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Spatial spillover and threshold 
effects of digital rural 
development on agricultural 
circular economy growth
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The infusion of digital technologies imparts impetus to the development of 
agricultural circular economy. Study focuses on the nexus of digital rural 
development, agricultural circular economy growth, employing entropy, 
Critic, and TOPSIS models to calculate the evolution of agricultural circular 
economy from 2011 to 2021. Furthermore, the temporal and spatial dynamics 
of agricultural circular economy development are explored. In addition, spatial 
Durbin models and threshold models are utilized to explore the spatial spillover 
effects of digital rural development on agricultural circular economy, and the 
threshold characteristics of agricultural circular economy with varying levels of 
digital rural development. The research findings reveal that arable land area, 
forest coverage, and mechanization play pivotal roles in shaping the trajectory 
of rural circular economy development. The synthetical index of rural circular 
economy development shows a consistent yearly increment, yet pronounced 
regional disparities exist, reflecting an olive-shaped distribution with dual cores in 
Heilongjiang and Chongqing and a more prominent central. The implementation 
of digital rural not only elevates the local agricultural circular economy, but also 
demonstrates conspicuous spatial spillover effects on neighboring regions. 
The relationship between digital rural development and agricultural circular 
economy growth is characterized by a singular threshold effect. Pre- and post-
threshold, the promotive impact of digital rural development rises from 0.048 
to 0.058. Building upon these findings, policy recommendations are formulated 
to guide future endeavors in this domain.
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1 Introduction

Agriculture, at the heart of these rural concerns, provides essential resources such as food 
and agricultural products to humanity (Duque-Acevedo et al., 2020), exerting a substantial 
influence on both farmer incomes and the overall welfare of the nation (Lange et al., 2018). 
The significant water demands of agricultural activities underscore the pivotal role that water 
resources play in determining the extent of sustainable agricultural development (Winter et al., 
2017). Simultaneously, agricultural production and operations exert varying degrees of impact 
on the environment, climate, and related domains (Maurício et al., 2022).

Over time, China has witnessed rapid growth in its agricultural economy, leading to a 
continuous increase in its aggregate output. However, the traditional extensive development 
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model has also brought forth a host of latent hazards, escalating 
contradictions between population and resources, as well as the 
underutilization of resources. Consequently, ecological and 
environmental pressures have progressively intensified. Moreover, the 
trajectory of agricultural advancement in China is confronted with an 
array of challenges, including declining rural populations, rural land 
transfers, and deficiencies in governance systems (Liu, 2022), all of 
which impede the progression of Chinese-style modernized 
agriculture. Constrained by multifaceted factors, the evolution of 
Chinese agriculture necessitates the identification of a trajectory 
congruent with ecological civilization.

The concept of circular economy has emanated from multiple 
sources, with its initial formulation dating back to 1998 (Zhu, 1998). 
Subsequent refinements to the concept were introduced by Kumar 
et al. (2021) and Ronaghi (2022). Diverging from the conventional 
economic approach of resource depletion to fulfill consumption 
demands (Dantas et al., 2021), the essence of which lies in minimizing 
resource consumption to achieve sustainable development objectives 
(Cantzler et al., 2020).

Circular economy represents an advanced developmental 
paradigm that, in principle, is applicable to all natural resources 
(Schroeder et  al., 2019), exerting a profound influence on both 
production and lifestyle domains. Synthesizing the tenets of circularity 
and economic advancement, this model places emphasis on the cyclic 
utilization of resources. It not only ensures the quality and safety of 
agricultural products but also mitigates environmental pollution. As 
such, the circular economy is considered a pivotal pathway toward the 
realization of modernized agriculture (Guo et al., 2011).

