other hand, traditional statistical-based methods,
using specific response functions between yields and independent
variables, offer a simpler and more effective alternative for yield
predictions. (Huang et al., 2015; Qader et al., 2018). However,
these empirical regression models are often limited in spatial
generalization and suffer from local specificity (Folberth et al.,
2019). To overcome these limitations, it is essential to develop
innovative approaches for accurate, timely, and low-cost yield
estimation over large areas.

In recent years, in many countries, ML techniques have
been widely adopted in agriculture research, including crop
classification, growth monitoring, and yield prediction (Shah et al.,
2019; Wolanin et al., 2019). ML is a subset of artificial intelligence
where algorithms learn patterns and make predictions from data
without explicit programming. DL is a type of ML that uses neural
networks with multiple layers to learn hierarchical representations
of data, enabling complex feature learning and abstraction. Unlike
traditional ML algorithms, DL methods automatically extract
features from raw data, eliminating the need for manual feature
engineering. Due to their complex nature, DL architectures require
large amounts of data and computational power to train effectively.
While both ML and DL aim to extract insights from data, DL
excels at handling unstructured data like images, audio, and text,
often achieving state-of-the-art performance in various tasks. ML
approaches, such as regression tree, support vectormachine (SVM),
random forest (RF), and neural network (NN), have been shown
to perform better than traditional regression methods in yield
prediction studies (Cai et al., 2019).

Furthermore, DL has emerged as a powerful tool in yield
estimation, with its ability to transform raw input data into high-
level abstract representations through multiple non-linear layers
(Kuwata and Shibasaki, 2015; Khaki andWang, 2019). For example,
You et al. (2017) used Convolutional Neural Network (CNN) and
Long Short-Term Memory (LSTM) to estimate soybean yields
in the US and achieved better results compared to traditional
statistical-based methods and USDA estimations. Cao et al. (2021)
designed a Deep Neural Network (DNN) with 21 hidden layers and
50 neurons in each layer to predict maize yield in 2017 and achieved
superior accuracy compared to LASSO, shallow neural networks
(SNNs), and regression trees (RTs).

Barbier et al. (2015) explores the intersection of Computer
Science and Agronomy, highlighting the potential of Model-
Driven Engineering as the future of software engineering for
crop modeling and simulation. The proposed metamodel and
graphical syntax address the need for formal tools in conceptual
modeling, leading to improved production processes and industrial
application in the ITK Company. Gupta et al. (2022) provides
a comprehensive review of modeling technologies in climate-
smart agriculture (CSA), emphasizing advancements in crop
simulation models, hydrological models, and the potential of AI-
based approaches. It highlights the importance of these models for
improving crop and environment estimation, field management,
and decision-making in CSA. Furthermore, the study by Jamali
et al. (2023) developed a methodology using vegetation indices
(VIs) from sentinel-2 data and machine learning algorithms to
estimate leaf parameters in wheat. The results showed that the
DNN model achieved high precision in predicting leaf parameters,
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demonstrating the potential for accurate crop monitoring and
management.

A study by Santos et al. (2023) aimed to propose a methodology
utilizing Lautilizinga for predicting and projecting eucalyptus forest
growth and yield and analyzing dynamics. Different scenarios
with varying sample sizes were assessed to evaluate potential
cost savings. Artificial neural network (ANN) and random
forest (RF) algorithms were employed for estimation, resulting
in relative root mean square error (RRMSE) values ranging
from 7.9 to 14.5% for wall-to-wall prediction and 6.8–11.8%
for projection. Seyedmohammadi et al. (2023) aimed to predict
yield and effectively manage natural resources in the study by
modeling the impact of soil properties using various algorithms
such as classification and regression tree, k-nearest neighbors,
support vector machines, and a hybrid model combining support
vector machines with the firefly meta-heuristic algorithm. Soil
samples from 124 pistachio orchards in Iran were analyzed, and
critical predictors were selected based on correlation coefficients,
sensitivity analysis, and ANOVA hypothesis testing. The hybrid
model outperformed other algorithms, explaining 94% of the
variation in pistachio yield by efficiently capturing non-linear
relationships. The research by Son et al. (2022) demonstrates the
potential of using ML techniques and monthly image composites
from Sentinel-2 satellite imagery to predict rice crop yield
in Taiwan. Three ML models (random forest, support vector
machine, and artificial neural networks) were employed, with the
support vector machine performing slightly better. The validation
results showed close agreement between the predicted yields and
government statistics, with low root mean square percentage error
and mean absolute percentage error values.

Research by Pagano et al. (2023) explores the use of Artificial
Intelligencemodels, specificallyMulti-Layer Perceptron (MLP) and
Random Forest (RF), to predict daily actual evapotranspiration
in a Mediterranean citrus orchard. It demonstrates that these
models, especially Random Forest with seven input features,
can achieve accurate predictions, leading to significant water
savings of up to 38.5% compared to full irrigation. Incorporating
soil water content, weather, and satellite data enhances the
accuracy of evapotranspiration forecasts compared to models
using only meteorological variables. Another work by Singh et al.
(2023) used thermal and visible imaging along with machine
learning techniques to estimate plant disease severity under field
conditions, overcoming the limitations of existing methods. The
study found that combining machine learning models using model
combination techniques significantly improved the accuracy of
disease severity prediction in chickpea crops with wilt resistance.
A study by Prasad et al. (2023) used earth observation data
and an ensemble model, combining random forest (RF), support
vector machine (SVM), and multivariate adaptive regression spline
(MARS) models, to create a highly accurate wetland map. The
ensemble model achieved an impressive 96% accuracy when
cross-validated with field data and demonstrated the effectiveness
of integrating multiple key variables for probabilistic wetland
mapping, providing valuable insights for coastal area planning and
sustainable development.

Lv et al. (2013) analyzed the spatial pattern of wheat yield using
cluster analysis and emphasized the need to address the spatial gap

and improve production over time. To identify the factors affecting
wheat production, techniques such as the spatial Durbin model
(Zhang and Li, 2022), stepwise regression analysis (Zhang et al.,
2021), farmer field surveys (Zhang and Li, 2022), and machine
learning (Yu et al., 2022) are utilized. The consensus is that the
impact of crop yield is multidimensional, and climate factors have
the most direct effect on regional differences in yield (Fen et al.,
2020; Lin and Shao, 2020; Twizerimana et al., 2020).

The existing studies demonstrate the potential of usingmachine
learning and deep learning techniques to predict wheat yield and
identify the most critical factors affecting yield. These models
can analyze large and complex datasets and identify patterns and
relationships that may not be apparent from traditional statistical
methods. However, it is essential to note that these models must
be trained on a large and diverse dataset to achieve accurate
predictions. Despite the advancements in this field, there are still
some limitations to the existing research on the factors affecting
wheat yield in India, which have been addressed in the present
study.

• One limitation is that many studies have focused on specific
regions or states rather than the entire country. Generalizing
the findings to other regions or the entire country is difficult.
Additionally, many studies have used observational data,
which can limit the quality and completeness of the data.
Observation data may not represent the entire population or
cover all the relevant factors affecting wheat yield.

• Most studies focus on single data points for environmental
factors, such as cumulative rainfall and average temperature
for the entire season. Still, a comprehensive understanding of
these factors requires considering them month- or stage-wise.

