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Introduction: The fragility of agriculture makes the food supply chain vulnerable 
to external risks such as epidemic, conflict, disaster, climate change, economic 
and energy crisis. The COVID-19 pandemic has spread and continued globally in 
recent years, resulting in food supply chain disruption and insecurity, which triggers 
profound reflection on the impacts of public health events (PHEs). Studying the 
impacts of PHEs on the resilience of food supply chain has great significance to 
effectively reduce the risks of disruption and insecurity in the future.

Methods: Based on the composition of PHEs and the division of food supply chain, 
this paper adopted the nonlinear Granger causality test to verify the nonlinear 
causal relationship between PHEs and proxy variables in the food supply chain; 
then the TVP-VAR-SV model was constructed and its three-dimensional pulse 
response results were matched with the sensitivity, recovery, and adaptation of 
the food supply chain resilience to deeply explore the dynamic impacts of PHEs.

Results: PHEs has significant nonlinear conduction effects on the resilience 
of food supply chain, the impacts of PHEs on the partial sector resilience have 
significant dynamic characteristics in the whole sample period, and the impacts 
of PHEs on the recovery and adaptation aspects of food supply chain resilience 
have structural break characteristics.

Discussion: The differences, dynamic characteristics and structural breaks of the 
impacts of PHEs on the resilience of food supply chain are caused by the infectivity 
and mortality of PHEs, attributes of food products, regulation of supply and 
demand in the market, behavioral decisions of all participants, changes in the policy 
environment, and coordination and upgrading of all sectors in the supply chain.
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1 Introduction

Food security concerns survival, development, stability and harmony. In both Millennium 
Development Goals (MDGs) and Sustainable Development Goals (SDGs), proposed in 2000 
and 2015, respectively, eradicating hunger, ensuring food security and improving nutrition have 
always been the focus of the United Nations and the world (UN, 2001, 2015). However, the 
fragility of food industry makes it vulnerable to external risks. The impacts of pandemics, 
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conflicts, disasters, climate change, economic and energy crisis in 
recent years have exacerbated the risk of global food supply chain 
rupture (FSIN, 2022; Li and Lin, 2023). The continuous spread of 
COVID-19 in the world, in particular, has brought more challenges to 
the food supply chain and further worsened the global food security 
(Swinnen and Vos, 2021). The supply chain disruption, economic 
recession and regional conflicts caused by COVID-19 have led to a 
significant increase in the number of hunger worldwide (FSIN, 2022). 
The number of people affected by hunger in the world in 2021 is about 
702 to 828 million, an increase of 150 million compared with that 
before the outbreak of the COVID-19 at the end of 2019, which further 
frustrates the achievement of SDGs 1 and SDGs 2 in 2030 (FAO et al., 
2022). Although the pandemic is coming to an end, its impacts on the 
food supply chain still exists. In order to effectively reduce the negative 
impacts of major health events on the food supply chain in the future, 
relevant research is of great theoretical and practical significance.

Public health events (PHEs) refers to major infectious diseases and 
congregative diseases of unknown causes, which occur suddenly and 
may cause serious damage to residents’ health (Yang et al., 2020). They 
are characterized by sudden outbreak, huge destruction, rapid spread 
and unpredictability (Duan et al., 2021). Such serious infectious diseases 
as COVID-19 have extensive and far-reaching economic and social 
impacts (Bloomberg, 2020; Ivanov and Das, 2020; Goel and Haruna, 
2021). Smooth operation of the supply chain is crucial to economic 
development and social stability (Salvatore, 2020). PHEs can conduct 
risks to areas unaffected by the pandemic through the supply chain. 
Food supply chain refers to the complex network chain that starts from 
the initial raw materials suppliers, and goes onto food producers and 
sellers before finally reaching the consumers. It involves capital flow, 
information flow and logistics (Zhang, 2022). The risk of the food 
supply chain is an extension of the general supply chain risk, which 
comes from the uncertainty of its internal composition and external 
environment (Diabat et al., 2012). The external uncertainty of PHEs, in 
particular, has serious and unpredictable impacts on food supply chain 
(Li and Song, 2022). Recently, PHEs caused frequent disruptions of the 
food supply chain. In particular, the COVID-19 has exposed the 
weaknesses in food supply chain (Chenarides et al., 2021), and lead to 
an upsurge of studies on the impacts of PHEs on food supply chain.

The impact of PHEs on the food supply chain is multifaceted. 
Firstly, PHEs disrupts the food supply chain of all countries in the 
world by affecting food production. For example, during COVID-19, 
at least 93 farms, 462 meat packaging plants and 257 food processing 
plants in the United States were seriously affected (Aday and Aday, 
2020). Xinfadi wholesale market (one of the largest wholesale markets 
of agricultural products in China) was also closed for 63 days due to 
COVID-19 (FDPGBM, 2021), which had significant negative impacts 
on upstream and downstream enterprises of the local food supply 
chain. Secondly, due to the ambiguity and lack of mandatory 
restrictions on grain exports in international standards (Zhong and 
Chen, 2020), some major grain exporting countries (such as Ukraine, 
Russia, etc.) announced the suspension, prohibition of grain exports 
or the imposition of quotas and other restrictive measures on some 
agricultural products during COVID-19, which increased the risk of 
disruption of agricultural trade and input supply (World Bank, 2020), 
and had serious impacts on the global food supply chain (Chen et al., 
2020). Finally, the restriction of personnel flow, production stagnation, 
economic downturn and income reduction caused by PHEs (Hobbs, 
2020; Swinnen and Mcdermott, 2020; Mahajan and Tomar, 2021) 

affected the people’s ability to obtain food, which is even worse for the 
low-income groups (FSIN, 2022). COVID-19 led to an 82% decline in 
the income of informal workers worldwide (ILO, 2020), and their 
ability to obtain food decreased significantly. Food security of the 
lowest income groups is an even bigger concern.

The supply chain resilience refers to the capacity of tolerance or 
restoration of partial sector or entire chain response to risks and 
uncertainties (Ali et al., 2021). The food supply chain has the same 
structure and function as the general product supply chain, but due to 
the fragility of agricultural production and the seriousness of food 
safety, the resilience of food supply chain is also relatively low. 
Preparation, response, recovery, and adaptation are considered the 
most basic analyses in supply chain resilience analysis (Adobor and 
McMullen, 2018; Stone and Rahimifard, 2018). After considering the 
impact of risk interruption on supply chain resilience, resilience will 
be defined as the capacity to predict, avoid, and adapt to interruptions 
and changes (Ortiz-de-Mandojana and Bansal, 2016). Resilience 
elements are management practices and fundamental components 
that support the implementation of various functions in the food 
supply chain (Tukamuhabwa et al., 2015; Ali et al., 2021). When the 
food supply chain facing severe risks, especially large-scale disasters 
such as the COVID-19 pandemic, the Russia-Ukraine conflict, and 
extreme weather, how to manage interruptions and quickly resume 
the operation of the supply chain is an important criterion for 
ensuring regional food security.

In existing studies on the impacts of PHEs on the resilience of 
food supply chain, assessing the impact of epidemics or disasters on 
food supply chain disruptions is the most common. For example, 
evaluating the impact of major public health events such as Avaian 
influenza A (H7N9), African swine fever, influenza A/H1N1, and 
COVID-19 on disruptions in poultry meat and grain supply (Dhand 
et al., 2011; Khokhar et al., 2015; Jiang et al., 2021; Laborde et al., 2021; 
Yao et al., 2022; Zhang and Sun, 2022), its main research methods 
include phenomenology, assessment, statistics, simulation, etc. 
Secondly, it is necessary to evaluate the preparedness for future PHEs 
based on the existing food supply chain system and propose new 
designs for the food supply chain to enhance resilience. For example, 
performance indicators are constructed for evaluation and analysis 
from aspects such as cost effectiveness, demand fulfillment, and 
resilience measures (Yu and Nagurney, 2013; Martínez-Guido et al., 
2021; Singh et  al., 2021), its main research methods include 
assessment, phenomenology, grounded theory, simulation, and 
critical theory. In addition, research on improving the resilience of 
food supply chains is gradually emerging with the application of new 
technologies. For example, new approaches such as integrated 
modeling, genotyping technology, and biosensor technology are 
applied to identify contamination sources and track contaminated 
food, in order to enhance the resilience of the food supply chain 
(Keeratipibul et al., 2015; Matta et al., 2018; Schlaich et al., 2020).