Given its progressive principles and immense developmental 
potential, circular economy has received extensive attention from 
governments, experts, and scholars, owing to its capacity to address 
challenges such as resource scarcity (Kiselev et al., 2019; Velasco-
Muñoz et al., 2021). Various nations have displayed a heightened focus 
on the circular economy, utilizing its principles to tackle ecological 
and environmental issues. Notably, a significant number of countries 
globally, a total of 196, have acceded to the Paris Agreement, aimed at 
combatting global warming. Advanced nations like Switzerland have 
integrated the circular economy into waste management strategies 
(Acerbi and Taisch, 2020; Batlles-delaFuente et al., 2022), while China 
has propagated the model of ecological industrial parks.

The recognition of the significance of circular economy 
development has extended beyond governmental domains, as various 
industries have embraced the concept and propelled its 
implementation. The convergence of circular economy with other 
technologies has become instrumental in fostering rapid circular 
economy growth, exemplified by instances like blockchain-based 
circular economy (Davide et al., 2023), artificial intelligence, industrial 
applications (Lieder and Rashid, 2016), energy sectors (Kiselev et al., 
2019; Saidani et  al., 2019), agriculture (Thiru et  al., 2023), 
among others.

China has embarked on a comprehensive journey toward high-
quality development, vigorously promoting the construction of digital 
rural areas as a potent lever for realizing the development of 
agriculture. Digital rural development embodies traits of efficiency, 
intelligence, and convenience, not only contributing to socioeconomic 
progress but also intricately intertwining with agricultural pursuits. It 
has evolved into a pivotal pillar supporting the edifice of agricultural 
circular economy. In 2022, the average grade of cultivated land quality 

was 4.76, the availability of agricultural water resources increased by 
0.7% compared with 2021, the consumption of chemical fertilizer 
decreased by 2.16%, the recovery rate of waste agricultural mulching 
film reached 60.6%, and the comprehensive utilization rate of straw 
industry was about 90%. China’s digital rural construction time is 
short, the urban–rural gap still exists. The Internet, 5G did not achieve 
full coverage, cannot meet the big data of new technologies such as the 
support of green agriculture, in addition, the rural digital professional 
and technical personnel and agricultural development does not match, 
which failed to apply digital technology to agricultural production, it 
lead to insufficient agricultural circular economy development. 
Therefore, it is urgent to develop digital rural technology. Confronting 
the challenges of agricultural development, rationally allocating 
agricultural resources within the framework of digital rural 
development becomes paramount, ultimately propelling the 
realization of agricultural circular economy.

Given this context, the pertinent question arises: what precisely is 
the impact of digital rural development on the progression of the 
agricultural circular economy? Amid the backdrop of heightened 
governmental attention to rural issues across different regions, 
standardized performance assessment criteria and shared goals for 
agricultural modernization have heightened the interregional spatial 
connectivity. Consequently, this sets the stage for investigating the 
distinctive characteristics through which digital rural development, 
observed in spatial view, propels the agricultural circular economy. 
Moreover, does digital rural development exhibit heterogeneity across 
different stages? Addressing these queries accurately holds the core to 
evaluating the influence of digital rural development on the agricultural 
circular economy, bearing significant implications for the construction 
of the facilitation of modernized agricultural development.

In the present landscape, research concerning agricultural circular 
economy has evolved from qualitative approaches to quantitative 
methodologies. Some scholars have measured the efficiency (Guo 
et  al., 2023). The selection of evaluation indicators is pivotal for 
accurate measurement. Recognizing that a single indicator is 
insufficient to holistically capture the essence of agricultural circular 
economy, a multidimensional approach encompassing financial, 
societal, and environmental aspects has been adopted (Musyarofah 
et  al., 2023). Yang has employed dimensions such as social 
development, resource input, and resource circulation to gauge the 
capacity of agricultural circular economy (Hui et al., 2014). In 2007, 
the NDRC introduced an evaluation indicator system for circular 
economy development (Geng et  al., 2012), from which Yuan and 
others selected macro-level indicators for assessment (Hu et al., 2018).