• Another limitation is that most studies have used machine
learning and deep learning models for prediction. However,
interpreting and understanding these models are complex,
and it is not always clear how the model arrived at its
predictions. This can make it challenging to understand the
underlying factors affecting wheat yield. Therefore, further
analysis is needed, such as extracting the factor-wise partial
derivatives using the trained models.

• Additionally, many studies have evaluated the performance
of these models only on the training datasets, which can
lead to overfitting of the model. Overfitting occurs when a
model is too complex and fits the training data too well
but needs to perform better on new data. This can lead to
inaccurate predictions and unreliable conclusions. Therefore,
in the presented study, the models are assessed based on their
performances on unseen (testing) data.

In the present study, the environmental factors are analyzed
monthly for the rabi season, i.e., the rainfall and temperature
parameters are analyzed separately for October to April. This
helps to gain novel insights regarding the month-wise effects
of the considered factors. In addition, the study analyzes the
correlation between wheat yield and various environmental factors
and factors related to farmers’ demand for information. For this
objective, data corresponding to the farmers’ demand for assistance
regarding various topics were also collected from the nationwide
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farmers’ helpline network, i.e., Kisan Call Centers (KCC; Godara
and Toshniwal, 2022). Moreover, the study uses ML/DL-based
models to predict wheat yield based on the considered factors. The
study also investigates the scale of impact each factor has on the
yield using the numerical method-based partial derivatives. Overall,
the presented study is aimed to answer the following research
questions:

• What are the most critical (month-wise) factors affecting
wheat yield in India?

• How do these (environmental, agronomic, etc.) factors impact
wheat yield concerning different climatic zones?

Moreover, the analysis of the KCC data provides insights into
the information needs of farmers and how they seek information
to improve their crop yields. The results of this analysis can help
policymakers design effective extension delivery systems to meet
the needs of farmers, particularly concerning their information
needs. This can be essential to improving agricultural productivity
and supporting sustainable farming practices in the face of
changing climate conditions. The research work presented in this
study offers several novel contributions. Firstly, it investigates
the specific effects of month-wise environmental factors, such
as rainfall and temperature, on wheat yield, providing valuable
insights into the impact of these variables. Additionally, it explores
the influence of farmers’ demand for information on yield,
shedding light on the relationship between farmers’ needs and crop
productivity. The development of a DL-based model incorporating
both environmental factors and farmers’ assistance data is another
innovative aspect (a total of 36 variables considered), enabling
more accurate wheat yield prediction. Lastly, introducing LDI-
based merging of nationwide district-wise datasets enhances the
comprehensive analysis by integrating diverse information sources.

The initial step involved collecting data about diverse
environmental factors, such as rainfall and temperature, to
accomplish the set objectives. This data was acquired in a
1x1 grid format based on latitude and longitude coordinates
and converted into a district-wise representation. In addition,
information regarding the irrigated area corresponding to each
district was considered in the study. A major challenge in merging
various datasets is that the district and state names do not
exactly match when collected from different sources. And the
manual matching of thousands of records is an infeasible task.
We have introduced a Levenshtein Distance Index (LDI) for
merging (agricultural district-wise) datasets to tackle this problem.
Later, data corresponding to district-wise wheat yield and farmers’
demand for assistance from all over India were merged. To have
a more practical analysis, the whole dataset is clustered into five
groups according to their climatological properties, i.e. Northern
Hills, Indo-Gangetic Plain, Central India, Peninsular India and
North-Eastern India.

In the next step, a correlation analysis was done to identify
the association between wheat yield and various factors (each
month, corresponding to each cluster, separately). Further, PCA
was done to identify the factors explaining the most variance in
the dataset. Subsequently, four ML/DL-based models (XGBoost,
Multi-layer Perceptron (MLP), Gated Recurrent Unit (GRU), and

1-DConvolutional Neural Network (CNN)) were trained to predict
wheat yield based on the collected data, and the best-performing
model was chosen for further analysis. The ML/DL models
offer several advantages for agricultural applications. Firstly, these
models can effectively capture complex relationships between input
variables (such as environmental factors) and crop yield, enabling
accurate predictions. Secondly, ML/DL models can handle large
volumes of data and automatically learn patterns, reducing the
need for manual feature engineering. Finally, the working of these
models involves training the model on historical data to learn
the underlying patterns and then using the trained model to
make predictions on new, unseen data, allowing for continuous
improvement and adaptation to changing conditions.

Lastly, the partial derivatives (PD) corresponding to each factor
are calculated in the study and analyzed to capture an exhaustive
understanding of each undertaken factor. A significant challenge in
calculating PD with a DL-based model is that it is inconvenient to
calculate the PD throughmathematical derivation. The challenge in
calculating PD with a DL-based model arises due to deep learning
architectures’ complex and nonlinear nature. These models have
multiple layers and thousands of parameters, making it challenging
to derive the PD concerning each input variable analytically.
The intricate interactions and transformations within the model
make obtaining explicit mathematical equations for the derivatives
difficult. Therefore, in the presented study, a numerical method-
based approach was used. The following are the major research
contributions of the presented study:

• Analysis of the effects of month-wise environmental factors
(rainfall and temperature) along with the topic-wise farmers’
demand for information on wheat yield.

• Deep learning-based model development for wheat yield
prediction using environmental factors and information
regarding farmers’ demand for assistance (total 39 variables
considered).

• Introduced LDI-based merging of nationwide district-wise
datasets (environmental, yield, and farmers’ helpline data).

• Introduced partial derivative-based factor analysis using the
DL-based model to understand factors’ effect on wheat yield.

The remainder of the paper is organized as follows: Section
2 elaborates on the related research works. The details of
the proposed methodology used in the study are presented in
Section 3. Section 4 gives the results obtained through the
proposed methodology. A discussion of the obtained results and
recommended policies is given in Section 5. Section 6 gives a
summary of the presented work.

2 Methodology

2.1 Data collection and preprocessing

The data collection and preprocessing process is illustrated in
Figure 1. The data for the study was collected from various sources,
such as daily grid-wise rainfall data and daily grid-wise minimum
and maximum temperature data from the India Meteorological
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FIGURE 1

Approach used in the study to analyze factors influencing wheat yield.

Department (IMD) servers (MOES, 2023), https://mausam.imd.

gov.in/ for the years 2009–2020, Kisan Call Center data from the
Kisan Knowledge Management System (DAFW, 2020), area of
cultivation and wheat yield data (DAFW, 2023) at the district level
from the Ministry of Agriculture and Farmers’ Welfare of India,

and data on the area of irrigated land at the district level from the
International Crops Research Institute for the Semi-Arid Tropics
(ICRISAT) servers (ICRISAT, 2023).

It is important to note that the data preprocessing step is
crucial for ensuring the accuracy and reliability of the results in
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the study. The preprocessing step involves cleaning, transforming,
and organizing the data in an easily analyzed format. This step
helps to remove errors, inconsistencies, and outliers from the data
and prepares it for further analysis. Once the data was collected, it
underwent a series of preprocessing steps. The first step involved
converting the grid data into district-wise data and merging all
the data using the proposed Levenshtein Distance index. This
merging process was necessary since the available yield data was
in district rather than grid format. The distance-based weighted
average (Equation 1) was used for the grid-to-district conversion
of the rainfall, minimum and maximum temperature data.

s =

∑p
i=1 (Di × ai)
∑p

j=1 Dj

where, Di =
√

(lati − latd)2 + (loni − lond)2 (1)

Here, ai represents the (rainfall/temperature) data of the ith

closest grid point concerning the latitude (latd) and longitude (lond)
of the district record being processed, and lati and loni are the
latitude and longitude of the ith closest grid point to the target
district. p represents the number of grid points for calculating the
target district’s average (environmental factor) value.