The sudden, destructive and unpredictable nature of PHEs puts 
China’s food supply chain at great risk. The disruption of China’s food 
supply chain will seriously threaten the normal operation of the global 
food supply system and affect food security of other countries in the 
system. The importance of China’s food safety to global food supply 
system in the context of PHEs is self-evident, and the research on the 
impacts of PHEs on the safety of China’s food supply chain is of great 
practical significance. In analyzing the impacts of PHEs on the 
resilience of the food supply chain, existing research mainly uses 
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phenomenology, assessment, statistics and simulation methods, 
especially event analysis, which includes phenomenology and 
assessment, has been widely applied (Li and Song, 2022; Perdana et al., 
2022). However, due to the heterogeneity, nonlinearity, and time-
varying nature of PHEs’ impacts, the common test method and time 
series model cannot meet the requirements of the analysis (Swinnen 
and Mcdermott, 2020; Li and Song, 2022; Azevedo et al., 2023), which 
may lead to a weakening of evaluation effectiveness. Therefore, selecting 
appropriate research methods and approaches is crucial for a deeper 
learning of the impacts of PHEs on the resilience of food supply chain.

This paper first selected the types of infectious diseases included in 
PHEs by synthesizing national notifiable diseases (Class A and B) and 
zoonotic infectious diseases. Food supply chain was divided into raw 
material production and supply sector, food processing and 
manufacturing sector, and food distribution and consumption sector. 
Proxy variables were selected for each sector to study the impacts of 
PHEs on food supply chain. Meanwhile, considering that the nonlinear 
Granger causality test can more accurately identify the nonlinear 
conduction relationship between variables (Diks and Panchenko, 2006), 
and the TVP-VAR-SV model can more accurately capture the time-
varying effects between variables in the whole sample period (Nakajima, 
2011). This paper has some innovation points: firstly, using the nonlinear 
Granger causality test to verify the nonlinear conduction of PHEs to each 
proxy variable, as the basis for adapting time-varying model applications; 
secondly, a TVP-VAR-SV model was constructed, and its three-
dimensional impulse response was used to deeply explore the dynamic 
impacts of PHEs on the resilience of food supply chain from the aspects 
of response, recovery, and adaptation. It is expected to provide theoretical 
basis and practical experience for effectively reducing the damage of 
major health emergencies to food supply chain in the future.

2 Materials and methods

2.1 Selection of public health events

The focus of this paper is to explore the impacts of PHEs on each 
sector of the food supply chain. Referring to Li and Song (2022) for 
the selection of PHEs, it took the number of deaths caused by national 
notifiable diseases (Class A and B) and zoonotic infectious diseases as 
the proxy variable for PHEs. National notifiable diseases (Class A and 
B) include 30 infectious diseases such as COVID-19, SARS and H1N1, 
and zoonotic infectious diseases include 29, such as BSE, rabies and 
anthrax. Their classification is shown in Figure 1A. Because they have 
some common diseases (H1N1, H5N1, H7N1, H7N9, rabies, asthma, 
brucellosis, leptospirosis, and schizophrenia), the number of deaths of 
these common diseases was counted once to prevent statistical errors 
due to repeated counting. From January 2005 to December 2021, the 
number of deaths caused by National notifiable diseases (Class A and 
B) and Zoonotic infectious diseases is shown in Figure 2B. Based on 
the principles of trough-peak division and specific types of diseases, 
13 periods with a large number of deaths were identified. In terms of 
the time of the outbreak of specific diseases, COVID-19 in Period 13 
is the main reason for the sharp increase in the number of deaths in 
recent years, and more than 3,300 people died in Period 13 alone. 
Highly pathogenic avian influenza (H5N1, H7N1, H7N9, etc.) and 
influenza A (H1N1) occurred continually from Period 1 to Period 10, 
resulting in more than 1,500 deaths in the sample time. Hemorrhagic 

fever, malaria, leptospirosis, schistosomiasis, rabies, brucellosis and 
anthrax are the reasons for the increase in the number of deaths within 
the sample time. Class A infectious diseases (cholera and plague) with 
high mortality rate broke out during Period 2, Period 3, Period 6 and 
Period 11, but did not lead to a pandemic or mass mortality, thanks to 
China’s pandemic prevention policies and measures. Additionally, 
Japanese encephalitis occurred continually from Period 1 to Period 
12, causing great impacts on food and health safety.

2.2 Composition and division of food 
supply chain

Food supply chain generally refers to the network chain that starts 
from the initial food raw materials supply, and goes onto food 
production, transportation and sales, before finally reaching the 
consumers (Song and Zhuang, 2017; Zhang, 2022). Therefore, the food 
supply chain can be simply divided into raw material production and 
supply sector, food processing and manufacturing sector, and food 
distribution and consumption sector (Schipanski et al., 2016). First of all, 
raw materials production and supply sector refers to the production and 
trade of primary agricultural products as raw materials. PHEs can affect 
the output and price of primary agricultural products by changing 
production expectations, reducing the input of labor, fertilizer, 
machinery, etc., and affect the trade of related primary agricultural 
products through policy restrictions, epidemic prevention and control, 
etc. (Gu and Wang, 2020; Laborde et al., 2021; Stephesns et al., 2022). 
Secondly, food processing and manufacturing sector refers to the process 
of processing and manufacturing primary agricultural products to obtain 
food products. PHEs can affect food output, price and profit by reducing 
raw materials supply, lowering quality, and increasing production and 
operation costs of enterprises (Khokhar et al., 2015; Perdana et al., 2022). 
Finally, food distribution and consumption sector refers to the process 
in which dealers transport food to domestic or international markets for 
sale. PHEs can influence food sales, prices and trade through market 
access, trade agreements, non-tariff barriers, consumer purchasing 
power, consumption habits and expectations (Davis et al., 2021; Suyo 
et al., 2021; Azevedo et al., 2023). The influence mechanism of PHEs on 
all sectors of the food supply chain is shown in Figure 2.

Based on the sector division of the food supply chain and risk 
identification of the impacts of PHEs, this paper examined the 
impacts of PHEs on the resilience of food industry chain by selecting 
proxy variables. In raw materials production and supply sector, 
output value of primary agricultural products (OVPAP), price of 
primary agricultural products (PPAP), export amount of primary 
agricultural products (EAPAP), and import amount of primary 
agricultural products (IAPAP) were selected as proxy variables, in 
consideration of the significant impacts of PHEs on output, price and 
trade volume of raw materials, and the availability of data. In food 
processing and manufacturing sector, PHEs has great impacts on 
food output, producer price, industry profit margin, etc. Therefore, 
output value of food industry (OVFI), product margin rate of food 
industry (PMRFI), and producer price of food industry (PPFI) were 
selected as proxy variables. In food distribution and consumption 
sector, PHEs has great impacts on sales, price and trade, so retail sales 
amount of food products (RSAFP), export amount of food products 
(EAFP), import amount of food products (IAFP), and consumption 
price of food products (CPFP) were selected as proxy variables.
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The change trends of proxy variables in each sector of the food 
supply chain are shown in Figure 3. In raw materials production and 
supply sector, the fluctuation range of OVPAP, PPAP, EAPAP, and 
IAPAP was large before 2009 (especially during October 2006–
November 2008), and was significantly reduced after 2009 (Figure 3A). 
In food processing and manufacturing sector, the fluctuation range of 
OVFI, PMRFI and PPFI increased significantly from March 2005 to 
June 2012, then slowed down from July 2012 to July 2017, and increased 
significantly again after August 2017 (Figure 3B). In food distribution 
and consumption sector, RSAFP, EAFP, IAFP, and CPFP fluctuated 
significantly during the whole sample period (Figure  3C). It can 
be concluded that the fluctuation of each proxy variable does not have 

simple correspondence with the fluctuation of PHEs. Based on the 
lagged impacts and the nonlinear principle of conduction (Foroutan and 
Lahmiri, 2022), this paper built a nonlinear test and dynamic analysis 
model for empirical study.

