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This study models milk product processing and sustainable of the shelf-life 
extension in a dairy factory using artificial intelligence. The Cappadocia dairy 
factory was used to study chemical processes and computational system 
modeling and simulation. Levenberg–Marquardt algorithm was used to create 
an artificial neural network model from real-time data. An AI-based method 
utilizing a Multilayer Perceptron (MLP) Artificial Neural Network (ANN) model 
was employed to precisely analyze productivity data in dairy factories. There 
are 9 product types and production quantities used as input parameters, and 
90 datasets of actual dairy products used as output values. The model was 
trained using the Levenberg–Marquardt algorithm on 62 datasets for training, 
14 for validation, and 14 for testing. The accuracy of the model is affected by the 
optimal data segmentation. The model showed how AI algorithms can improve 
processes and industrial production by increasing dairy production efficiency 
from 20 to 40%. Model efficiency values were compared to observed values 
to determine prediction accuracy. Model mean squared error was 4.02E-06, 
and coefficient of determination was 0.99984. Model efficiency predictions and 
observed values differed by −0.04% on average. This study investigated using 
artificial intelligence to optimize salvage processes and systems to increase 
energy efficiency and reduce environmental impact. The results show that a 
neural network model trained with real data can predict dairy plant productivity.
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1 Introduction

Advanced technology is being used in food production to boost efficiency. Future dairy 
milk factories will use artificial intelligence (AI) to boost productivity and energy efficiency. 
There have been several significant advancements in information technology in recent years 
(Khan and Turowski, 2016). Lifestyles and industrial processes have changed due to these 
upgrades. To improve quality, resource utilization, risk reduction, and market competitiveness, 
companies are adopting new technologies to transform client service. Thus, Khan and 
Turowski (2016) built a new set of production models to produce new values for their 
consumers and cash for themselves. Recent work in the field of AI by Funes et al. (2015) has 
proven significant in this regard. This study sought to create a human-like, capable technology. 
AI can work for long periods of time without interruption and assist people find information 
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that is simple but difficult to do. Lamrini et al. (2012) recommended 
new modeling tools due to the increasing complexity of food industry 
applications due to various occupations and methodologies. Complex 
operations require a more precise representation of technology, 
especially in systems with difficult instrumentation or analytical 
methods. Process nonlinearities and significant operational factor 
interactions complicate physical phenomenon research. In complex 
and large-scale industrial operations, Guine (2019) developed 
scientific and engineering methods to save and quantify energy. 
Statistics-based artificial neural networks (ANN) are widely used in 
scientific literature to model and predict flow rates. Unlike empirical 
equations, ANNs can explain multiple experiments, creating them 
generalizable and accurate. Exergy optimization was used by Fang 
et al. (1995) to evaluate the ML (Milk) processing system’s energy use 
and maximize energy quality. Thus, while ML coolers, heaters, and 
regenerators have near-maximum energy usage efficiencies, 
suggestions for improving exergy performance, such as minimizing 
homogenizer pressure drop and maximizing heat exchanger heat 
transfer constants, have been crafted. The efficiency of the spray 
drying process of creating white cheese powder (WCP) was assessed 
using energetic, exergy, and exergoeconomic analyses, as per Erbay 
and Koca's (2012) work, and the impact of progression variables on 
the process’s efficiency. Numerical software ANN can learn from 
examples and relate input and output parameters without process-
variable correlations. ANNs are used like biological neurons. Learning 
and adaptability help systems adapt to environmental changes, 
nonlinearity improves data fit, noise insensitivity ensures accurate 
predictions, and high parallelism allows fast processing and hardware 
failure tolerance because the model can use unlearned data due to 
generalization (Silva et al., 2015). Azadbakht et al. (2017) explored the 
impacts on energy consumption (EECT), energy efficiency, and 
employment rate, as well as exergy loss and efficiency. ANNs were 
utilized to estimate the energy and exergy types, and the constructed 
ANN was used to simulate the thermodynamic drying process. ANNs 
can be utilized in intelligent drying processes, which significantly 
consume energy in the food industry, due to statistical analyses. ANNs 
were used by Tripathy and Kumar (2009) to predict food product 
temperature changes during sun drying. ANNs had the highest 
predictive capacity among completely predicted reproductions, 
regardless of food illustration shape, according to error analysis. ANN 
was used by Momenzadeh et al. (2011) to estimate drying time from 
sample and grain moisture content. With microwave power, drying air 
temperature, and grain moisture content, the model calculated well. 
A Tansig (hyperbolic tangential sigmoid) transference occupation and 
trainer backpropagation ANN network produces the most accurate 
maize husk drying estimates, the study found. León-Roque et  al. 
(2016) improved and validated a quantitative picture using color 
measurement and ANN. Mobile device apps can estimate fermented 
cocoa bean fermentation index (FI) using ANNs at low cost.