Moreover, the datasets corresponding to the rainfall and (min.
and max.) temperature are available daily. The rainfall data were
cumulated for October to April (rabi season) from 2009 to 2020.
In addition, the temperature data was month-wise averaged for the
same period.

Another challenge researchers face while merging the district-
wise datasets is the spelling of the district names in the various
dataset mismatches. Moreover, this is the only attribute that can
be used for merging the datasets. Nevertheless, manual matching of
the nationwide multiple datasets is a challenging task. To overcome
this challenge, we developed a Levenstien Distance Index, which
indicates the edit distance of two words by comparing their length.
The well-known Levenstien Distance or edit distance (Mullin,
1985) is a widely used metric to perform this task, but the metric
doesn’t inform anything related to the lengths of the words being
compared. To overcome this problem, we present a modified
version of the same (Equation 2).

ldi(n1, n2) =

(

1−
ld(n1, n2)

max(|n1|, |n2|)

)

× 100

where, ld(x, y) =















































|x| if |x| = 0,

|y| if |y| = 0,

ld(tail(x), tail(y)) if if |x| = |y|,

1+min















ld(tail(x), y)

ld(x, tail(y))

ld(tail(x), tail(y))

otherwise

(2)
Here, n1, n2 are the input character strings between whom the

LDI is to be calculated, |n1| represents the length of string n1, and
tail(x) is the string x without the first character. The LDI ranges
from 0 to 100%, indicating the match percentage found between
the input strings.

To merge the district-wise records of two datasets, first, the LDI
is calculated for each record from the primary dataset with every
record of the secondary dataset (district names from each dataset
being matched). If the minimum LDI corresponding to a target
record is found to be more than 70%, then the records are merged;
otherwise, the record is discarded.

The data regarding the variables corresponding to the farmers’
demand for information is captured from the Nationwide Farmers’
Helpline Network (Kisan Call Centers (KCC; DAFW, 2020), run
by the Government of India as a free service to the Indian farmers
since 2004. The KCC services provide telephonic help to Indian
farmers on all agriculture-related topics. Furthermore, the Ministry
of Agriculture and Farmers’ Welfare keeps call-log records (in text
format) of each query call made by the farmers. It has made the
data publically available on the open data platform (NIC, 2023).
The KCC dataset contains individual query-call logs, with each row
representing a distinct log entry. The dataset encompasses multiple
attributes, including the farmer’s question, the corresponding
response, crop information, query type, category, time, location,
and more. Comprehensive details about these attributes can be
found in Godara and Toshniwal (2020).

In the presented study, 14 variables related to KCC are taken
into account, representing the 14 most popular topics that farmers
have been asking for the past 11 years (2009–2020) regarding
the wheat crop (Supplementary Table 2) Moreover, each variable
represents the district-wise number of query calls related to the
particular topic per hectare (cultivation area).

2.2 Correlation and PCA analysis

The data splitting process and performing correlation and PC
analysis is illustrated in Figure 1. The (merged) input dataset for
this phase contains five types of variables in it, i.e., district-wise
KCC (14 variables), Rainfall (seven variables), Temperature (Min.
temp. + Max. temp. = 7 + 7 = 14 variables), and two variables
regarding the Area of Cultivation and Irrigated Area. In addition, a
derived variable is also considered as an interaction of the Irrigated
Area×Max. Temperature.

The correlation analysis helps understand the relationship
between each independent variable and the dependent variable of
wheat yield (Equation 3). It helps identify the variables that strongly
or negatively impact the wheat yield.

r =

∑n
i=1(xi − x̄)(yi − ȳ)

√

∑n
i=1(xi − x̄)2

√

∑n
i=1(yi − ȳ)2

(3)

Here, xi represents the values of the x-variable, x̄ represents the
mean of the values of the x-variable, yi is the values of the y-variable
in a sample and ȳ represents themean of the values of the y-variable.
In the presented study, the correlation analysis of each variable is
performed separately. Furthermore, to understand the variables in
terms of linear relation with the wheat yield, the data points are
further divided into five clusters (based on different climatological
zones) for the analysis.

The PCA transforms the independent variables into a new
set of uncorrelated variables called the principal components
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(Abdi and Williams, 2010). PCA is a popular method for
dimensionality reduction in data analysis. A linear technique
transforms the original data into a lower-dimensional
representation through a linear projection. The main goal of
PCA is to reduce the number of dimensions while exploring
the relationships between variables. It is commonly used as a
preprocessing step before applying other statistical methods,
such as regression or clustering. By transforming the data into
orthogonal principal components, PCA ensures independence
between variables and enhances the accuracy of regression and
clustering methods.

Generally, the first principal component (PC1) explains the
maximum variance in the data, and the subsequent PCs explain
the remaining variance. Calculating the PCA for different zones
of India separately helps understand the regional variability in
the impact of different variables on wheat yield. Moreover, in the
presented study, PCA is performed to capture the variables that
show the highest variance in the dataset. In addition, the variable
that captures similar data point variance is also obtained from the
analysis. For the PCA, the whole dataset is divided into five clusters,
and PCA is performed on each cluster separately (Figure 1).

2.3 Model development and validation

In the Model Development and Validation phase, four ML/DL-
based models (XBG, MLP, CNN, and GRU) are trained and tested
to predict the district-wise wheat yield based on the environmental,
KCC and other variables. Brief information regarding the working
of each of the considered models in the study is as follows:

1. XGBoost (XGB): is a highly effectivemachine learning algorithm
that belongs to the Gradient Boosting Trees (GBT) model class.
It was developed to optimize the performance and scalability of
GBT models by Chen and Guestrin (2015). XGBoost stands for
eXtreme Gradient Boosting, and its popularity can be attributed
to its remarkable performance in real-world applications.

The XGBoost model uses a decision tree-based approach
for regression and classification tasks. It is an optimized
implementation of gradient boosting that uses parallel
computing and advanced memory management techniques.
In XGBoost, the trees are built sequentially, where each
tree is built to correct the errors made by the previous tree.
This allows XGBoost to handle non-linear relationships
between independent variables and the dependent variable.
The algorithm also uses a penalty term to control overfitting,
and the penalty term can be tuned using cross-validation
techniques. The XGBoost algorithm is a gradient boosting
method incorporating a regularization term into the objective
function (Equation 4) to mitigate overfitting.

Obj(r) =

n
∑

i=1

L(yi, ŷi
(r))+

r
∑

i=1

�(gr) (4)

Where yi is the actual value, ŷi
(r) is the prediction of

the rth round, gr denotes the structure of the decision tree,
L(yi, ŷi

(r)) represents the loss function, n is the number of
training examples, and �(gr) is the regularization term, derived
from the number and weights of the leaf nodes.