2.3 Construction of empirical models

2.3.1 Nonlinear granger causality test
Considering the heterogenity, nonlinear and time-varying nature 

of PHEs’ impacts (Li and Song, 2022; Azevedo et  al., 2023), the 
Nonlinear Granger causality test can more accurately identify the 

FIGURE 1

Classification, composition, and mortality of public health events. (A) is the classification and composition of public health events. (B) is the trends of 
mortality of public health events.
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nonlinear conduction relationship between variables (Diks and 
Panchenko, 2006), the paper uses the non-linear Granger causality test 
proposed by Diks and Panchenko (2006) to identify the nonlinear 
conduction effects of PHEs on the proxy variables in each sector of the 
food supply chain. Diks and Panchenko (2006) based on the linear 
Granger causality model, filtered out the linear predictive ability 
between sequences, and extracted the corresponding information 
from the residual to analyze the nonlinear Granger causality. Xt and 
Yt are two time series, Xtm is the m-dimension leading vector of Xt, 
Xt Lx
Lx
−  is the Lx  period lag vector of Xt, Yt Ly

Ly
−  is the Ly period lag 

vector of Yt (Eqs. 1–3):

 X x x x m t Nt
m

t t t m= ( ) = =+ + −, , ,1 1 1 2 1 2  , , , ; , , ,  (1)

 
X x x x
Lx t Lx Lx N
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= = + +
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Given m, Lx and Ly >1, and any small constant d > 0; if Y  satisfies 
the conditional probability of Eqs. (4), (5), then Y is not the strictly 
nonlinear Granger cause of X .
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where, Pr ⋅( ) represents the probability, ⋅ represents the maximum 
norm. If the conditional probability of the right sequence Xt (that is, 
the influence probability of the lagging sequence on the leading 

sequence) in Eq. (4) is given, whether there is sequence Yt as the 
condition, it will not affect the result, then Y  is not the Granger cause 
of X . The conditional probability in Eq. (4) can also be expressed by 
Eqs. (6–10):

 CI m Lx Ly d CI Lx Ly d CI m Lx d CI Lx d+( ) ( ) = +( ) ( ), , , , , ,/ /    (6)
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Assuming that Xt and Yt are strictly stationary and satisfy the 
mixing condition, Diks and Panchenko (2006) constructed the 
following T  statistics of asymptotic normal distribution based on 
the original assumption that “Yt is not the strict Granger 
cause of Xt”:

 

T
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where, n T m Lx Ly= + − − ( )1 max , ; σ 2 ⋅( ) is the asymptotic 
variance of the modified test statistic. According to the statistics 

FIGURE 2

Composition of food industry chain and the influence mechanism.
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of Eq. (11), we can test the estimated residual series ε ε1 2, ,t t,( ) of 
the two VAR models of Eqs. (12), (13) in turn. If the original 
hypothesis of Granger’s non-causality is rejected, there is a 
nonlinear causality between the two sequences.

 
X X Yt

i
i t i

j
j t j t= + +

=
−

=
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1 1

1

1 2θ θ
α β ε ,

 
(12)

 
Y Y Xt

i
i t i

j
j t j t= + +

=
−

=
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1 1

2

3 4θ θ
δ φ ε ,

 
(13)

where, α , β , δ  and φ  are estimated parameters; ε1,t  and ε2,t are 
residual sequences; θ1, θ2, θ3 and θ4 are lag orders.

2.3.2 TVP-VAR-SV model
TVP-VAR-SV model can more accurately capture the time-

varying effects between variables in the whole sample period 
(Nakajima, 2011). Therefore, this article constructs a TVP-VAR-SV 
model and matches its three-dimensional pulse response results with 
the sensitivity, recovery, and adaptation of the food supply chain 
resilience to deeply explore the dynamic impact of PHEs on various 
proxy variables. The construction of TVP-VAR-SV model starts from 
the structural VAR model, and the general structural VAR model 
(Eq. 14) can be expressed as:

 Ay F y F y t s nt t s t s t= + + + = +− −1 1 1 µ , , ,  (14)

where yt is a k ×( )1  vector of observed variables; A F F, , ,1  s is a 
k k×( ) matrix of time-varying coefficients; ∝t  is a k ×( )1  vector of 

FIGURE 3

Change trends of proxy variables in each sector of the food supply chain. (A) is the change trends of proxy variables in raw materials production and 
supply sector. (B) is the change trends of proxy variables in food processing and manufacturing sector. (C) is the change trends of proxy variables in 
food distribution and consumption sector.
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structural impact; assuming that µt N~ 0,ΣΣ( ), £ is a k k×( ) diagonal 
matrix, and A is a lower-triangular matrix (Eq. 15).
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Assuming that B A F i sii = =−1
1, , , , and the structural VAR 

model can be written as Eq. (16):

 y £ , kt t s t s t tB y B y A N I= + + + ( )− −
−

1 1
1

0 ε ε, ~  (16)

where β  is the stacked row vector; define X I y ys t t st , ,= ⊗( )− −1
' '
 ,  

⊗ stands for the Kronecker product, and the reduced-form structural 
VAR can be expressed as Eq. (17):

 y £t t tX A= + −β ε1
 (17)

Then, assuming that all parameters are time-varying, the model is 
extended to Eq. (18):

 y £tt t t t tX A t s n= + = +−β ε1
1, , ,  (18)

where βt, At
−1, £ t  are time-varying, thus the above expression is 

Time-Varying Parameter VAR model.
The elements of At  are compiled in a vector αt k ka a a= ( )−21 31 1, , , , ,  

define h h ht t kt= ( )1 , , , 且 h i k t s nit it= = = +log , , , ; , ,σ 2
1 1   

(Nakajima, 2011). Thus, assuming that the parameters in TVP-VAR-SV 
model are following the random walk process as (Eqs. 19–21):

 β β µ α α µ µβ αt t t t t t t t hth h+ + += + = + = +1 1 1, ,  (19)
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The Markov Chain Monte Carlo (MCMC) method is used to 
estimate the parameters. The steps are: (1) ① Set y yt t

n= { } =1, 
ω β α= ( )£ ,£ ,£ h , π ω( )  is the prior probability density of ω, set the 
initial value of β , α , h and ω; (2) ② Set the values of α , h, £ β  and y, 
sample β ; (3) ③ Set the values of β , sample £ β ; (4) ④ Set the values of 
β , h, £α  and y, sample α ; (5) ⑤ Set the values of α , sample £α ; (6) ⑥ 
Set the values of α , β , £ h and y, sample h ; (7) ⑦ Set the values of h , 
sample £ h; (8) ⑧ Return to the step (2) ②.

2.4 Data sources

Considering the multiple and frequent of PHEs, the monthly data 
can better describe the dynamic and nonlinear impacts of PHEs on 
food supply chain. Therefore, the paper selects the monthly data of 
PHEs and food supply chain from January 2005 to December 2021 as 
the research sample. In the composition of PHEs, the data of national 
notifiable diseases (Class A and B) comes from the National Health 
Commission of the People’s Republic of China, and the data of 
zoonotic infectious diseases comes from the Ministry of Agriculture 
and Rural Affairs of China, and supplemented with the EM-DAT 
database. In the composition of food supply chain, the raw materials 
production industry is subdivided into animal husbandry and plant 
planting; the agri-products processing industry is subdivided into 
grain grinding, feed processing, vegetable oil processing, sugar 
manufacturing, slaughtering and meat processing, aquatic products 
processing, vegetable, fungus, fruit and nut processing, and other agri-
products processing; the Food manufacturing industry is subdivided 
into Baked food manufacturing, Candy, chocolate and preserves 
manufacturing, Convenience food manufacturing, Dairy 
manufacturing, Manufacture of condiments and fermented products 
manufacturing, and other food manufacturing, the specific 
classification and HS code for international trade are shown in 
Supplementary Table S1. The data of OVPAP, PPAP, OVFI, PMRFI, 
PPFI, RSAFP, and CPFP comes from the National Bureau of Statistics 
of China; the data of EAPAP, IAPAP, EAFP, and IAFP comes from the 
China Customs Database. Standardizing all series to better apply the 
nonlinear Granger causality test and TVP-VAR-SV model (mean 
value is 0, standard deviation is 1).

3 Results and analysis

3.1 Results of nonlinear granger causality 
test

Under the analysis framework of TVP-VAR-SV model, it is 
important to examine the causal relationship between variables. This 
paper uses the non-linear Granger causality test proposed by Diks and 
Panchenko (2006) to identify the nonlinear conduction effects of 
PHEs on the proxy variables in each sector of the food supply chain, 
the results are shown in Table  1. To clearly reflect the non-linear 
impacts of PHEs on all sectors of the food supply chain, this paper 
introduces the general Granger causality test (linear Granger causality 
test) for comparative analysis. According to the results of Granger 
causality test, PHEs has only significant linear conduction effects on 
RSAFP (Lag = 2–3) and CPFP (Lag = 1–8), while the linear Granger 
test results of other proxy variables are not significant in the lag phases.