The literature has identified some drawbacks of the ANN model. 
AI has both benefits and drawbacks in today’s technological landscape. 
Enhancing agriculture through food science and technology involves 
utilizing a combination of food science and AI to enhance crop 
classification, develop new food and nutraceutical products, improve 
formulations, conduct precise sensory evaluations, optimize industrial 
processing, ensure food quality and safety, manage supply chains, 
recycle waste, and predict calorie and nutrient levels. One drawback 
is the limited availability of extensive and easily accessible information 

needed to produce the most thorough review article. The benefits of 
exploring a novel topic, particularly one related to fundamental 
human needs like food and artificial intelligence, offer significant 
research opportunities that surpass any drawbacks (Esmaeily et al., 
2024). Barthwal et al. (2024) indicated different methods, such as 
creating hybrid systems that merge ANNs with conventional 
heuristics, meta-heuristics, evolutionary algorithms, and other 
techniques. They stated that evolutionary ANNs aim to address the 
limitations of traditional ANNs.

Simic et al. (2016) suggested economic conditions that maximize 
total polyphenolic content (TPC) output while minimizing abstraction 
period, solvent, and energy utilize. Response surface methodology 
(RSM) and ANN modeled and optimized TPC MAE using ANN, 
which outperformed R2, RMSE, and MAE.

A multilayer perceptron (MLP) and ANN are used to assess dairy 
factory production in this study. A Cappadocia factory that produces 
cheddar cheese (CPP), curd cheese (PCP), tulum cheese (TCP), WCP, 
cream (CRM), butter (BPP), yoghurt (YPO), ayran (APY), and other 
raw ML cheeses provided the data. The trained model was used to 
estimate dairy plant productivity from input parameters. This research 
aims to reduce EECT in factory product manufacturing to improve 
quality. This study reveals that deep learning (DL) improves energy 
and product efficiency prediction in production. Few studies have 
used DL to predict food processing and factory energy efficiency. Most 
research focuses on manufacturing and energy data. Finally, this study 
estimated dairy ML factory energy efficiency using MLPs. A 
comprehensive production estimation system was built with adjustable 
input parameters. ML production energy data are used as input 
parameters (product and energy) to estimate output value using MLP 
(EECT and production). These traits make the MLP model suitable 
for supervised learning. This study used advanced intelligence 
networks to optimize energy and production efficiency in local dairy 
milk factories. Thus, this study proposes using DL to forecast dairy 
ML facility output and energy efficiency. Food drying and related 
research dominates the literature review, but milk and related products 
are understudied. This study sought to boost dairy milk plant output 
and efficiency. The first of its kind, this study could be groundbreaking.

2 Materials and methods

The raw ML cheese varieties APLA, CPC, PCP, TCP, WCP, BPP, 
YPO, and APY, and others were collected from a local factory in the 
Cappadocia area. The production and energy input–output data used 
in this analysis was provided by the management of a facility that 
produces multiple types of ML and its products. Effectiveness and 
output were evaluated according to ML production criteria. In 
addition, it was able to ascertain the efficiency of the factory’s 
utilization energy by applying the principles of thermodynamics to the 
data it had gathered. The current production and energy input–output 
data was used to rearrange 10 scenarios with optimization, revealing 
production and energy efficiencies. The precision of these numbers 
was calculated using AI-powered algorithm-based estimation methods.

The APLA, CPC, PCP, TCP, WCP, BPP, YPO, and APY products 
made at this dairy ML plant all start with raw ML that is purchased 
and then passed through a pasteurizer (Figure  1). The energy 
requirements of the equipment used to process ML and its by-products 
vary depending on the product. This study presents energy-efficient 
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examples by utilizing case studies to explore alternative 
optimization strategies.