2. Multi-Layer Perceptron (MLP): is a type of artificial neural
network that is widely used for supervised learning problems
(Kruse et al., 2022). It is a feedforward network with multiple
hidden layers of artificial neurons that use non-linear activation
functions to model complex relationships between inputs and
outputs. The working of a neuron can be mathematically
described by Equation (5).

yj = ψ

( u
∑

i=1

wjixi

)

(5)

Where ψ is the activation function utilizing the weighted
summations of the inputs, and u represents the number of
nodes in the previous layer. The model is trained using the
backpropagation algorithm, which calculates the error between
the predicted output and the actual target and adjusts the
network weights accordingly. MLP is highly flexible, capable
of modeling a wide range of problems, and has been shown
to produce good results in many real-world applications. The
model is beneficial when the relationship between inputs and
outputs is highly non-linear and cannot be modeled effectively
by traditional linear regression techniques.

3. 1-D Convolutional Neural Network (CNN): is a deep learning
architecture designed for processing sequences of data, such
as time series, signals, or sequences of words. In contrast to
traditional 2-D CNNs, designed for image processing, 1-D
CNNs operate on sequences by sliding a filter window along
the temporal dimension of the input data. The filters in a 1-D
CNN learn to extract relevant features from the input sequence,
such as patterns, trends, or anomalies. The extracted features are
then fed through a series of fully connected layers to produce
a prediction. Using convolutional layers in 1-D CNNs allows
for the efficient learning of spatial dependencies in the data, as
the same filter can be applied at different positions along the
sequence.

The complete dilated causal convolution operation F over
consecutive layers for a 1-D sequence of a given input f ∈ Rn

and a filter f :{0, ..., k− 1} → R, on element s of the sequence, is
defined by Equation (6):

F(s) = (q ∗d f )(s) =
k−1
∑

i=0

f (i).qs−d.i (6)

where, d is the dilation factor, k is the filter size, and s − d.i
accounts for the direction of the past.

4. Gated Recurrent Units (GRU): are a type of Recurrent
Neural Network (RNN) architecture used for sequential data
processing. GRU was introduced as an improvement over
traditional RNNs as they are more computationally efficient
and can capture long-term dependencies more effectively. In
a GRU regression model, the network receives a sequence of
inputs and utilizes hidden states to process the information
and predict an output value. The model leverages the gating
mechanism in GRUs to control the flow of information and
decide which information to preserve and discard, resulting
in more robust and accurate predictions. The model can be
trained using various optimization algorithms such as stochastic
gradient descent (SGD) or Adam to minimize the prediction
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error and improve its performance. A GRU unit has two gates,
i.e., the update gate and the reset gate. The working of the reset
gate can be mathematically described by Equation (7).

rt = σ (Wr[ht−1,Xt]+ br) (7)

Where rt ,Wr and br are the output vector, the weight and the
bias of the gate, respectively. Like the reset gate, the update gate
determines the updation level to be done in the received data
(Equation 8). The output (ht) of the unit is a linear interpolation
between the element-wise multiplication of ht−1 and update gate
output zt , and the element-wise multiplication of ĥ and (1− zt)
(Equation 10). Here, ĥt is calculated using the reset gate output
and the current input as shown in Equation (9).

zt = σ (Wz[ht−1,Xt]+ bz) (8)

ĥt = tanh(Wh[rt ∗ ht−1,Xt]+ bh) (9)

ht = (1− zt) ∗ ht−1 + zt ∗ ĥt (10)

Where Wz , Wh, bz , and bh are the weights and biases used in the
update gate.

First, the dataset is divided into two parts for the development
of the regression models: training (80%) and testing (20%).
Later, the hyperparameter tuning was performed based on the
grid-based search technique (Bergstra et al., 2011) to find the
optimal architecture of the models. The study incorporates several
hyperparameters for model optimization, encompassing batch size,
number of epochs, layer count, layer size, and activation functions
for each layer.

Furthermore, the models learn from the historical data using
the backpropagation technique, a fundamental algorithm used in
neural networks to calculate the gradients of themodel’s parameters
concerning the loss function (Smolensky et al., 1996). It involves
the iterative process of propagating the error from the output layer
back to the input layer, updating the weights and biases along
the way, and enabling the network to learn and adjust its internal
representations to improve its predictions. The models were first
trained on the training data, and then their performance was
evaluated using the RootMean Squared Error (RMSE, Equation 11)
and Mean Absolute Error (MAE, Equation 12) on the testing data.

RMSE =

√

√

√

√

1

n

n
∑

i=1

(Yi − Ŷi)2 (11)

MAE =
1

n

n
∑

i=1

|Yi − Ŷi| (12)

where, n is the number of output data point, Ŷ is the output of the
forecasting model, and Y is the desired value. Finally, a Diebold
Mariano test was performed between the outputs of each model to
determine if the outputs of the models are statistically significantly
different (Costantini and Kunst, 2011).

2.4 Partial derivative analysis

The partial derivative analysis involves calculating the
derivative of a function concerning one or more independent
variables while holding all other variables constant. It provides an
estimate of how much the output of a function changes concerning
a slight change in one of the inputs. The partial derivative analysis
could be used to understand the effect of independent variables
such as monthly cumulative rainfall and average min./max.
temperature, and calls to the Kisan Call Center about specific
topics on the wheat yield. The result of the partial derivative
analysis can provide valuable insights into which independent
variables impact the wheat yield most and in which direction.
This information can be used to make informed decisions about
improving the wheat yield and mitigating adverse effects.

Generally, the partial derivative corresponding to each variable
is calculated by first obtaining the mathematical representation
of the model and later deriving the partial derivative using the
obtained function (Birthal et al., 2021). In contrast, representing
complex ML/DL-based models using a mathematical function
and deriving partial derivatives is infeasible. Therefore, in the
presented study, we used a numerical method-based technique
named Newton’s Quotient to calculate the same (Figure 1). In the
proposed technique, the centroid points corresponding to each data
cluster are first calculated using Equation (13):

Ci = 〈c1, c2, ..., ck〉

where, cj =
1

ni

ni
∑

m=1

xjm (13)

Here, Ci represents the centroid vector for the ith cluster, ni
represents the total number of rows in the ith cluster (climatic
zone), and xjm represents themth row element of the jth column. In
the second step, the partial derivative is calculated using Equation
(14):

∂f (Ci)

∂vj
=

f (C
j
i)− f (Ci)

hj

where, C
j
i = 〈c1, c2, ..., (cj + hj), ..., ck〉

and, hj = cj × 0.001 (14)

Here, vj is the variable corresponding to which the partial
derivative is calculated for the zone with Ci as the centroid point.
The presented study calculates the partial derivative for each
variable corresponding to each cluster (zone) separately.

3 Experiments and results

3.1 Data and descriptive analysis

Figure 2A shows the states corresponding to five zones, which
are considered in the presented study for analyzing the factors
behind the yield of wheat crops. Here, each zone covers different
climatological regions. Supplementary Table 1 gives the data points
corresponding to each climatic zone collected and processed in
the study. Previous research has demonstrated that deep learning
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FIGURE 2

(A) India’s wheat production categorized by agro-climatic zones, (B) district-wise wheat yield (t/ha) in log scale.

models can capture patterns from data points spanning a wide
range, typically from 2000 to 10,000 (Barbier et al., 2015; Cai et al.,
2019; Birthal et al., 2021). Our study utilized ∼4,500 data points,
covering 11 years from 2009 to 2020. Moreover, Figure 2B plots
the district-wise wheat yield (in log scale) on the India map. The
graph shows that yield is high in Indo-Gangetic and Central India.
Whereas in other zones, the yield of wheat is comparatively less.