Meanwhile, according to the results of nonlinear Granger causality 
test, PHEs has significant nonlinear conduction effects on the proxy 
variables in each sector of the food supply chain. Thus, compared with 
general Granger causality test, the nonlinear Granger causality test can 
better explain the nonlinear transmission of PHEs to proxy variables. 
Specifically, PHEs has significant nonlinear conduction effects on 
OVPAP after the 3rd lag phase; PHEs has significant nonlinear 
conduction effects on PPAP and EAPAP from the 1st lag phase to 5th 
lag phase; PHEs has significant nonlinear conduction effects on 
IAPAP and RSAFP from the 1st lag phase to 4th lag phase; PHEs has 
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significant nonlinear conduction effects on OVFI, PMRFI and PPFI 
during the whole lag phase; PHEs has significant nonlinear conduction 
effects on EAFP and CPFP from the 1st lag phase to 6th lag phase; 
PHEs has significant nonlinear conduction effects on IAFP from the 
2nd lag phase to 4th lag phase.

Comparison of different nonlinear conduction of PHEs to 
each proxy variable shows that in raw materials production and 
supply sector, PHEs has lagged impacts on OVPAP, which is 
mainly related to the growth cycle of primary agricultural 
products (Gu and Wang, 2020; Stephesns et al., 2022). PHEs has 
rapid impacts on PPAP, EAPAP, and IAPAP, and significant 
conduction effects appear in the first lag phase, which shows that 
sellers and traders in the raw material market can make quick 
response to PHEs. In food processing and manufacturing sector, 
the conduction effects of PHEs on the proxy variables OVFI, 
PMRFI and PPFI last long, indicating a long-term impact of 
PHEs on China’s food production. In food distribution and 
consumption sector, PHEs has conductive effects on RSAFP and 
IAFP in the short term, and on EAFP and CPFP in the long term, 
which may be related to China’s trade policy, emergency measures 
and macro-regulation (Pu and Zhong, 2020; Li and Song, 2022). 

In summary, based on the results of nonlinear Granger causality 
test, all variables can be  further analyzed with the impulse 
response method of time series.

3.2 Three-dimensional impulse response 
result analysis

Based on the stationary test of data and the nonlinear Granger 
causality test of variables, this paper used the TVP-VAR-SV model to 
explore the three-dimensional impulse response of each sector in the 
food supply chain to PHEs’ impulses, then matched the impulse 
results with the response, recovery, and adaptation of the supply chain 
resilience, to delve into the dynamic characteristics and structural 
breaks of PHEs on the resilience of each sector in the food 
supply chain.

This paper established TVP-VAR-SV model for empirical analysis 
in raw materials production and supply, food processing and 
manufacturing, distribution and consumption sector, respectively. 
Before empirical analysis with TVP-VAR-SV model, MCMC method 
was used to simulate 10,000 samplings and the parameter estimation 

TABLE 1 Results of general Granger causality test and nonlinear Granger causality test.

General Granger causality test

Lag  =  1 Lag  =  2 Lag  =  3 Lag  =  4 Lag  =  5 Lag  =  6 Lag  =  7 Lag  =  8

OVPAP 0.0166 0.3461 0.5253 0.1648 0.0912 0.2751 0.6988 1.3991

PPAP 0.0585 0.1635 0.1600 0.5122 0.5152 0.9815 1.3215 1.2117

EAPAP 0.1459 0.2228 0.1493 0.3578 0.2615 0.2419 0.2116 0.2558

IAPAP 0.4455 0.1332 0.8572 0.8659 1.0215 0.8130 0.8156 0.7595

OVFI 0.4744 0.7057 1.7647 1.7996 1.2098 1.0217 0.8704 0.7807

PMRFI 0.4851 1.8008 1.6264 1.1847 1.3055 1.3739 1.1542 1.6928

PPFI 0.5506 0.5028 0.3747 1.2191 1.0013 1.4825 1.5644 1.4093

RSAFP 2.2866 2.9462* 2.1756* 1.3531 1.2309 1.0975 0.9240 0.7949

EAFP 0.6779 0.3744 0.2078 0.1758 0.1392 0.0890 0.0791 0.0905

IAFP 0.0210 0.9352 0.3549 0.5035 0.2222 0.1921 0.2041 0.2068

CPFP 3.29292* 2.53704* 2.3568* 2.4763** 2.2849** 2.2131** 2.5149** 3.2577***

Nonlinear Granger causality test

Lag  =  1 Lag  =  2 Lag  =  3 Lag  =  4 Lag  =  5 Lag  =  6 Lag  =  7 Lag  =  8

OVPAP 0.2248 1.0503 2.0425** 1.2857* 1.4365* 1.2731 1.7112** 1.7107**

PPAP 2.1996** 2.0031** 2.1068** 1.6104* 1.8904** 0.8163 0.5007 0.1205

EAPAP 3.3475*** 3.3831*** 2.3601*** 1.8127** 1.7778** 1.0487 1.0440 0.8273

IAPAP 1.8914** 1.5097* 1.6683** 1.6616** 1.0279 0.5769 0.6355 0.3657

OVFI 4.2451*** 3.5754*** 2.5692*** 2.7504*** 2.6045*** 2.5501*** 2.8445*** 1.6714**

PMRFI 2.6558*** 4.1001*** 3.3831*** 1.4734* 2.4211*** 2.8471*** 2.8793*** 1.5212*

PPFI 3.9912*** 4.1184*** 4.3329*** 3.1575*** 2.2525** 2.0186** 2.6318*** 3.0262***

RSAFP 2.4185*** 2.1454** 2.6303*** 1.6816** 0.9459 0.7323 0.3009 0.2414

EAFP 2.2278** 3.8578*** 4.0743*** 3.7216*** 1.8069** 1.6107* 0.7688 0.2869

IAFP 1.0255 1.5682* 1.8313** 1.5186* 1.0953 0.4755 0.2796 0.0709

CPFP 1.8906** 3.1211*** 3.6335*** 3.2416*** 2.7762*** 2.3811*** 0.9923 0.4867

* significant at the 0.1 level, ** significant at the 0.05 level, and *** significant at the 0.01 level.
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results of raw materials production and supply, food processing and 
manufacturing, distribution and consumption sector were obtained, 
as shown in Table 2. Table 2 details the posterior mean, posterior 
standard deviation, 95% confidence interval limit, convergence 
diagnostic value and invalid factor of the three groups of models. The 
posterior mean of each parameter in the model is within 95% 
confidence interval, and the convergence diagnostic value is less than 
the critical value 1.96 at 5%, so the null hypothesis of convergence to 
the posterior distribution cannot be rejected. In the model of raw 
materials production and supply sector, the maximum invalid 
influence factor of the parameter is 5.88, indicating that at least 1,700 
valid samples are obtained from the 10,000 samplings, and the MCMC 
sampling results can meet the posterior inference of TVP-VAR-SV 
model. Likewise, it can be proved that the MCMC sampling results of 
food processing and manufacturing, distribution and consumption 
sector also meet the posterior inference of the model.

3.2.1 Raw materials production and supply sector
The impacts of PHEs’ unit positive impulses on proxy variables in 

raw materials production and supply sector from January 2005 to 
December 2021 are shown in Figures 4A–L. Figures 4A,D,G,J are 
overviews of the three-dimensional response results. After matching 
their projections on the x–z and y–z cross-sections with the response, 
recovery, and adaptation of the supply chain resilience, it can be used 
to analyze the impacts of PHEs on the food supply chain. Projections 
of the three-dimensional response results on the x–z section can 
clearly display the time point of the maximum response value and the 
variation of the response value within the lag period, which 
correspond to the response and recovery aspects of the supply chain 

resilience, are shown in Figures 4B,E,H,K. Projections of the three-
dimensional response results on the y–z section focus on depicting the 
dynamic differences in the impacts of PHEs on proxy variables at 
different periods, corresponding to the adaptation aspect of the supply 
chain resilience, are shown in Figures  4C,F,I,L. Among them, 
Figure 4A is the three-dimensional responses of OVPAP to PHEs’ 
impulses, Figure 4B is the projection of impulse response results on 
the x–z section, Figure 4C is the projection of impulse response results 
on the y–z section.