While research on circular economy has experienced incremental 
growth, investigations into the influence of digital technology on 
circular economy remain relatively limited (Wynn and Jones, 2022). 
Existing studies have demonstrated that digital technology addresses 
various environmental concerns such as solid waste and electronic 
waste (Francesca et al., 2020; Gagan et al., 2020). Moreover, digital 
technology contributes to energy conservation, efficiency 
improvements in production and manufacturing, and cost reduction 
(Vincent et al., 2021; Zhao et al., 2023), effectively fostering circular 
economy and sustainable development (Ali et al., 2023; Li et al., 2023). 
Geographically, scholars have examined European countries (Moreno 
et al., 2019; García-Muiña et al., 2021; Luciano et al., 2021), while 
others have shifted their focus toward emerging economies (Bag et al., 
2020; Khan et al., 2021; Abdul-Hamid et al., 2023).
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The existing body of research in the field is relatively abundant; 
however, many studies predominantly employ quantitative 
methodologies for analysis, with limited application of econometric 
models to quantify the circular economy (Luo et al., 2022; Laura, 2023; 
Li, 2023). Some limitations persist in the extant literature: Firstly, 
regarding research scope, the majority of papers focus on the nexus 
between digital technology and the circular economy (Khan et al., 
2022), with fewer delving into agricultural and rural development, 
despite their pivotal role within the context of Chinese-style 
modernization. Secondly, concerning research methodologies, many 
rely on conventional statistical models r case analysis to gauge the 
impact of digital technology, often overlooking the potential nonlinear 
relationships inherent between these two variables (Liu et al., 2022). 
Thirdly, in terms of research perspectives, empirical analyses 
predominantly approach the impact of digital technology from a 
non-spatial angle (Schöggl et al., 2023), inadvertently neglecting the 
inherent fluidity of the circular economy, which poses challenges in 
elucidating the intricate relationship between them.

The marginal contributions are threefold: Firstly, in the research 
perspective, it centers its focus on the agricultural industry and new 
rural construction, investigating the effect of digital rural on 
agricultural circular economy, which provide a new application 
direction for the digital rural construction. Secondly, from the 
research method, it employs spatial econometric models to examine 
the spatial effects of digital rural development on the advancement of 
the agricultural circular economy. Meanwhile, it constructs a panel 
threshold model to verify the nonlinear impact of digital rural 
development on the agricultural circular economy at varying levels of 
digital rural development. Lastly, from the perspective of research 
significance, under the background of “digital China,” it has important 
significance to explore the influence of digital rural construction on 
agricultural circular economy, to optimize the construction of smart 
countryside, build a beautiful and livable countryside, and promote 
the harmonious development of man and nature.

2 Agricultural circular economy 
assessment

2.1 Logical framework for assessment

During the 14th Five-Year Plan, China embarked upon a novel 
journey toward agricultural modernization, delving into pathways and 
methodologies for the resource utilization and recycling of organic 
waste, waste gasses, waste materials, sewage, and the like. Thus, for 
elucidate the essence of agricultural circular economy, a framework is 
established according to the 4R (reduce, reuse, recycle, recover).

2.2 Measurement framework

Given the discrepancies between the 2007 circular economy 
indicators and China’s prevailing circumstances, a redesign of 
indicators aligned with current developmental contexts is warranted 
(Pan et al., 2016; Hu et al., 2023; Chen et al., 2024).

Consequently, grounded in the logical structure of agricultural 
circular economy development measurement, and while ensuring data 
availability, an assessment framework for evaluating agricultural 
circular economy development indicators was formulated. This 

framework encompasses four dimensions: Agricultural economic, 
social development, diminished resource input, resource recycling, 
and resource-environment security. In total, it encompasses 18 
indicators (Table 1).