Similar to the yield map, Supplementary Figure 1A gives the
area of wheat cultivation corresponding to each considered district
of India. The graph shows that the cultivation area in the districts
is high in Indo-Gangetic plains and Central India (more than 25e4
ha per district). In other parts of India, the wheat cultivation area is
<10e4 ha per district. In addition, from the map, it can be seen
that there are no data points in India’s extreme North, extreme
South and South-Western coastal region. This is because wheat is
not grown in these regions; therefore, districts from these regions
are not considered in the present study. Supplementary Figure 1B
illustrates the irrigated area in each district (hectares/1e4). From
the map, it is noticed that the states Haryana and Punjab are highly
irrigated. Moreover, Uttar Pradesh and Madhya Pradesh districts
need to be more irrigated. In addition, other zones (Northern Hills,
North-Eastern India, and Peninsular India) are the least irrigated
regions of India for the wheat crop.

Supplementary Figure 2A plots the daily minimum
temperature (captured at 2:00 a.m.) corresponding to the
December month from all the considered districts. The graph
shows that the northern hills have temperatures <5.0◦C this
month. In addition, the Indo-Gangetic plains, North-eastern
and central India, have an average minimum temperature
of 7.5-12.5◦C. Whereas, in the Peninsular zone of India, the

minimum temperature is noted to be more than 15.0◦C. A similar
pattern is noted in the graph corresponding to the district-wise
average daily maximum temperature (captured at 2:00 p.m.,
Supplementary Figure 2B). Here, the temperature is shifted to
10◦C more than the minimum temperature. Table 1 gives the
mean and standard deviation of the values regarding the (monthly
average min. and max.) temperature variables.

Supplementary Figure 3A shows the district-wise rainfall
corresponding to the April month of 2019 (in mm, log scale). The
study (PCA results) has shown that rainfall corresponding to April
captures the most variation of the dataset. The map shows high
rainfall in the Northern hills, North-Eastern and Peninsular India.
In contrast, the rainfall in the western part of central India (Gujarat
state) is noted to be the least in this month. The mean and standard
deviation values present in the rainfall-related variables are given
in Table 2 zone-wise.

Supplementary Figure 3B plots the KCC query index (Equation
15) corresponding to the weather-related questions (in log scale)
asked by the farmers of the respective districts.

KCCijk = (15)

Number of query calls corresponding to ith topic in jth year for the kth district

Area of wheat cultivation in jth year corresponding to the kth district

The graph shows that the farmers from the Indo-Gangetic plain
asked many questions related to the other zones. The map shows
that there is some common pattern in the regions where farmers ask
more questions (regarding weather) with the regions of high wheat
yield and area of cultivation per district (Figure 2B). Table 3 gives
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TABLE 1 Description of temperature-related variables in Celsius within the dataset.

Climatic zone October November December January February March April

Min. temp. Min. temp. Min. temp. Min. temp. Min. temp. Min. temp. Min. temp.

Average S.D. Average S.D. Average S.D. Average S.D. Average S.D. Average S.D. Average S.D.

Central India 15.39 2.32 11.62 2.42 10.71 2.40 13.67 2.20 17.71 2.04 22.50 1.85 25.61 1.91

Indo-Gangetic Plains 12.84 1.75 8.46 1.57 7.61 1.66 10.69 1.77 14.92 1.89 20.57 2.09 24.36 1.94

North-Eastern India 14.51 2.65 10.63 1.99 9.16 1.86 11.87 2.36 15.56 3.00 19.01 3.66 21.11 3.87

Northern Hills 7.94 2.48 4.16 2.27 3.09 2.39 5.41 2.58 9.05 2.57 13.64 2.58 17.27 2.62

Peninsular India 18.82 1.77 17.03 1.77 16.26 1.64 17.98 1.60 20.88 1.74 23.40 1.99 24.43 2.33

October November December January February March April

Max. temp. Max. temp. Max. temp. Max. temp. Max. temp. Max. temp. Max. temp.

Average S.D. Average S.D. Average S.D. Average S.D. Average S.D. Average S.D. Average S.D.

Central India 30.25 2.44 26.60 3.05 25.53 3.45 29.16 3.18 33.37 2.93 38.05 2.96 39.88 3.22

Indo-Gangetic Plains 28.47 1.85 22.95 2.50 20.81 2.73 25.13 2.89 30.32 3.05 36.89 2.62 39.82 2.29

North-Eastern India 26.67 4.41 23.01 3.87 22.04 3.80 24.85 4.38 28.10 5.11 29.79 5.98 30.16 5.93

Northern Hills 21.69 2.72 16.37 2.90 14.03 2.83 17.50 3.29 21.75 3.53 27.93 3.33 31.63 2.94

Peninsular India 30.55 1.88 29.84 1.82 30.39 1.69 32.61 1.91 35.14 2.25 37.07 2.76 36.93 3.26
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the mean and standard deviation of all the KCC-related variables
undertaken in the present study.

3.2 Correlation analysis

Figure 3 represents the zone-wise correlation coefficients of
all the temperature-related variables. The correlation between the
minimum temperature (monthly averaged) and wheat yield is
negative for three regions, i.e., Indo-Gangetic, Central India and
Peninsular India. The negative correlation is lowest in the Indo-
Gangetic Plains region, with the lowest correlation coefficient of
–0.64. Moreover, Northern Hills and North-eastern India show a
positive correlation of the monthly average minimum temperature
with the yield (+0.2–+0.4). In addition, among the considered
months, it was found that the minimum temperature of January is
the most negatively correlated compared to the other months.

The results show that the correlation between the maximum
temperature and wheat yield shows a similar pattern to the
minimum temperature. In Indo-Gangetic Plains, Central India and
Peninsular India, the correlation is negative, indicating that the
wheat yield decreases in these regions as temperature increases. In
North-Eastern India and Northern Hills, the correlation is positive.
In addition, the Northern Hills show a more positive correlation
than North-Eastern India because of the overall lower temperature
in this region. Moreover, among the considered months, it was
found that the maximum temperature of January is the most
negatively correlated among the other months.

Figure 4 gives the correlation coefficients between the wheat
yield and the rainfall-related variables corresponding to different
regions of India. The figure shows that in all the zones, the rainfall
from January till April shows a negative correlation with the yield,
and the negative correlation is lowest in the northeastern and
Northern hills. In other cases, rainfall of other months shows no
significant correlation with the wheat yield.

From Figure 4, it is noted that, all over India, the correlation
between the district-wise area of cultivation and wheat yield
is positive (+0.33–+0.68). Similar patterns have been observed
with the irrigated area and the derived variable (irrigated area
× average max. temperature). Interestingly, the regions with a
higher correlation (of the area of irrigation with wheat yield)
are the regions with comparatively lesser irrigated districts
(North-Eastern India, Northern Hills and Peninsular India,
Supplementary Figure 1B).