In the response aspect of food supply chain resilience, PHEs’ 
positive impulses have positive impacts on OVPAP first and then 
negative impacts, and the responses last for a long time, with the 
value approaching 0 after Phase 35 (Figure 4A). In the recovery 
aspect of food supply chain resilience, OVPAP shows alternate 
positive and negative responses (Figure  4B). The volatility of 
responses is mainly caused by the lag between production decision 
and output of agricultural products due to the growth cycle of 
agricultural products (Fan et al., 2021). In the adaptation aspect of 
food supply chain resilience, the responses of OVPAP changed 
greatly from 2005 to 2009, and the negative response value exceeded 
positive value, getting to a maximum of −0.024 (January 2007). 
According to Figure 1B, the outbreak of highly pathogenic avian 
influenza and Japanese encephalitis (Period 1 and Period 2) is the 
main reason for the great fluctuation of OVPAP during this period. 
After 2009, the positive and negative responses of OVPAP decreased 
significantly, with the maximum negative value of only −0.007 (June 
2018). Especially during COVID-19 (Period 13), which caused 
much more death and greater economic losses, it did not cause a 
significant decline in OVPAP, with a maximum negative response 

TABLE 2 The estimation results of MCMC simulation.

Parameter P-M value P-SD value 95%-L 95%-U CD value IF level

Raw materials 

production and supply 

sector

∑β1 0.0023 0.0003 0.0018 0.0029 0.761 1.44

∑β2 0.0023 0.0003 0.0018 0.0029 0.613 1.54

∑α1 0.0055 0.0015 0.0034 0.0093 0.335 3.64

∑α2 0.0056 0.0017 0.0034 0.0100 0.592 5.88

∑h1 0.0030 0.0005 0.0023 0.0041 0.050 0.70

∑h2 0.0031 0.0005 0.0023 0.0041 0.007 1.04

Food processing and 

manufacturing sector

∑β1 0.0023 0.0003 0.0018 0.0029 0.005 1.69

∑β2 0.0023 0.0003 0.0018 0.0029 0.002 2.56

∑α1 0.0055 0.0017 0.0034 0.0096 0.264 7.84

∑α2 0.0055 0.0016 0.0034 0.0095 0.110 7.09

∑h1 0.0030 0.0005 0.0023 0.0041 0.420 1.60

∑h2 0.0031 0.0005 0.0023 0.0041 0.917 0.86

Food distribution and 

consumption sector

∑β1 0.0023 0.0003 0.0018 0.0028 0.592 1.39

∑β2 0.0023 0.0003 0.0018 0.0028 0.035 1.84

∑α1 0.0055 0.0016 0.0033 0.0095 0.007 3.74

∑α2 0.0056 0.0017 0.0034 0.0098 0.571 7.25

∑h1 0.0031 0.0005 0.0023 0.0042 0.705 1.34

∑h2 0.0030 0.0005 0.0023 0.0041 0.123 1.11

∑β1, ∑β2, ∑α1, ∑α2, ∑h1, and ∑h2 represent the estimated results of the first two diagonal elements of the posterior distribution respectively; P-M, P-SD, CD, and IF are short for posterior 
mean, posterior standard deviation, convergence diagnostic and invalid factor respectively; 95%-L is the lower limit of 95% confidence interval, and 95%-U is the upper limit of 95% 
confidence interval.
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value of only −0.003 (April 2020). This is mainly due to the efforts 
made by the Chinese government in agricultural policies and 
pandemic prevention in recent years (Pu and Zhong, 2020; Li and 
Song, 2022).

PHEs’ impulses have both positive and negative impacts on PPAP, 
and the response value gradually approaches 0 after Phase 20 
(Figure 4D). In the response aspect, PHEs’ impulses can have quick 
impacts on PPAP, with high response values in the first five lag phases 
and rapidly declining values from Phase 5 to 10 (Figure 4E). In the 
recovery aspect, PHEs’ impulses can significantly affect the price of 

raw materials within half a year, and the impacts disappear afterwards. 
In the adaptation aspect, PPAP mainly had negative responses from 
2005 to 2009, and it had both positive and negative responses after 
2009, with the largest positive value from March 2009 to January 2013. 
The structural breaks of PPAP responses are the result of the joint 
regulation of market supply and demand and government policies (Li 
and Song, 2022). The negative responses are mainly related to the 
instability of agricultural product supply, trade fluctuation and quality 
decline caused by PHEs (Saboori et al., 2022; Liang and Zhong, 2023). 
However, the time with great positive responses (especially March 

FIGURE 4

The three dimensional impulse responses of proxy variables in raw materials production and supply sector. (A,D,G,J) are the three-dimensional 
responses of OVPAP, PPAP, EAPAP, and IAPAP to PHEs’ impulses respectively; the x-axis is the lag phase of impulse responses, the y-axis is the 
occurrence time of the positive impulses, and the z-axis represents the response levels. (B,E,H,K) are the projection of response results of OVPAP, 
PPAP, EAPAP, and IAPAP on the x–z section, respectively. (C,F,I,L) are the projection of response results of OVPAP, PPAP, EAPAP, and IAPAP on the y–z 
section, respectively.
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2009 to January 2013) corresponds with the outbreak of highly 
pathogenic avian influenza, influenza A (H1N1) and Japanese 
encephalitis (Figure 4F). After these devastating zoonotic infectious 
diseases broke out, the infected animals were required to be treated as 
soon as possible to cut off the source of infection, which led to 
reduction in the production and consumption of related agricultural 
products. Overall price of raw materials were raised due to the 
influence of market supply and demand and substitution effect 
(Devereux et al., 2020; Yao et al., 2022).

PHEs’ impulses have both positive and negative impacts on 
EAPAP. Both decrease significantly after Phase 5 and the value 
gradually approaches 0 after Phase 10 (Figure 4G). In the response 
aspect, PHEs’ impulses rapidly causes negative responses of EAPAP in 
the first two lag phases, indicating that outbreak of PHEs can cause 
significant decline of EAPAP in the short term (Figure 4H). In the 
recovery aspect, when PHEs breaks out, especially zoonotic infectious 
diseases, safety clauses and prevention and control measures restrict 
the export of primary agricultural products in the short term (Laborde 
et al., 2021; Saboori et al., 2022; Stephesns et al., 2022), while in the 
long term, with proper control or end of the pandemic, compensatory 
growth appears (Zhan and Chen, 2021; Li and Song, 2022). In the 
adaptation aspect, the negative responses of EAPAP increased 
significantly from January 2005 to December 2006, June 2008 to 
January 2011, and February 2012 to November 2013 (Figure 4I), when 
serious zoonotic infectious diseases (influenza A (H1N1), highly 
pathogenic avian influenza and Japanese encephalitis) occurred and 
led to significant decline in exports of livestock products, which 
promoted the rapid increase of the negative responses of EAPAP.

In the response aspect, responses of IAPAP are sensitive to the 
impulses of PHEs, and reach the maximum positive value (or the 
maximum negative value) in the first two lag phases (Figure 4J). Both 
positive and negative responses are significantly reduced from Phase 
4 to 10, and gradually approached 0 after Phase 15 (Figure 4K). It 
shows that PHEs significantly improves IAPAP in the short term, and 
the impact declines remarkably after 4 months. In the recovery aspect, 
outbreak of PHEs leads to decline of the supply and quality of 
domestic agricultural products (Laborde et al., 2021; Suyo et al., 2021), 
and imports of affected products increase to make up the demand gap. 
In the long run, supply recovers and imports gradually decline with 
the control or end of the pandemic. Therefore, IAPAP has great 
positive responses in the short term, while the responses decrease in 
the long term (or becomes negative under policy control). In the 
adaptation aspect, the positive responses of IAPAP increased 
significantly from January 2005 to December 2010 and from May 2012 
to February 2015 (Figure 4L), due to the outbreak of influenza A 
(H1N1), highly pathogenic avian influenza and Japanese encephalitis, 
which resulted in a substantial increase in the imports of related 
livestock products.