The energy cycle of the dairy ML plant is depicted in Figure 2. 
Plant energy can originate from a variety of sources, including lignite 

coal (boiler process), electric energy (machine process), and steam 
energy (heat transfer during the production process).

The energy and production inputs and outputs of the dairy ML 
plant using AI are shown in Figure  3. The pasteurization process 
provides input production data. The energy requirements of the firm 
are met by a combination of lignite coal (boiler process), electric 
energy (machine process), and steam energy (heat transfer in the 
production process). The primary product is APLA, while other milk 
products include CPC, PCP, TCP, WCP, BPP, YPO, and APY, which 
are also produced and marketed. The output energy was calculated by 
subtracting the total machine and apparatus power consumptions 
from the total input energy.

3 Production analysis for dairy ML 
factory

In Table 1, the plate pasteurizer capacity can be obtained using 
Equation (1) through Equation (8) to regulate the amounts of APLA, 
CPC, PCP, TCP, WCP, BPP, YPO, and APY that can be produced 
[Prabhakar et  al., 2015; UCCET (The Union of Chambers and 
Commodity Exchanges of Turkey): Industry Directorate, 2023]. It is 
possible to choose between several hypotheses to create ML 
dairy products.

Additionally, SPSS 18.0, was made available for use in analyzing 
the collected data. Regression analysis was employed to observe the 
credibility of the data in each scenario. Scatter plotting the equations; 
R2 = 0.98. Given the high value of R2, it is crucial to infer that the data 
can be derived from the scale and that the production and energy data 
are reliable and can be mathematically represented. The threshold for 
statistical significance was established at a p-value of less than 0.05.

4 Detailed strategies for reducing 
energy loss and achieving each EECT 
objectives

The design of the dairy processing plant’s total SEECT table and 
energy target plan (food engineering core actions) is informed by case 
studies and present conditions (Montgomery et al., 2001; Huang et al., 
2016; Li, 2021; Sarkar, 2022; Nathaphan and Therdyothin, 2023).

FIGURE 1

Production process of the dairy milk plant.

FIGURE 2

Energy process of the dairy milk plant.

TABLE 1 Equations of the production analysis [UCCET (The Union of Chambers and Commodity Exchanges of Turkey): Industry Directorate, 2023].

Products [t/y] Equations Equation nos.

Plate Pasteurizer (APLA) APLA APLH t h xn d y xn h d xy d APLA= [ ] [ ] [ ]/ / / η Equation (1)

White Cheese (WCP) WCP WC t y xML WC= [ ] [ ]/ %η Equation (2)

Cheddar Cheese (CPC) CPC CP t y xML CP= [ ] [ ]/ %η Equation (3)

Curd Cheese (PCP) PCP PC t y xML PC= [ ] [ ]/ %η Equation (4)

Tulum Cheese (TCP) TCP TC t y xML TC= [ ] [ ]/ %η Equation (5)

Yogurt (YPO) YPO YP t y x x kg LML YP YP= [ ] [ ] [ ]/ % /η ρ Equation (6)

Butter (BPP) BPP BB t y x xML BB EF= [ ] [ ] [ ]/ % %η η Equation (7)

Ayran (APY) APY AP t y xML WA= [ ] [ ]/ %η Equation (8)
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The regression analysis performed between heat and electrical 
energy alongside the SEECT and EECT. The utilization of linear 
regression analysis in the estimating procedure was primarily driven 
by the associations between energy consumption (month/year) and 
production volume. The yearly fundamental energy equation can 
be calculated by utilizing the R2 value of this estimation method, as 
demonstrated by Montgomery et  al. (2001) and Nathaphan and 
Therdyothin (2023). The expected value (SEECTTz) can be calculated 
using Equation (9) (Nathaphan and Therdyothin, 2023):

 
SEECT EECT

Qz
z

i
=

 
(9)

The total target specific energy consumption (SEECTTz ) can 
be determined from Equation (10) as follows:

 SEECTT SEECTz z=  (10)

5 Estimation of the mechanical and 
electrical EECT

In this study, heat and electricity consumption data were obtained 
from factory management and measurements during the process and 
calculated using thermodynamic equations. The factory management, 
which produces more than one dairy product, provided the 
production and energy input–output data used in these calculations. 
Efficiency and output were evaluated according to ML production 
criteria. In addition, by applying the principles of thermodynamics to 
the data collected, the efficiency of the energy used by the plant could 
also be determined. The available production and energy input and 
output data was used to optimize the 10 scenarios and to reveal the 
production and energy efficiency. The total EECT was computed by 
adding the thermal and electric energy used by machines and 
appliances during production. All machinery and equipment could 
be shipped straight from the factory thanks to precise thermal and 
electrical energy calculations and measurements. As a result, this 
research quantified the overall quantities of thermal and electrical 
energy consumed across all industrial processes.