Figure 5 gives the correlation coefficient values among the
KCC-related variables and the wheat yield. The results show
that, in Indo-Gangetic Plains, the KCC query index related to
variety, fertilizer use, weedmanagement, nutrient management and
cultural practices shows a weak positive correlation (+0.2–+0.3).
In contrast, the query index for government schemes is noted to
have a weak negative correlation with the yield (–0.24). In addition,
in the Northern hills, query index regarding the varieties, weed
management, nutrient management and sowing time and weather
show a positive correlation (+0.4–+0.5) against the wheat yield.
Furthermore, the KCC query index did not significantly correlate
with the wheat yield in North-Eastern, Central and Peninsular
India.
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TABLE 3 Data description of the KCC-related variables (number of calls per hectare of cultivated area, scaling of ln(x) × 10E5).

Climatic zone
Weather Plant

protection
Varieties Fertilizer use

and availability
Nutrient

management
Weed

management
Cultural
practices

Average S.D. Average S.D. Average S.D. Average S.D. Average S.D. Average S.D. Average S.D.

Central India 8.41 4.31 7.82 3.12 9.09 4.03 7.57 3.65 9.13 4.09 8.90 4.45 7.51 4.23

Indo-Gangetic Plains 8.14 2.96 7.69 2.80 9.07 3.62 7.00 2.95 9.12 3.59 7.76 3.87 6.82 3.55

North-Eastern India 12.10 3.25 11.57 3.37 12.31 3.14 11.88 3.60 12.41 3.06 12.44 3.26 11.64 3.70

Northern Hills 8.99 3.84 9.16 3.85 10.88 4.08 9.74 4.28 10.87 3.92 11.89 3.67 9.37 4.25

Peninsular India 12.50 3.16 11.30 3.37 12.63 2.76 12.39 2.97 12.14 3.16 12.28 3.17 11.60 3.68

Government
schemes

Seeds Water
management

Field
preparation

Bio-pesticides
and

bio-fertilizers

Market
information

Sowing time
and weather

Average S.D. Average S.D. Average S.D. Average S.D. Average S.D. Average S.D. Average S.D.

Central India 9.50 4.81 8.49 4.70 8.02 4.62 8.73 4.67 11.75 4.24 9.03 4.81 10.17 4.81

Indo-Gangetic Plains 7.60 4.35 6.98 4.06 6.17 3.79 6.95 4.28 8.90 5.15 6.47 4.47 8.07 5.13

North-Eastern India 12.83 2.75 12.22 3.45 12.28 3.52 12.49 3.14 13.43 1.94 13.19 2.42 13.13 2.49

Northern Hills 11.01 4.27 10.82 4.31 10.96 4.40 10.61 4.48 12.73 3.16 11.89 4.02 12.07 3.71

Peninsular India 13.46 1.84 12.45 3.05 12.55 3.22 12.63 2.93 13.29 2.17 12.08 3.45 12.36 3.13
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FIGURE 3

Pearson correlation coe�cient values calculated zone-wise for the temperature-related variable in relation to wheat yield.

FIGURE 4

Zone-specific Pearson correlation coe�cient values between the rainfall-related variable and wheat yield.

FIGURE 5

Zone-specific Pearson correlation coe�cient values between the KCC-related variable and wheat yield.
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TABLE 4 Zone-wise data variation captured by first three PCs

corresponding di�erent types of variables.

Climatic
zone

Min. temp. Max. temp. Rainfall KCC

Northern
Hills

75.3% 97.7% 96.1% 98.3%

Indo-
Gangetic
Plains

82.5% 94.0% 92.9% 96.5%

Central
India

75.3% 95.1% 94.8% 94.9%

North-
Eastern
India

97.9% 98.1% 98.4% 85.9%

Peninsular
India

92.2% 96.1% 97.7% 55.6%

Average 84.6% 96.2% 95.9% 86.2%

FIGURE 6

Grouping attributes through Principal Component Analysis (PCA) of

the temperature-related variables.

3.3 Principal component analysis

In the presented study, PCA was performed on two aspects of
the data, i.e., zone-wise PCA to identify the variables that explain
the most variance in each zone and attribute-wise PCA to obtain
the variables that capture the most variation among the different
groups of attributes. Table 4 gives the zone-wise data variation
captured (in %) by the first three PCs. Here, the analysis is done for
each group of variables separately. The table shows that, on average,
the variables corresponding to max. temp. can capture the most
variance (96.2%) by their first three PCs, followed by the rainfall-
related variables (95.9%), KCC-related variables (86.2%) and min.
temp.-related variables (84.6%).

For an in-depth understanding of the effects of the considered
variables on wheat yield, the variables are clustered (group-
wise, i.e., rainfall, temp., and KCC) based on the PCA results.
The PCA on the monthly minimum temperature data reveals
that the variance in the data captured by the March and April
months is similar (Figure 6). Additionally, the monthly minimum
temperatures in November and December and October and
January exhibit similar variances in the data. A similar pattern is
reflected in the maximum temperature data points as well, max.
temp. of March and April capture similar variances. Moreover, the

FIGURE 7

Attribute clustering using Principal Component Analysis (PCA) on

the variables related to rainfall and Kisan Cal Centers (KCC).

variables corresponding to themax. temp. of the October, February,
and November and January months are clustered together. The
PCA of rainfall-related variables indicates that the monthly rainfall
of March and April have a similar variance in the data (Figure 7).
Additionally, the variance of the rainfall data for November and
January is also similar.

The PCA on the attributes related to the Kisan Call Center
revealed that the query index for Nutrient Management and
Sowing Time and Weather had similar variance (Figure 7).
Additionally, queries regarding Plant Protection, Fertilizer Usage,
and Market Information could be grouped. Furthermore, the
variance captured by the query index for Weather, Seeds, and
Field Preparation was similar. The PCs cluster together queries
about Water Management, Government Schemes, and Bio-
Pesticides/Bio-Fertilizers.

The presented study also calculates the PCs zone-wise for all
combined variables. The results found that the most contributing
factors in each of the PCs corresponding to the Indo-Gangetic
Plains include the monthly rainfall of December, January and
February. Similarly, the PCA of the data corresponding to Central
India shows that the attributes with the highest participation in the
PCs are the monthly rainfall data for February, March and April,
respectively. The results of the PCA conducted in North-eastern
India reveal that the first three PCs can account for 97.4% of the
total variance of the data points. Additionally, the most influential
factors in these PCs are similar to those found in the analysis of
North-Eastern India, which include the monthly rainfall values
of February, March, and April. The PCA of the data from the
Northern Hills region indicates that the key contributing factors
to these PCs are the same as those found in the Indo-Gangetic
Plains, which are the monthly rainfall of December, January, and
February. The PCA of data from Peninsular India reveals that the
most essential factors in each of these PCs include the monthly
rainfall of October, November, and April.

3.4 Model development and validation

Table 5 gives the architecture of the final models obtained
after hyper-parameter tuning using a grid search-based approach.
Figure 8 compares different ML/DL-based models in terms of their
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prediction on the testing dataset. The lower the values of RMSE
and MAE, the better the model performs. The figure shows that
the GRU-based model has the lowest RMSE and MAE values,
indicating that it performs the best among the four models. The
XGB model has slightly higher values for both metrics, indicating
that its performance is slightly worse than the GRUmodel’s. The 1-
D CNN and MLP models have the highest values for both metrics,
indicating that their performance is worse than the others. In

TABLE 5 Hyperparameters of the developed forecasting models (XN, XC,

and XG represent X number of neurons, filter size of 1D convolutional

layer and the number of GRU cells present in the corresponding layer of

the model, respectively).