Differences of PHEs’ impacts can be easily summarized from the 
three-dimensional impulse responses. In the response aspect of food 
supply chain resilience, PHEs has quick impacts on PPAP, EAPAP, and 
IAPAP, while it has lagged impacts on OVPAP; it has the longest 
impact on OVPAP, followed by PPAP, and the shortest impact on 
EAPAP and IAPAP; it has the greatest impact on EAPAP, followed by 
IAPAP and OVPAP, and the least impact on PPAP. In the recovery 
aspect of food supply chain resilience, under the influence of market 
regulation and government macro-control, the price and trade of raw 
materials are more sensitive to PHEs’ impulses but with shorter 

duration. However, the periodicity of agricultural production and the 
lagged effects of decision-making lead to lagged response of raw 
material production to PHEs’ impulses, and longer duration (Fan 
et al., 2021). When PHEs occurs, the safety clauses and prevention and 
control measures restrict exports of relevant primary agricultural 
products in the short term (Zhan and Chen, 2021; Saboori et al., 2022; 
Stephesns et  al., 2022), and increase imports to make up for the 
demand gap in the domestic market. Therefore, PHEs has great 
impacts on raw material trade. In the adaptation aspect of food supply 
chain resilience, stabilizing the output and price of primary 
agricultural products is an important way to achieve food security 
(Devereux et al., 2020; Saboori et al., 2022). In this connection, the 
Chinese government has issued a series of policies to stabilize 
production and price of agricultural products to mitigate the impact 
of PHEs on OVPAP and PPAP.

3.2.2 Food processing and manufacturing sector
PHEs’ impulses first have negative impacts on OVFI and then 

positive. Both response values gradually approach 0 after Phase 10 
(Figure 5A). In the response aspect, PHEs’ impulses can quickly cause 
the negative responses of OVFI in the short term, which then turns 
positive. In the long term, positive and negative responses alternate 
(Figure  5B). In the recovery aspect, food production declines by 
reducing raw material supply, lowering their quality, increasing 
production costs, and adjusting production strategies in the early stage 
of PHEs, (Kuiper and Lansink, 2013; Suyo et al., 2021). However, food 
production enterprises have the responsibility of ensuring food supply 
during disaster emergencies (Schneider, 2016). After the outbreak of 
PHEs, government helps these enterprises to resume production 
through technical support, financial subsidies, tax relief, etc., to ensure 
the stability of food supply (Zhan and Chen, 2021), so the negative 
responses of OVFI become positive. In the adaptation aspect, the 
negative responses of OVFI increased significantly from November 
2007 to January 2010, from July 2010 to December 2012, and from 
May 2017 to August 2018 (Figure 5C), and the corresponding PHEs 
include H1N1 influenza A, highly pathogenic avian influenza, H7N9, 
Japanese encephalitis, hemorrhagic fever, plague, and malaria (Period 
3–6 and Period 10–11  in Figure  1B). The occurrence of these 
infectious diseases led to huge fluctuations in the output of the food 
industry, which seriously damaged the stability of food supply chain.

PHEs has both positive and negative impacts on PPFI. Both 
impacts reach the maximum in the first three phases, decrease 
significantly from Phase 4 to 10, and disappear after Phase 15 
(Figures 5D,E). It shows that PHEs can quickly cause changes in PPFI, 
and the impacts last for a long time. The impacts on PPFI are 
characterized by structural breaks, which are related to the attributes 
of specific health events. The positive responses increased significantly 
from May 2007 to March 2008, June 2009 to June 2010, August 2011 
to September 2013 and from July 2016 to February 2020, while in 
other time, the impacts were negative (Figure 5F). PHEs during the 
period of positive responses mainly includes highly pathogenic avian 
influenza, influenza A (H1N1), hemorrhagic fever, malaria, H7N9, 
leptospirosis, anthrax, plague, schistosomiasis, rabies, brucellosis, and 
COVID-19. PHEs during the period of negative responses includes 
highly pathogenic avian influenza, influenza A (H1N1), H7N9, and 
Japanese encephalitis. Highly pathogenic avian influenza, influenza A 
(H1N1) and H7N9 occurred during the both periods of positive and 
negative responses, but the number of deaths caused by these PHEs in 
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the former period is far greater than that in the latter. Therefore, it can 
be inferred that when the number of deaths caused by PHEs increases 
significantly, the cost rise and output fluctuation due to the shortage 
of raw materials and labor force drive the rise of food production 
prices (Khokhar et al., 2015). However, when the impacts and scope 
of PHEs are small, especially during some zoonotic infectious diseases 
that are timely controlled, production price is reduced mainly by 
decreasing demand (Dhand et al., 2011).

PHEs has both positive and negative impacts on PMRFI. Both 
impacts gradually disappear after Phase 10 (Figure  5G). PHEs’ 
impulses cause a rapid increase in the PMRFI responses in the first five 
phases, and the responses decrease significantly from Phase 5 to 10 
and approach 0 after Phase 10 (Figure 5H). It indicates that the first 
five months of PHEs outbreak has great impacts on the profits of food 
enterprises, which gradually disappear within one year. The impact 
has significant dynamic characteristics (Figure 5I). Generally, PHEs 
has negative impacts on PMRFI first, and then positive impacts. This 
is because in the early stage of PHEs outbreak, the overall profit 
margin of the food industry declines due to cost increase of raw 
materials and labor, reduction of commodity inventory, decline of 

quality, and financial risks of enterprises (Kuiper and Lansink, 2013; 
Suyo et al., 2021). In the long run, as the epidemic is under control and 
the food enterprises resume normal production, and the profit margin 
recovers (Nordhagen et al., 2021). Meanwhile, the more harmful PHEs 
is, the greater its negative impacts on PMRFI, and the smaller the 
space for profit recovery. Especially during COVID-19 (January 2020 
to December 2021), the negative responses of PMRFI increased 
significantly, while the positive responses remained low.

In the response aspect of food supply chain resilience, PHEs has 
quick impacts on OVFI, PPFI and PMRFI (the maximum positive or 
negative response values are reached in the first three phases), 
indicating that food production sector is sensitive to the impacts of 
PHEs. In the recovery aspect of food supply chain resilience, the 
degree and duration of the impacts on OVFI, PPFI and PMRFI, are 
similar, reflecting the close relationship between various factors in 
food processing and manufacturing sector. In the adaptation aspect of 
food supply chain resilience, the time-varying frequency of PPFI is 
significantly higher than that of OVFI and PMRFI. As the core of the 
supply chain, food processing and manufacturing enterprises carry 
out production and operation with the goal of maximizing profits 

FIGURE 5

The three dimensional impulse responses of proxy variables in food processing and manufacturing sector. (A,D,G) are the three-dimensional responses 
of OVFI, PMRFI and PPFI to PHEs’ impulses respectively; the x-axis is the lag phase of impulse responses, the y-axis is the occurrence time of the 
positive impulses, and the z-axis represents the response levels. (B,E,H) are the projection of response results of OVFI, PMRFI, and PPFI on the x–z 
section, respectively. (C,F,I) are the projection of response results of OVFI, PMRFI, and PPFI on the y–z section, respectively.
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(Kshetri, 2021). When PHEs breaks out, the decision-makers change 
the operation strategy based on production costs, product inventory, 
market conditions, financial risks, profitability (Khokhar et al., 2015; 
Zhan and Chen, 2021; Perdana et al., 2022). Among these, changing 
the selling price is the most flexible means for manufacturers to adjust 
their operation strategies, so the time-varying frequency of PPFI is 
significantly higher than that of OVFI and PMRFI. Meanwhile, the 
time-varying frequency of food production is significantly lower in 
the whole sample period, due to the constraints of sunk costs, order 
contracts and social responsibilities. The sales profit is the combination 
of food production, sales volume, price, cost and inventory, so the 
time-varying frequency of PMRFI is between that of PPFI and OVFI.

3.2.3 Food distribution and consumption sector
PHEs has both positive and negative impacts on RSAFP. Both 

impacts gradually disappear after the Phase 10 (Figure 6A). In the 
response aspect, PHEs’ impulses have negative impacts on RSAFP 
first, and then positive impacts. Specifically, the negative 
responses increase rapidly in the first two phases, the positive and 
negative responses decrease with fluctuation from Phase 3 to 5, 
and approach 0 after Phase 8 (Figure 6B). In the recovery aspect, 
the outbreak of infectious diseases (especially zoonotic infectious 
diseases) causes market closure, consumer demand decline, etc., 
so food sales fall rapidly in the short term (Zhan and Chen, 
2021). With the control and end of the pandemic, food sales show 
compensatory growth. In the adaptation aspect, the impacts of 
PHEs on RSAFP have significant dynamic characteristics 
(Figure  6C). The positive and negative responses of RSAFP 
declined remarkably especially after 2015, which is mainly related 
to the government’s support policies and the development of 
e-commerce (Davis et  al., 2021; Swinnen and Vos, 2021). 
Therefore, compared with the PHEs before 2015, the impact of 
the outbreak of COVID-19  in 2020 on the RSAFP 
decreased significantly.