From Equation (11), the total power ( o∑ Z ) amounts of the 
processes (electric energy, k is 25 machine devices through EECT) 
were determined as follows (Cengel et al., 2019):

 ∑ = + +…+   Z Z Z Zko 1 2  (11)

According to the Thermodynamics 1st Law and Equation (12), the 
total heat transfer of the input process ( ∑ iB ) was calculated by 
considering the Thermodynamic tables considering the temperature 
variations of the process (thermal energy) as follows:

 ∑ = ∑ B Zi i (12)

The internal, kinetic, and potential energies were neglected 
because of the small energy in the cunnings.

It is generally agreed that this system is open and produces a 
continuous output stream. From Equations (13) to (14), the 
Thermodynamics 1st Law can be designed as follows (Cengel et al., 
2019; Başaran et al., 2021):

 ∑ + ∑ = ∑ + ∑   Z B Zi o Z (13)

 ∑ −∑ = ∑ − ∑   B Z Zo iZ  (14)

Thermodynamic Tables were used to assess the quantity of steam 
energy generated within each process by computing the reaction that 
occurred in the steam at a predetermined loading using Equation (15) 
(Cengel et al., 2019; Başaran et al., 2021):

 ∑ = ∑ = ∑ = ∑ × −( )  

Z B B m h hi i st st st co  (15)

The ηI  (Thermodynamics 1st Law) can be  derived from 
Equations (16, 17) as follows (Cengel et al., 2019; Başaran et al., 2021):

   Z Z Zo o t o e= +, ,  (16)

 
η1st

Z
Z

%[ ] =




o

i  
(17)

FIGURE 3

Input and output of the production and energy of the dairy milk plant for using AI.
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Based on these equations, predictions and optimizations were 
created according to the energy and mass scenarios. Thus, the study 
models were constructed to be utilized in ANN with the designed 
input and output data.

6 MLP model development

To accurately identify data on productivity in dairy factories, an 
AI-based method was applied to the model of a MLP based on 
ANN. Nine different product types and production quantities serve as 
input parameters, while 90 different datasets of actual dairy products 
serve as output values. The optimal data grouping can affect the 
model’s prediction accuracy. In the developed MLP model, the 
Levenberg–Marquardt training algorithm, which is one of the training 
algorithms that can provide high accuracy due to its strong structural 
features, was used (Karimi et  al., 2022). In selecting the transfer 
functions to be used in the hidden and output layers of the MLP 
network model, information obtained from the literature was used 
and the widely used transfer functions Tan-Sig and Purelin transfer 
functions were selected (Çolak, 2021a). Levenberg–Marquardt was 
used as the training algorithm, and Tan-Sig and Purelin transfer 
functions were used in the hidden and output layers. This model was 
trained using the Levenberg–Marquardt algorithm on 62 training, 14 
justification, and 14 testing datasets. The best data grouping affects 
model accuracy. Tan-Sig and Purelin transfer functions in the hidden 
and output layers can be given Equations (18, 19) as follows (Khan 
et  al., 2023; Rehman et  al., 2023; Reis et  al., 2023; Shilpa and 
Leela, 2023):

 
f x

x
( ) =

+ −( )
1

1 exp  
(18)

 purelin x x( ) =  (19)

The study evaluated the performance of the MLP model for 
estimating dairy factory productivity values using commonly used 
literature parameters. The mathematical expressions used in the 
calculation of the mean squared error (MSE), R2, and margin of 
deviation (MoD) parameters that were obtained as performance 
parameters, are indicated Equations (20, 21, 22) as follows (Rehman 
et  al., 2022; Srinivasacharya and Kumar, 2022; Khan et  al., 2023; 
Rehman et al., 2023; Reis et al., 2023; Shilpa and Leela, 2023):
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One of the difficulties in developing MLP models is the lack of a 
fixed model used to determine the number of neurons in the hidden 
layers of MLP networks (Bonakdari and Zaji, 2016). To overcome this 
difficulty, the methodology also applied in the literature was used and 
the number of neurons in the hidden layer was determined by 
analyzing the prediction performances of models with different 
numbers of neurons in the hidden layer (Çolak, 2021b). The number 
of neurons in the hidden layer was optimized to 13. The basic 
configuration architecture and model parameters are shown in 
Figure  4. The developed ANN model was created using 
MATLAB software.