2.2.1 Agricultural economic and social 
development dimension

Which is used to evaluate the current situation and potential of 
agricultural circular economy development. Agricultural GDP and total 
output value of agriculture, forestry, animal husbandry, and fishery reflect 
the total scale and results of agricultural production. The higher the 
indicator, the higher the agricultural economic benefits. Agricultural 
income is the main sources of income for rural residents, which reflects 
the level of agricultural economic prosperity. The unit livestock and 
poultry product rate is a manifestation of the commercialization of 
livestock and poultry products, and animal husbandry is a concentrated 
manifestation of regional agricultural economic characteristics. 
Agricultural machinery is an important component of agricultural 
economy and a driving force for agricultural economic growth. The 
improvement of this indicator means an improvement in agricultural 
efficiency and benefits. Grain production is closely related to people’s 
livelihoods, food security and stability are the key to controlling the 
overall economic development. The dimension is assessed through 
indicators including unit area agricultural GDP output, rural residents’ 
income, agricultural machinery power, unit output of livestock and 
poultry products, per capita grain production et al.

2.2.2 Diminished resource input dimension
Which reflects the current situation of the input end of agricultural 

circular economy. Pesticide, films, and diesel are the main sources of 
agricultural carbon emissions. Although these resources are helpful 
for agricultural production, the more investment, the greater the 
pollution generated, which goes against the original intention of 
agricultural circular economy. Power supply services effectively ensure 
the development of modern agriculture. The higher the electricity 
consumption in rural areas, the more unfavorable it is for 
environmental protection. Effective irrigation coefficient refers to the 
proportion of effective irrigation per unit of cultivated land, the higher 
the index, the higher the effective level of management; The dimension 
of diminished resource input is evaluated through indicators 
encompassing fertilizer application intensity, pesticide application 
level, plastic film usage level, agricultural diesel fuel consumption, 
rural electricity usage intensity, and effective irrigation coefficient.

2.2.3 Resource recycling dimension
Which reflects the degree of resource recycling of agricultural 

circular economy. The multiple cropping index represent the degree 
of repeated utilization of cultivated land resources. The higher the 
multiple cropping index, the higher the utilization rate of land 
resources. The effective utilization coefficient of fertilizers is one of the 
important indicators of agricultural production, representing the 
degree of fertilizer resource utilization. The higher the indicator, the 
stronger the technical and economic effects. The effective utilization 
rate of machinery refers to the total output value of the planting 
industry at a unit level of agricultural mechanization, representing the 
return on investment in agricultural machinery. The higher the 
indicator, the greater the return on investment. The dimension of 
resource recycling is gauged through indicators such as cropping 
index, fertilizer utilization efficiency, machinery utilization efficiency.
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TABLE 1 Comprehensive evaluation indicator system of agricultural circular economy.

Target layer System layer Indicator layer Calculation method Direction

Agricultural circular 

economy development

Agricultural 

economic and 

social 

development A

Agricultural GDP output per unit area A1 Agricultural output/cultivated land area +

Income of rural inhabitants A2 Per capita net income of rural residents +

Agricultural machinery power A3 Total power of agricultural machinery/cultivated area +

Rate per unit of livestock product A4 Livestock production/total meat production +

Food production per capita A5 Total food production/rural population +

Gross value of agricultural, forestry, livestock and fishery production per capita A6 Gross value of agricultural, forestry, livestock and fisheries production/rural population +

Resource 

reduction input B

Fertilizer application intensity B1 Fertilizer application/total sown area of crops −

Pesticide application level B2 Pesticide use/total sown area of crops −

Agricultural film application level B3 Agricultural plastic film use/total sown area of crops −

Agricultural diesel applications B4 Agricultural diesel use/total sown area of crops −

Rural electricity intensity B5 Rural electricity consumption/rural population −

Effective irrigation coefficient B6 Effective irrigated area/cultivated area +

Resource 

recycling C

Repeat cropping index C1 Total sown area of crops/area of arable land +

Fertilizer effective utilization factor C2 Cultivation output/farm fertilizer application +