PHEs’ impulses first have negative impacts on EAFP, and then 
positive impacts. Both impacts decrease significantly after Phase 5, 
and gradually disappear after Phase 10 (Figures 6D,E). PHEs’ impulses 
quickly cause the negative responses of EAFP in the first two lag 
phases, and the positive and negative responses alternate from Phase 
3 to 5, the positive responses being dominant. It shows that the 
outbreak of PHEs rapidly leads to the decline of EAFP in the short 
term, and compensatory growth of EAFP occur over time. EAFP has 
a large negative response value from January 2005 to April 2008, 
January 2010 to August 2012, and from June 2013 to October 2014, 
which may be related to the outbreak of influenza A (H1N1), highly 
pathogenic avian influenza, H7N9, Japanese encephalitis and other 
zoonotic infectious diseases in these periods (Figure 6F). When these 
serious zoonotic infectious diseases occur, the international market 
restrict the trade of related processed products and finished products 
through technical barriers to trade in health, quarantine, product 
quality and certification in the short term (Wang et al., 2022; Azevedo 
et  al., 2023). After the pandemic, food exports rebound (Saboori 
et al., 2022).

The responses of IAFP to PHEs’ impulses can reach the maximum 
positive value in the first two lag phases, and then the positive 
responses decrease and turn negative. Both the positive and negative 
responses significantly decrease from Phase 3 to 5, and gradually 
approach 0 after Phase 10 (Figures 6G,H). It indicates that IAFP are 

sensitive to PHEs’ impulses. When the outbreak of infectious diseases 
causes the decline of relevant food production, imports increase 
remarkably in the short term to make up for the demand gap 
(Devereux et al., 2020; Saboori et al., 2022). However, with the control 
of the domestic pandemic and the resumption of normal operation of 
food enterprises, food imports gradually decline. Therefore, the reason 
for the significant increase of the positive responses from January 2005 
to June 2008, November 2009 to October 2010, and January 2012 to 
December 2014 is similar to that of IAPAP (Figure  6I). It is the 
outbreak of zoonotic infectious diseases which leads to the significant 
increase in imports of related livestock products. However, the 
outbreak of COVID-19 in 2020 only has negative impacts on IAFP. A 
valid explanation for this PHEsnomenon is that the global outbound 
of COVID-19 has made China more concerned about the safety of 
imported products, and led to a significant decline in food imports 
under the increasing quarantine measures and restrictions 
(Kazancoglu et al., 2023).

PHEs’ impulses have both positive and negative impacts on CPFP 
(Figure 6J). In general, PHEs first has negative impacts on CPFP, and 
then positive. Both response values reach the maximum in the first 
three phases, rapidly decline from Phase 4 to 10, and approach 0 after 
Phase 10 (Figure 6K). It suggests that when infectious diseases break 
out, consumers’ demand for certain food product decreases in the 
short term, which leads to oversupply and drives the decline of the 
overall food price. In the long run, with the end of the pandemic, the 
demand and supply of food revovers, and price also rebounds. 
However, the positive responses of CPFP increased significantly from 
April 2007 to February 2009, May 2010 to December 2014, and from 
February 2017 to July 2018 (Figure 6L). The possible reason is that the 
outbreak of infectious diseases during these periods led to the increase 
of food production costs, production fluctuations and larger demand 
gap (Saboori et al., 2022; Yao et al., 2022), which further promoted the 
rise of food consumption prices. However, after the outbreak of 
COVID-19 in 2020, the positive responses of CPFP rose briefly before 
it declined and turned negative. This is because the continuation of the 
COVID-19 led to the closure of the catering industry, economic 
downturn and degradation of consumption (Byker et  al., 2022; 
Manyong et  al., 2022), which continued to depress the level of 
food prices.

In the response aspect of food supply chain resilience, after the 
impacts of PHEs, the response values of RSAFP, EAFP, IAFP, and 
CPFP all reach the maximum in the first three phases, indicating that 
all factors in the food distribution and consumption sector have 
sensitive responses to PHEs’ impulses. As the final link of the food 
supply chain, food distribution and consumption sector mainly 
includes wholesalers, retailers, importers and exporters, and 
consumers. Among them, wholesalers, retailers, importer and 
exporters carry out business activities under the market system and 
government supervision, with the goal of pursuing profits (Davis et al., 
2021; Suyo et al., 2021), and closely link production enterprises with 
consumers. After the outbreak of serious infectious diseases, they are 
faced with the risks of insufficient domestic food production, quality 
decline, cost increase, demand fluctuation, market closure and so on. 
To avoid risks and reduce losses, these commercial entities quickly 
adjust their business strategies (Davis et al., 2021; Suyo et al., 2021; 
Zhan and Chen, 2021), resulting in large fluctuation in the responses 
of RSAFP in the short term. In the recovery aspect of food supply 
chain resilience, trade of food related to infectious diseases is severely 
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impacted due to the adjustment of international market access and 
trade guidelines, so the impacts of PHEs on IAFP and EAFP are 
greater than those on RSAFP. In the adaptation aspect of food supply 
chain resilience, food is our daily necessity, so its price fluctuation is 
regulated by the government. Especially during major epidemics, 
dealers are subject to administrative punishment for driving up prices 
and not clearly marking prices. Therefore, the impacts of PHEs’ 
impulses on CPFP are significantly less than those on IAFP, EAFP, 
and RSAFP.

4 Discussions

The impacts of PHEs on the resilience of food supply chain have 
significant differences, dynamic characteristics and structural breaks. 
This is caused by the infectivity and mortality of PHEs, attributes of 
food products, regulation of supply and demand in the market, 
behavioral decisions of all participants, changes in the policy 
environment, and coordination and upgrading of all sectors in the 
supply chain.

FIGURE 6

The three dimensional impulse responses of proxy variables in food distribution and consumption sector. (A, D, G, J) are the three-dimensional 
responses of RSAFP, EAFP, IAFP, and CPFP to PHEs’ impulses respectively; the x-axis is the lag phase of impulse responses, the y-axis is the occurrence 
time of the positive impulses, and the z-axis represents the response levels. (B, E, H, K) are the projection of response results of RSAFP, EAFP, IAFP, and 
CPFP on the x–z section, respectively. (C, F, I, L) are the projection of response results of RSAFP, EAFP, IAFP, and CPFP on the y–z section, respectively.
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Firstly, differences can be summarized as those in the impacts of 
PHEs on the resilience of partial sector or entire chain. From the 
impacts on the entire chain resilience, the impacts on the resilience of 
food distribution and consumption is significantly higher than those 
on raw materials production and supply sector, and food processing 
and manufacturing sector. Due to the large number of economic 
entities involved and the complex structure, food distribution and 
consumption sector gathers the risks conducted from food production, 
trade, distribution and consumption, so it is more affected by PHEs’ 
impulses, this is consistent with Zhan and Chen (2021). From the 
impacts on the partial sector resilience, PHEs has greater impacts on 
the resilience of raw material trade and food retail, followed by food 
output, producer price and profit, while have smaller impacts on raw 
material production, raw material price and consumption price. Food 
and raw materials trade is jointly regulated by the fluctuation of supply 
and demand from domestic and international markets, and also is 
restricted by market access, trade policies and guidelines. Therefore, 
it is greatly affected by PHEs’ impulses. The result supports the 
findings of Saboori et al. (2022) and Kazancoglu et al. (2023). Food 
retail is regulated by market supply and demand, especially demand. 
Therefore, when PHEs’ impulses simultaneously cause food supply 
fluctuations and demand decrease, food retail declines significantly. 
Faced with the impulses of PHEs, food enterprises reduce losses by 
adjusting output and price, and make profits after deducting costs. 
Therefore, the proxy variables in food processing and manufacturing 
sector are more closely linked, and the impacts of PHEs on their 
resilience are similar. Chinese government has issued a series of 
supporting policies to ensure the stability of the production and price 
of primary agricultural products, which mitigates the impacts of PHEs 
on production and price of raw materials; this is consistent with Li and 
Song (2022) and Jiang et  al. (2021). Meanwhile, as an important 
indicator for food safety, food price has become an important 
regulatory object of the government. The existing support policies and 
regulatory system also alleviate the impacts of PHEs on food 
consumption price.