7 Results and discussion

This study considers an industrialized system in which the trained 
model is used to predict the output of dairy plants given various input 
variables. The study reduces production energy use and improve 
quality by using MLP to predict energy and product efficiency in 
manufacturing. The MLP branding system predicts dairy machine 
learning factory production and energy efficiency, making it ideal for 
supervised learning and allowing input parameter adjustments.

This study’s analysis displays the facility’s output and energy 
efficiency utilizing optimization methodologies reinforced by data 
from the factory and technical assessments. Thus, the quality of the 
operation is proved by algorithms that validate productivity and 
energy efficiency under optimal conditions. This study provides 
in-depth comparisons of the existing situation with graphics, 
production, and energy input outputs and scenarios. In this study, 10 
scenarios were organized based on the production amount of milk 
and products planned to be produced according to the processes, to 
make improvements according to the current situation. By optimizing 
the production quantities of milk and dairy products, both energy 
efficiency and production efficiency, the focus of the study, 
were revealed.

Figure 5 depicts the outcomes of the scenario analyses using the 
optimization approach based on the existing annual capacity and 
product efficiency. When evaluating the tools for assessing a dairy ML 
facility, the total daily ML yield was computed by dividing the energy 
analysis production efficiencies, which are based on the production 
and efficiency of various ML and products. The total dairy products 
may be used to assess the efficiency of current production. The R2 
value was 0.9877 and y = 0.0768 ln (x) + 0.1986. In the production and 
productivity graph, 10 scenarios were created with the optimization 
methods in the current production, the logarithmic slope of the data 
was drawn, and the most suitable conditions for the factory were 
determined. In Figure 5, while the current production amount was 
approximately 3,800 [t/y] and the current production efficiency was 
in the range of 21–22%, the scenario production amount was 
approximately 6,900 [t/y] and the scenario production efficiencies in 
the range of 38–39% were reached with 10 scenarios. Thus, the 
production efficiency increases when the volume integral in the 
production of ML and products in the optimization methods 
increases. Products per total dairy product is a good way to figure out 
the yearly production efficiency (Margolies et al., 2017).

The volumetric changes related to the quantities in the process 
stages of milk and milk products production and the applied milk 
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design and equipment were analyzed, optimizations were implemented 
and the optimum cases were established.

Figure 6 shows the current energy input and the 10 scenarios for 
the factory’s EECT. The R2 value was 0.9967, and the equation was 
y = −38.08 ln (x) + 397.7. The logarithmic slope clearly indicates that 
when the optimization approach is applied to the factory’s energy 
inputs, the EECT may be  visibly lowered. The case study results 
(EECT) can be  accessed based on the research conducted by 
Nathaphan and Therdyothin (2023).

Regression analyses and equations were created by establishing 
the correlation between the current situation in the factory and the 
scenarios to find the optimal situation for the factory, resulting in an 
increase in productivity. In addition, scatter plotting the equations; 
R2 = 0.98. Because R2 is close to 1, it is important to conclude that the 
data can be obtained from the scale and that the anaerobic power test 
is accurate and can be  represented mathematically. Statistical 
significance was set at p < 0.05.

Figure  7 illustrates a comparison of the product and energy 
efficiencies in the current and scenarios. The R2 value was 0.9877, and 
the equation y = 0.07688 ln (x) + 0.1986. The logarithmic slope 
illustrates that when the optimization approach is utilized for the 
factory’s products, energy efficiency may be significantly increased 
by optimization.