Mechanical effective utilization rate C3 Cultivation output/total power of agricultural machinery +

Environmental 

security of 

resources D

Forest cover D1 Forest/total land area +

Cropland area D2 Cultivated land area/rural population +

Agricultural land damage rate D3 Affected area/total sown area of crops −
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2.2.4 Resource-environment security dimension
Which evaluates the strength of the external environment support 

in the development process of agricultural circular economy, which 
belongs to the environmental research index. Forests are the key to the 
control of soil erosion, if the index decreases, it will lead to crop 
production. Cultivated land is the lifeblood of grain production. 
Holding the lifeblood of agricultural economic development, can bring 
sustainable economic benefits to farmers. Agricultural production is 
greatly affected by meteorological and climatic conditions, the situation 
that agriculture depends on the weather has not been fundamentally 
changed. The risk still exists. These indicators have affected the 
agricultural circular economy. The dimension of resource-environment 
security is quantified using indicators including forest coverage rate, 
arable land area, and farmland disaster incidence rate.

2.3 Calculation method

2.3.1 Weight measurement
Currently, cutting-edge research on CRITIC include CRITIC-

EDAS et  al., the use of the CRITIC-EDAS was first proposed by 
Mallick et  al. (2023). CRITIC-EDAS is more comprehensive and 
advantageous, which is mainly used for the comparison and evaluation 
of multiple schemes, mainly for attribute conflict problems. Moreover, 
this paper evaluates the level of the agricultural circular economy over 
the years, rather than choosing the best alternative. Therefore, it is 
more realistic to adopt the Critic-Entropy combination empowerment 
method, Critic-Entropy amalgamates the advantages of Critic, which 
eradicates overlap between indicators’ information and entropy, which 
handles inter-indicator correlation (Diakoulaki et al., 1995; Abdel-
Basset and Mohamed, 2020). The entropy method determines weights 
according as the degree of dispersion among indexes (Chang, 2019), 
addressing Critic’s limitations. Consequently, the Critic-Entropy is 
used to compute the weights of indicators.

2.3.1.1 Critic Weight Calculation
I. Assuming that there are m study samples, n indicators, the 

original matrix of m * n is formed as:
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II. Perform dimensionless processing:
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Where, xmax  and xmin  are the maximum, minimum values, and 
xij ' is normalized data.

III. Calculating information carrying capacity.
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 C S Rj j j= ∗
 (8)

S j  is the variability, which use Eqs. (4) and (5) to calculate. 
Rj  is the conflict, Eq. (6) is a mathematical expression of the 
correlation coefficient, rij  is the correlation coefficient of each 
indicator, and C j is the amount of information, which use Eq. (7) 
to calculate.

IV. Weighting calculations
The following formula was used to measure the weights of the 

indicators Wj1, as shown in Eq. (9).

 

W
C

C
j

j

j
m

j
1

1

=

=∑  

(9)

2.3.1.2 Entropy method to measure weights
I. Matrix construction. The same original matrix constructed with 

Critic data, see Eq. (1).
II. Dimensionless processing. The same as Critic data 

normalization processing, see Eqs. (2) and (3).
III. Calculation of indicator information entropy E j, as shown in 

Eq. (10).

 
E

m
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m= − =∑1

1ln
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(10)

IV. Calculation of the coefficient of variation Dj , as shown in 
Eq. (11).

 D Ej j= −1  (11)

V. Calculation of weights Wj2, as shown in Eq. (12).
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FIGURE 1

Measurement flow chart.

Calculation of composite weights for indicator j, as shown in Eq. (13).

 
W W Wj j j= + −( )β β1 21

 (13)

In this paper, we  assume that the assignments have the same 
importance and take β  = 0.5.

2.3.2 TOPSIS model
The TOPSIS model ranks the sample units according to their 

proximity to the idealized target. The steps as follows:
I. Constructing a weighting matrix Zij , as shown in Eq. (14).