Secondly, the impact results on proxy variables have 
significant dynamic characteristics in the whole sample period. 
In raw materials production and supply sector, the impacts of 
PHEs on the production resilience of raw materials decreased 
significantly after 2009, which is attributed to the support policies 
by the Chinese government during this period. For example, the 
Chinese government abolished agricultural taxes in 2006, 
introduced a temporary grain collection and storage system in 
2008, and substantially increased agricultural subsidies. The 
dynamic characteristics of the impacts on raw material price and 
trade resilience are mainly related to the attributes of PHEs in 
different periods (infectivity and mortality). In food processing 
and manufacturing sector, the dynamic characteristics of impact 
results depend mainly on the attributes of PHEs and the operation 
strategy of the manufacturers. In response to health events with 
different attributes, manufacturers reduce operational risks by 
adjusting food prices and output, which affects their profits. 
Therefore, the dynamic characteristics of food output, producer 
prices and profits resilience are correlated. In food distribution 
and consumption sector, the dynamic characteristics of impact 
results are mainly determined by the attributes of PHEs and the 
decisions of commercial entities, and regulated by the upgrading 
of supply chain, policies and regulatory systems. In particular, 

Chinese government revised the Food Safety Law, the hygiene 
regulations of food enterprises and the import and export 
inspection regulations around 2015, and vigorously promoted the 
construction of the agricultural product warehousing and 
logistics system, so as to upgrade the supply chain, and further 
improve policy and regulatory system. Therefore, the impacts of 
PHEs on food sales and trade resilience have been significantly 
reduced since then. However, compared with other major health 
events, the impacts of COVID-19 on the proxy variables 
(excluding industry profit margin and consumption price of food) 
are significantly reduced, although COVID-19 is far more 
harmful. This is mainly due to the agricultural policy, pandemic 
prevention measures and supply chain upgrading strategy 
promoted by the Chinese government in recent years, which have 
increased the resilience of food supply chain (specifically in the 
adaptation aspect). The results support the findings of Jiang et al. 
(2021) and Consoli et  al. (2023). Meanwhile, government 
decision-makers should also be alert to major health events such 
as COVID-19 which breaks the food supply chain by depressing 
consumption prices and enterprise profits for a long time.

Finally, structural breaks are reflected in the change of the impact 
direction of PHEs on proxy variables in the lag phases and in 
different sample periods. On the one hand, in terms of structural 
breaks in the lag phases, almost all proxy variables have alternate 
positive and negative response values. Specifically, the structural 
breaks of the impacts on raw material production resilience have the 
largest alternate spacing and the longest duration (alternate spacing 
is between 3 to 5 lag phases, and the duration exceeds 24 lag phases), 
which is determined by the lag of farmers’ adjustment of production 
decisions and the growth cycle of agricultural products. The 
structural breaks of the impacts on food output and industry profit 
margin have large alternate spacing and long duration (alternate 
spacing is between 2–3 lag phases, and the duration is within 20 lag 
phases), which is related to quick decision-making and short 
production cycle of food enterprises. The structural breaks of the 
impacts on raw material trade, food sales and trade resilience have 
small alternate spacing and short duration (alternate spacing is 
between 1–2 lag phases, and the duration is within 12 lag phases), 
which is related to the sensitive perception of risks and rapid change 
of decision by commercial entities in the distribution sector. The 
impacts on raw material prices, producer prices and consumption 
prices are weak with low frequency of alternation. Agricultural 
products and food are life necessities, and have low price elasticity of 
demand. Additionally, the regulation and management policies 
implemented by the Chinese government in recent years also 
mitigate the structural breaks of PHEs’ impacts. On the other hand, 
structural breaks in different sample periods are mainly reflected in 
the impacts of PHEs on raw material price, food production prices 
and consumption prices resilience. Generally, impulses of PHEs have 
negative impacts on the prices of raw materials and food. However, 
when a serious outbreak of zoonotic infectious diseases causes 
reduction of raw material supply, labor shortage, production cost 
increase, and fluctuations in food production, the prices of raw 
materials and food rise rapidly. The results verify the findings of 
Saboori et  al. (2022) and Consoli et  al. (2023). Therefore, when 
serious infectious diseases break out, government decision-makers 
should be vigilant and prevent the sharp rise of agricultural products 
and food prices in the short term.

https://doi.org/10.3389/fsufs.2024.1347594
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Li et al. 10.3389/fsufs.2024.1347594

Frontiers in Sustainable Food Systems 16 frontiersin.org

5 Conclusions and limitations

5.1 Conclusion

Based on the introduction of the composition of PHEs and the 
division of food supply chain, this paper briefly described their 
changing tendency. It adopted nonlinear Granger causality test to 
verify the nonlinear causal relationship between PHEs and proxy 
variables in the food supply chain. TVP-VAR-SV model was 
constructed and with its three-dimensional impulse response, this 
paper analyzed the dynamic impacts of PHEs on the resilience of food 
supply chain. The main conclusions are as follows:

 (1) PHEs has significant nonlinear conduction effects and dynamic 
impacts on the resilience of food supply chain. The dynamic 
impacts have significant differences in different sectors. From 
the impacts on the entire chain resilience, the overall impacts 
on food distribution and consumption sector are significantly 
higher than those on raw material production and supply and 
food processing and manufacturing sector. From the impacts 
on the partial sector resilience, PHEs has the greatest impacts 
on food and raw material trade and food retail, followed by 
food output, producer price and profit, and the smallest 
impacts on raw material production, raw material price and 
food consumption price.

 (2) The impacts of PHEs on the partial sector resilience have 
significant dynamic characteristics in the whole sample period. 
In raw materials production and supply sector, the dynamic 
characteristics of the impacts on raw materials output resilience 
are attributed to the agricultural support policies implemented 
by the Chinese government, while the dynamic characteristics 
of the impacts on raw materials price and trade resilience are 
related to the attributes of infectious diseases in different 
periods. In food processing and manufacturing sector, dynamic 
characteristics of impact results mainly depend on the 
attributes of infectious diseases and the operation strategy of 
manufacturers, which leads to correlation between the impulse 
responses of food production, producer price and profit. In 
food distribution and consumption sector, dynamic 
characteristics of impact results are mainly determined by the 
attributes of diseases and business decisions of commercial 
entities, and regulated by the upgrading of supply chain, 
policies and regulatory systems.

 (3) In the recovery and adaptation aspects of food supply chain 
resilience, the impacts of PHEs have structural break 
characteristics. In the recovery aspect, positive and negative 
responses alternate in the lag phases. The structural breaks 
of the responses of raw material production are the most 
obvious as a result of the lagged effect of farmers’ decision 
adjustment and the growth cycle of agricultural products. 
The structural breaks of the responses of food production, 
trade, sales and industry profit margin have small alternating 
spacing and short duration, which is related to the sensitive 
perception of risks by commercial entities, rapid change of 
decisions and short production cycle. The structural breaks 
of the responses of raw material price, producer price and 
consumption price are weak, because agricultural products 
and food are life necessities and thus are regulated and 

supervised by the government. In the adaptation aspect, 
structural breaks in different sample periods are reflected in 
the impacts of PHEs on raw material price, food production 
price and consumption price. In particular, when the serious 
zoonotic infectious diseases lead to the reduction of raw 
material supply, shortage of labor force, increase of 
production costs, and fluctuation of food production, prices 
of raw materials and food are rapidly raised.

5.2 Limitations

This paper acknowledges that there are still some limitations in 
analyzing the impact of PHEs on the resilience of food supply chain. 
Firstly, this article matches the three-dimensional response results of 
PHEs shocks with the sensitivity, recovery, and adaptation of the food 
supply chain resilience by selecting proxy variables, to explore the 
direct impact of these results. However, the impacts of PHEs on 
agency variables in various departments of the food supply chain not 
only have direct impacts, but also transmission effects from other 
agency variables (indirect impacts). The transmission effects of PHEs’ 
impacts are latent and often difficult to identify and measure. In 
future research, the direct impacts of PHEs can be removed from the 
volatility of the proxy variables themselves, and then methods such 
as latent variable estimation or latent variable extraction can 
be applied to measure transmission effects. Secondly, the paper lacks 
a prediction of the impacts of PHEs on the resilience of the food 
supply chain. By studying the dynamic and nonlinear impacts of 
PHEs on the resilience of food supply chain, the long-term goal of 
this paper should be to predict the impacts of PHEs on the resilience 
of food supply chain, providing basis and support for effectively 
reducing the damage of major health emergencies to food supply 
chain in the future. Meanwhile, considering the higher accuracy of 
machine learning and deep learning in time series prediction 
analysis, in future research, this study should be used as the basic 
framework to construct a prediction system of food supply chain 
resilience that combines machine learning and deep learning, and 
then make various scenario prediction to cope with the impacts 
of PHEs.
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