Model Input layer Hidden
layer(s)

Output layer

GRU 36 36G 1N

MLP 36 10N 1N

CNN 36 16C , 8C , 4C , 2C , 3N 1N

addition, the Diebold-Mariano test on the outputs of the models
shows that the estimation of 1-D CNN and GRU-based models
have no significant differences. In comparison, all the other models’
outputs are significantly different. Figure 9 illustrates each model’s
outputs (actual vs. predicted) along with their R2 values. Here, the
x-axis represents the actual wheat yield, and the y-axis represents
the predicted wheat yield by the models (scaled from 0.0 to 1.0).
The graph shows that the models can capture the variations and
estimate the yield precisely with the highest R2 value of 0.75 (GRU
model).

Figure 10 presents the Bayesian Information Criterion (BIC)
values for the four undertaken models. Lower BIC values indicate
better model fit and parsimony. Therefore, among the models
listed, the CNN model has the lowest BIC value (–5,313.06),
suggesting that it is the best-fitting model considering both
goodness of fit and complexity. The GRU-based model also has
relatively low BIC values compared to the CNN model, indicating
that they provide better fits to the data. The XGB and MLP-
based model has the highest BIC values (–4,654.37 and –4,658.91,

FIGURE 8

Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) values in units of t/ha associated with each model on the testing dataset.

FIGURE 9

Comparison of actual vs. predicted scaled (0–1) wheat yield values for each model, along with their respective R-squared (R2) scores.
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FIGURE 10

Bayesian Information Criterion (BIC) values associated with each model on the testing dataset.

respectively), indicating that these models have the poorest balance
between model fit and complexity among the four models listed.

3.5 Partial derivative analysis

A partial derivative measures how much a function (wheat
yield) changes when one of its variables changes while the other
variables are held constant. The sign of the values indicates whether
the factor has a positive or negative impact on the wheat yield
in the target region. The magnitude of the values indicates the
strength of the relationship between the factor and the yield.
Supplementary Table 3 gives the values of the centroid points
(values of the zone-representative districts) corresponding to each
cluster.

Figure 11 gives the PDs of the monthly averaged minimum
temperature corresponding to each considered zone. The figure
shows that minimum temperature has a positive PD in North-
Eastern India from December to February. Interestingly, the lowest
negative partial derivatives are noted for the same months in the
Indo-Gangetic region. Furthermore, it seems that the min. temp.
the initial months of the season have more or less a positive PD on
wheat yield all over India except the North-Eastern region, while
the min. temp. the medial months seem to have a negative PD in
the same regions (opposite for North-Eastern India).

The month-wise zone-wise PD regarding the averaged monthly
maximum temperature concerning the wheat yield is also given
in Figure 11. According to the results, it appears that in general,
the regions with the highest positive partial derivatives for average
monthly maximum temperature are Central India, Indo-Gangetic
Plains, Northern Hills, and Peninsular India. The region with
the lowest negative partial derivative is the North-Eastern region
(≈-0.2).

The high temperature positively affects wheat yield in the initial
months (Oct.-Nov.) of the season all over India. On the other hand,

from the mid-season till the end of the season, most regions show a
negative effect on wheat yield of the increased temperature (except
Northern Hills and North-Eastern India).

Figure 12 gives the partial derivatives concerning the monthly
cumulative rainfall each month (October-April). The highest
positive partial derivatives are found for February (North-Eastern
India, 0.015), January (Central India, 0.008), and December
(Peninsular India, 0.004). In addition, the lowest negative partial
derivatives are found for November and December in the
Northeastern region of India (–0.06 and –0.02, respectively) and
in February in the Indo-Gangetic Plains (–0.02). This shows that in
most regions of India (excluding North-Eastern India), the initial
months’ rainfall (November-December) benefits wheat production.
Whereas the rainfall at the end of the season generally harms the
yield.

Figure 13 gives the PD of the KCC-related variable. The highest
value in the figure is for Questions related to Bio-Pesticides and
Bio-Fertilizers in North-Eastern India, with a value of 262.49.
The second highest value is for the questions related to Market
Information in the same zone, with a value of 77.52. The third
highest value is for the questions related to Field Preparation in
Indo-Gangetic Plains, with a value of 35.45. The three lowest
(negative) partial derivative values in the table are for the questions
related to Government Schemes, with a value of –32.88; questions
related toWaterManagement, with a value of –28.56; and questions
related to Nutrient Management, with a value of –6.10.

4 Discussion and policy
recommendations

This section comprehensively analyzes the study’s findings
and discusses the probable reasons behind the observed results.
Additionally, references to existing studies are provided to validate
and support the findings presented in this study. The obtained
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FIGURE 11

Computed partial derivatives with respect to temperature-related variables for each specific zone.

FIGURE 12

Determined partial derivatives pertaining to the rainfall-related variables for each individual zone.

results in the presented study indicate that rainfall in February,
March, and April harms wheat yield in all regions, which may
be because excessive rain during these months can lead to
water logging, disease and pest infestation, and reduced sunlight,
which can negatively impact the growth of the wheat crop
(Madhukar et al., 2022; Singh et al., 2023). Therefore, it is
more important that farmers should be informed about water
management techniques in these particular months. Table 6 gives
zone-wise policy recommendations on the type of intervention
required for improving wheat yield in the respective region.

From the analysis, it was noticed that in many regions, the
rainfall in the initial months positively affects the wheat yield. The
reasons behind these observations are that this period corresponds

to the growing season for wheat in these regions, and the amount
of rain received during these months is likely to benefit the growth
and development of the wheat plants (Zaveri and Lobell, 2019).
Overall, the values of the partial derivatives suggest that an optimal
amount of rainfall during the wheat cultivation period is crucial for
good yield. In addition, the farmers from different zones must be
helped at different times of the year regarding water management
and other technologies, as given in Table 6.

In Central India, Indo-Gangetic Plains and Peninsular India,
the correlation between the average minimum temperature and
wheat yield is negative, indicating that lower daily minimum
temperatures during the season are favorable for wheat growth
(Madhukar et al., 2021). In contrast, the positive correlation in
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FIGURE 13

Computed the partial derivatives with respect to KCC-related variables for each distinct zone.

TABLE 6 Policy recommendations tailored to specific clusters based on the results obtained.

Climatic zone Intervention type

Water management Plant protection Moisture
conservation

Weed management

Central India Nov.–Apr. Jan.–Mar. Oct.–Nov. Oct.–Dec.

Indo-Gangetic Plain Nov.–Apr. Jan.–Mar. Oct.–Dec. Nov.–Jan.

North-Eastern India Oct.–Mar. Feb.–Apr. Oct.–Nov. Nov.–Jan.

Northern Hills Oct.–Mar. Feb.–Apr. Nov.–Dec. Oct.–Feb.

Peninsular India Nov.–Feb. Dec.–Feb. Nov.–Mar. Oct.–Dec.

North-Eastern India and Northern Hills suggests that higher daily
maximum temperatures during the whole season are favorable for
wheat growth in these regions (Asseng et al., 2011). Additionally,
regions with high humidity, such as Indo-Gangetic Plains, may
have a lower tolerance to high temperatures, hence the negative
correlation (Birthal et al., 2021; Bhardwaj et al., 2022). These
observations indicate that the wheat yield may be positively affected
due to global warming in the Northern Hills and North-Eastern
India, whereas, in other regions, it may harm wheat yield. This
could be due to several reasons. For example, lower temperatures
favor wheat growth and development, while higher temperatures
stress the plants and decrease yields (Madhukar et al., 2021).
However, the Northern-Hilly region is already a cold climatic
region for wheat; therefore, higher temperatures may benefit wheat
yield in these regions in the future (Madhukar et al., 2021).