 Z W xij j ij= ×  (14)

II. Determination of positive ideals S j+ and negative ideal S j−, as 
shown in Eqs. (15) and (16).
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III. Calculate the distance from the sample cell to the  
positive and negative ideal solution Di+, Di−, as shown in Eqs. (17) and (18).
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IV. The closeness coefficient of the sample cell to the ideal solution 
Ci, as shown in Eq. (19).
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i
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2.3.3 Measurement flow chart
The calculation of the level of agricultural circular economy is 

shown in Figure 1.

2.4 Data source

To guarantee the continuity and availability of sample units, the 
study covers the period from 2011 to 2021, with data sourced from 
“China Rural Statistical Yearbook,” as well as yearbooks from 
various provinces.

2.5 Agricultural circular economy 
measurement results

2.5.1 Weight results
Calculation was performed using both the Critic and entropy 

methods, yielding weight coefficients for each indicator (Table 2). 
Larger values denote greater weights, signifying the indicators’ 
relative importance.

2.5.2 Evaluation of agricultural circular economy
Three representative years, namely 2011, 2016, and 2021, were 

selected. Over the inspection period, which exhibited a steady 
upward trend, approximately 2.19%. By 2021, the index reached its 
peak at 0.385. On a regional basis, during the years 2011–2021, the 
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eastern demonstrated the highest mean value, the western displayed 
the lowest, indicating an uneven development. Employing the 
method of average standard classification, the comprehensive 
development index was categorized as follows: 0–0.296 denoting 
low level, 0.297–0.358 representing relatively low level, 0.359–0.419 
indicating moderate level, 0.420–0.481 signifying relatively high 
level, and 0.481–1 corresponding to high level. Utilizing Stata 
software, visualization of China’s agricultural circular economy 
development level was achieved, facilitating a more intuitive 
presentation of temporal and spatial evolution trends. As shown in 
Figure 2.

The number of provinces categorized as having low levels 
gradually diminished, while those categorized as having high levels 
increased. The overall level continuously improved. In 2011, there 
were no provinces at high or relatively high levels. In 2016, 
Heilongjiang province was at a relatively high level, and by 2021, 
Chongqing and Heilongjiang provinces were both at high levels. 
Provinces categorized as having low levels decreased from 10 in 2011 
to 6 in 2016, and subsequently to 2 in 2021. Provinces categorized as 
having relatively low levels reduced from 18 in 2011 to 11 in 2016, 
further declining to 7 in 2021. Provinces at relatively high levels or 
above increased from none in 2011 to 1 in 2016, and then to 7 in 2021.

3 Research design

3.1 Methodology

3.1.1 Spatial correlation test
The new economic geography theory asserts that economic 

activities are inherently constrained by geographical space, and the 
agricultural circular economy is also influenced by spatial factors. 

Spatial correlation reflects the spatial relationships among various 
variables and is a prerequisite for employing spatial models. 
Correlation is generally separate into two components: global and 
local spatial autocorrelation. The former can be assessed using Moran’s 
I, Geary’s C tests. The computation formula for Moran’s I:
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Where, W  is spatial weight matrix, x is specific value, n is amount 
of samples, and x  is the mean value. Geary’s C:
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Where, Geary’s C value takes the range of [0,2].
Global spatial autocorrelation tests the spatial relationship 

between different samples, while local spatial autocorrelation evaluates 
the spatial clustering phenomenon of a particular distribution. The 
formula was calculated as:
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Eq. (22), a positive value of the local Moran’s index indicates the 
high values of the sample are adjoin to the high values, and vice versa.