Figure  8 illustrates the outcomes of a plant’s energy and 
production efficiency. The current factory’s energy efficiency is 45%, 
and it may grow from 48.2 to 58.7% when scenarios are configured 
using optimizations. Although the current factory’s production 
efficiency is 21.2%, it can be seen in several situations that it may 
improve to 38.6% with the implemented modifications. Bühler et al. 
(2019) achieved a 48% reduction in electricity input and a 35% 
decrease in heat rate through electrification. Lincoln et  al. (2022) 
accomplished a 21% energy savings through process integration and 
electrification in efficient milk evaporation systems. Volume and 
design changes in the production of milk and dairy products were 

A B

FIGURE 4

Information of the model developed to analyze the efficiency of the dairy factory (A) the basic configuration architecture and (B) model parameters of 
the MLP network.

FIGURE 5

Current and scenario product amount and efficiency chart.
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made to ensure more efficient production through optimization. 
Energy efficiency was also achieved by optimizing production 
efficiency. Production and energy improvements were achieved by 
using production methods (design and volumetric changes) and heat 
transfer methods for some similar energy efficiencies carried out in 
the dairy industry and applied in this study. Therefore, several 
comparable energy efficiency studies of the dairy industry have been 
conducted, and a few of them are included in this study. These 
scenario analyses are compatible with studies in literature, and it has 
been proven that energy efficiency will develop under different 
conditions because of optimization procedures in the dairy industry.

In Figure 9, the performance analysis of MLP networks began 
with the validation of the training phase. The model’s performance 

was assessed by feeding input data to subsequent layers, comparing 
output data with actual data, and sending back data to minimize 
errors. The model’s MSE values decreased with each epoch, as 
expected. The training phase showed a decrease in MSE values for 
each epoch, indicating a reduction in errors. This approach was crucial 
in enhancing the performance of MLP networks.

In Figure  10, the training phase of the MLP model was 
accomplished when the MSE values reached their lowest values for all 
three datasets. The error histogram and training performance graph 
showed that the error values for the training, validation, and test 
datasets were generally close to the zero-error line, with low numerical 
errors. These findings reveal that the training phase of the progressed 
MLP model is ideally fulfilled.

FIGURE 6

Current and scenario energy input chart.

FIGURE 7

Comparison of the product and energy efficiency in the current and scenarios curve.
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Figure 11 displays the regression plot generated by the trained 
ANN model. Upon examining the graphs provided for the training, 
validation, test, and all data sets individually, it is evident that the data 
points align with the regression line. It is important to ensure that the 
R values for each dataset are close to 1. The regression plot results 
indicate that the developed ANN model was trained effectively.

In Figure  12, the MLP model’s prediction performance was 
evaluated after verifying its training phase. The model’s production 
efficiency values were compared with actual values, revealing perfect 
settlement between the MLP model and actual data points. This 
perfect harmony indicates that the MLP model may precisely forecast 
dairy factory production values, demonstrating its high accuracy in 

predicting efficiency values. Figure 12 illustrates the experimental 
efficiency values for each data point.

The MLP model’s efficiency values were compared with actual 
values, and the model’s estimation errors were assessed. The MoD 
values for 90 data points were calculated, showing a close-to-zero-
deviation region in the graph line. The mean MoD value for the 90 
data points was −0.004%, indicating a close-to-zero deviation ratio 
between the MLP model and actual values (Figure 13).

The MLP model was used to predict dairy factory production 
values with very low errors, as demonstrated by the low deviation rates 
and differences between the MLP model’s efficiency values and actual 
efficiency values. The MLP model was developed to accurately guess 

FIGURE 8

Comparison of the product and energy efficiency in the current and scenarios chart.

FIGURE 9

Training performance graph for the MLP model.
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FIGURE 10

Error histogram for the ANN model.

FIGURE 11

The regression plot of the trained ANN model.
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the factory’s production values, resulting in minimal errors in the 
model’s performance (Figure 14).

The efficiency values in Figure 15 are on the x-axis, while the 
efficiency values from the MLP model are on the y-axis. All data 
points are on the zero-error line, indicating that the estimated values 
from the model are very close to the actual values. The MSE value was 
calculated to be 4.02E-06, and the R2 value was 0.99984, indicating 
that the advanced MLP model may accurately compute the production 
values of a dairy factory.

It is important that critical parameters, which can be determined 
as a result of long-term experimental studies, can be determined with 
high accuracy without the need for experimental studies. Obtaining 
important parameters without the need for experimental studies by 
using the artificial intelligence tool developed in this study will provide 
great advantages in terms of both financial and time. For this reason, 
using the proposed approach will provide significant advantages in 
industrial applications and scientific studies.