Similar observations are obtained from the monthly averaged
maximum temperature variable analysis. The results show that the
correlation between wheat yield and average monthly maximum
temperature is primarily negative in Central India, Indo-Gangetic
Plains, and Peninsular India. This suggests that the wheat yield
should decrease in these regions as the temperature increases.
One possible reason for this observation is that high temperatures
can cause plant stress, leading to decreased photosynthesis and

lower yields (Hu et al., 2020). High temperatures can also increase
water loss through transpiration, decreasing yields (Asseng et al.,
2011). Another possible reason for the negative correlation between
temperature and yield is that high temperatures promote the
growth of pests and diseases, which can damage crops (Bajwa et al.,
2020).

From the analysis of the KCC-related variables, it was found
that farmers’ demand for help in particular topics is strongly
related to wheat yield. The possible reasons behind the observed
values could be a combination of various factors such as the
specific crop grown in each region, the weather conditions,
the availability of resources, the type of farming practices used,
and the level of government support (Kumar et al., 2015).
For example, in Central India, there is a negative correlation
between the demand for information related to weather and wheat
yield.

In contrast, in the Northern Hills, a positive correlation exists
between wheat yield and the demand for information related to
weed management, nutrient management and wheat varieties. This
could be because the farming practices used in the Northern Hills
may be more susceptible to weed growth, and farmers in this region
may require more information regarding technologies like fertilizer
usage and the latest varieties (Yogi et al., 2023).
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Similarly, in the Indo-Gangetic Plains, there is a positive
correlation between the demand for information related to fertilizer
usage, weedmanagement, nutritionmanagement, cultural practices
and wheat yield. The reason is the farming practices used in the
Indo-Gangetic Plains may benefit more from these technologies
than other regions, and farmers may require more information to
access and use such technologies effectively (Kumar et al., 2015;
Yogi et al., 2023). Overall, the study results provide a snapshot of
farmers’ specific needs and concerns in different regions of India
and can be used to inform targeted outreach and education efforts
to support farmers in these regions.

The study also shows that the irrigation area positively impacts
wheat production, which has already been reported in multiple
studies (Zaveri and Lobell, 2019; Birthal et al., 2021). Moreover,
it will be more beneficial in India’s Peninsular, North-Eastern
and Northern-Hilly regions to focus on developing the command
area (irrigation systems). In addition, it was also found that the
derived variable (max. temp.× irrigated area) has a higher positive
correlation with the wheat yield (Figure 4). This suggests that it
is more beneficial if the farmers irrigate the land in the seasons
with higher temperatures, as high temperatures harm productivity
(Birthal et al., 2021).

The experiments related to model training give us interesting
information on the undertaken models. The study showed that the
GRU-based model is best suited for the task at hand compared to
the other models. The probable reason is it has been specifically
designed to handle sequential data. Moreover, the XGB-based
model also has a specific architecture for handling a variety
of datasets. Still, its performance is slightly worse than the
GRU-based model due to fewer training variables, differences in
implementation or hyperparameter tuning. Whereas, the CNN and
MLP-based models may not be as well-suited for the task at hand
as they are not explicitly designed for such sequential data and may
not be able to effectively learn the underlying patterns in the data
(Kamilaris and Prenafeta-Boldú, 2018). The data used to train and
evaluate the models may have specific characteristics that make it
more difficult for some models to learn.

The PD analysis on the KCC-related variables shows that the
wheat yield is greatly affected by the number of questions asked
by the farmers. Moreover, it is to be noted that there are two
primary reasons behind farmers asking more questions related
to a particular topic. First, the farmers are more interested in
gaining information on a particular topic for increasing their
yields. In this case, the more questions correspond to higher crop
yield. And second, the farmers are looking for solutions related
to a particular topic to save the damage. In this case, the more
questions correspond to lower crop yield. For example, in the
case of questions related to water management by the farmers of
Indo-Gangetic plains, it seems that if farmers ask more questions
related to water management techniques, it will have a positive
effect on the yield, the reason being they have been asking such
questions to improve the yield in the past. In contrast, the PD
corresponding to the same topic is negative in the North-Eastern
region because the farmers only askmore questions about this topic
when they face damage due to poor water management practices.
Based on the findings of the research work, the following policy
recommendations can be made:

• Management of rainfall and temperature: Emphasize
appropriate irrigation management practices during months
when the monthly rainfall and temperature variance is high.

• Climate-resilient agriculture practices: Encourage adopting
climate-resilient agriculture practices to reduce the impact of
extreme weather events on crop production.

• Farmer’s information needs: Address the information needs of
farmers regarding sowing time and weather, plant protection,
fertilizer usage, and market information.

• Agriculture extension services: Strengthen the agriculture
extension services by providing relevant and timely
information on water management, government schemes,
and bio-pesticides/bio-fertilizers.

This research work’s implications are significant for agricultural
practitioners and policymakers. Firstly, the analysis of month-
wise environmental factors on wheat yield can aid farmers in
making informed decisions regarding crop management strategies,
such as irrigation and timing of planting. Secondly, understanding
the relationship between farmers’ demand for information and
yield can guide the development of targeted agricultural extension
services tomeet the specific needs of farmers, potentially improving
overall productivity. Finally, integrating diverse datasets and
utilizing deep learning models provide a powerful tool for accurate
yield prediction, facilitating better resource allocation and planning
at both local and national levels.

While the research work presented in this study has notable
contributions, it is essential to acknowledge its limitations. Firstly,
analyzing month-wise environmental factors on wheat yield may
only capture some possible variables affecting crop productivity,
such as pest infestations or soil nutrient levels. Moreover,
while insightful, the partial derivative-based factor analysis may
oversimplify the complex interactions among various factors
influencing wheat yield. These limitations should be considered
when interpreting and applying the findings in practical contexts.

5 Conclusion

In the presented work, various data sources were collected
and analyzed, including daily grid-wise rainfall, daily grid-wise
minimum and maximum temperature, Kisan Call Center data,
district-wise area of cultivation, and wheat yield. Correlation
and PC analysis were conducted to identify the most significant
(month-wise) factors affecting the wheat yield. The findings from
the analysis showed that monthly rainfall and temperature of
particular months have significant impacts (positive and negative)
on wheat yield. Furthermore, in the study, four ML/DL-based
models were developed to predict the wheat yield and their
performance was evaluated using RMSE and MAE. The results
showed that the model developed using GRU had an excellent
performance in predicting wheat yield with the considered
variables. The partial derivatives were calculated to determine
the effect of different factors on wheat yield. The results from
the analysis can be used to formulate policies related to rainfall
and temperature management practices, information demand from
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farmers and other related factors. The research findings can also
be linked to climate change as the changing weather patterns
significantly impact agriculture and food security. The future scope
of the presented work includes further analysis of the effect of other
factors, such as soil fertility and crop disease, on wheat yield and
exploring the use of advanced DL techniques for more accurate
predictions. Additionally, incorporating different climate and
agricultural data, such as drought indices and cropping patterns,
could provide further insight into the relationship between climate
change and wheat yield.
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