8 Conclusion

There has been a recent shift toward product solutions in the 
field of science-based AI research, but this field is still in its 
infancy. This study demonstrates the necessity of implementing 
artificial intelligence (AI) and Multilayer Perceptron (MLP) 
models in the food processing industry. The MLP model was 
specifically designed to evaluate the effectiveness of AI tools in 
estimating the energy and production efficiency of a dairy factory. 
The developed MLP model was trained using data obtained from 
a factory in the Cappadocia region that produces various dairy 
products, such as main product as APLA, and other products as 
CPC, PCP, TCP, WCP, BPP, YPO, and APY. This study indicated 
that AI applications increased dairy production efficiency from 
20 to 40%. The study uses 90 real-time datasets to study the 
impact of AI algorithms on industrial production processes. The 
Levenberg–Marquardt training algorithm was used in the MLP 
network model, with Tan-Sig and Purelin transfer functions used 
in the hidden and output layers. The model, with 13 neurons in 
the hidden layer, predicted dairy factory productivity values with 
an average deviation of −0.04% from real data. The low MSE value 
and closeness of the R2 value to 1 confirm that the ANN model 
was developed to make predictions with high accuracy. The study 
findings showed that an MLP network model trained using real 
production data can accurately predict dairy plant productivity. 
The proposed AI-based approach shows promising results for 
predicting the energy and product efficiency in dairy factory 
operations. Compared with traditional empirical equations, ANN 
models offer better generalizability and accuracy by allowing 
them to represent a set of experiments.

This study contributes to the existing body of knowledge by 
outlining a strategy for estimating production and energy efficiency 
in dairy plants by AI tools. With production-level energy data readily 
available, the MLP model excelled at supervised learning. By better 
utilizing the available energy, this study reveals how AI can be used to 
enhance processes and systems to reduce the environmental impact 

FIGURE 12

Compatibility of MLP outputs with actual efficiency values.

FIGURE 13

The deviation rates between the efficiency values obtained from the 
MLP model and the actual values.
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of salvage operations. This study would allow more researchers and 
familiar readers to apply the study’s findings to the dairy industry. 
Other researchers will almost certainly cite it.
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Glossary

AI Artificial intelligence

ANN Artificial neural network

APLA Plate pasteurizer product, [t/y]

APLH Time of the plate pasteurizer (catalog amount), [t/h]

APML Product of milk for the ayran, [t/y]

APY Ayran product, [t/y]

BPML Product of milk for the butter, [t/y]

BPP Butter product, [t/y]

CPC Cheddar cheese product, [t/y]

CPML Product of milk for the cheddar cheese, [t/y]

DL Deep learning

EECT Energy consumption, GJ

ML Milk

MLP Multilayer sensor

PCML Product of milk for the curd cheese, [t/y]

PCP Curd cheese product, [t/y]

SEECT Total specific energy consumption, GJ/t

Tansig Hyperbolic tangential sigmoid

TCML Product of milk for the tulum cheese, [t/y]

TCP Tulum cheese product, [t/y]

TPC Total polyphenolic content

WCML Product of milk for the white cheese, [t/y]

WCP White cheese product, [t/y]

YPML Product of milk for the yoghurt, [t/y]

YPO Yoghurt capacity production, [t/y]

Unit and symbol

ρYP Yogurt density [kg/L]

∑ B
Total heat transfer process, W

Bi∑ 
Process of total heat transfer input, W

Bst∑ 
Steam process heat transfer, W

Zi∑ 
Mechanic power input, W

Zo∑ 
Power output, W

Z∑ 
Total power of the processes, W

Zo e,
Electric energy output, W

Zo t,
Steam energy output, W

mst Steam mass flow rate, kg/s

nd Daily working hours, h/d

ny Annual working days, d/y

η1,st
Energy efficiency, %

R2 Determination coefficient, −

Q Product volume, t

T Temperature, K

X Variable

Greek letters

η Efficiency

∆ Difference

∑ Sum

Subscript

co Condense

d Day

EF Product factor, %

exp Experimental

h Hour

i Input

j Number of equal energy measurements per year

k Machine device process number

n Work time

NC Charges

o Output

st Steam

t Ton

WA Water rate in ayran, %

y Year

z Period
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