3.1.2 Spatial econometric models
The agricultural circular economy, being a form of ecological 

economy, possesses spatial characteristics inherent to ecological 
economics. It demands inter-regional sharing and collaboration of 
agricultural resources, thereby establishing a dependency of local 
agricultural circular economies on their neighboring regions. With the 
advancement of economic and social development, the mobility of 
agricultural assets has gradually increased, leading to a closer and 
more coordinated development of inter-regional agricultural circular 
economies. Thus, to incorporate spatial factors into the research 
problem, spatial econometric models are employed on the basis of 
Ordinary Least Squares (OLS) regression models.

Commonly utilized spatial econometric models encompass SDM, 
SEM and SAR. Each model presents its own strengths and limitations, 
with the possibility of mutual transformation under specific 
conditions. The formulation of the models is as follows:
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(24)

 a =1, (25)

TABLE 2 Weights of evaluation indicators.

Index Critic Entropy Comprehensive weight

A1 0.0229 0.0564 0.0396

A2 0.0708 0.0583 0.0646

A3 0.0266 0.0712 0.0489

A4 0.0358 0.0796 0.0577

A5 0.0516 0.0721 0.0619

A6 0.0589 0.0537 0.0563

B1 0.0608 0.0219 0.0413

B2 0.0586 0.0116 0.0351

B3 0.0638 0.0139 0.0388

B4 0.0620 0.0126 0.0373

B5 0.0554 0.0079 0.0317

C1 0.0280 0.0793 0.0537

C2 0.0506 0.0517 0.0512

C3 0.0868 0.0753 0.0811

D1 0.0319 0.0911 0.0615

D2 0.1154 0.0797 0.0976

D3 0.0592 0.1517 0.1055

D4 0.0608 0.0119 0.0363
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FIGURE 2

Temporal and spatial evolution of agricultural circular economy.
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Models (23), (24), and (25) represent SDM, SEM, and SAR, 
respectively. Cireco is the agricultural circular economy,Drc is the 
core explanatory variable digital countryside construction; X  is the 
control variables, mainly including rural finance, rural population 
density, rural development level, and agricultural openness to the 
outside world. ε  is the random disturbance term, i,t denotes province 
and city and year respectively, and α  is the estimated coefficient. βn is 
the elasticity coefficient of the explanatory variables, and θn is the 
elasticity coefficient of the spatial lagged term. W denotes the weight 
matrix, ρ  denotes the spatial autocorrelation coefficient, ψ  is the 
spatial autocorrelation error term.

3.1.3 Decomposition of effect
The operation is performed using partial differential matrices to 

obtain the matrix of partial derivatives of the expected value of the 
dependent variable. The computational procedure is as follows:
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Eq. (26) reflects the meaning of the spatial dubin model 
parameters given in the form of a partial derivative, which is the 
conversion form of the SDM model. Organize to get:
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Eq. (27) is the collated expression form of Eq. (26). Total, direct, 
and indirect effects, respectively:

 ATI n I S Wn r= ( )−1
 (28)

 ADI n tr S Wr= ( )( )−1
 (29)

 AII ATI ADI= −  (30)

Eqs. (28–30) is the decomposed total effect, direct effect and 
indirect effect.

3.1.4 Threshold model
In addition, rural surface pollution is serious, and the degree of 

agricultural pollution varies greatly between different provinces. To 
validate the nonlinear threshold effect of digital village development 
on agricultural circular economy under different rural surface 
pollution. According to the practice of Wu et al. (2021), the threshold 
model is constructed based on the basis of the SDM, single, double 
and triple threshold models are constructed as follows:
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In Eqs. (31), (32), and (33), R is the threshold dependent variable 
rural surface pollution, and I ⋅( ) is the indicative function when, γ1, γ 2
, and γ3 are the first, second, and third thresholds to be estimated, 
respectively. z is the threshold variable.

3.2 Variable selection

Dependent variable: agricultural circular economy (Cireco). The 
results are obtained from the above part of the calculation.

Independent variable: digital rural construction (Drc). Expressed 
using rural broadband access users/rural population.

Control variable. Farming-related loans (Loan). Expressed using per 
capita farm-related loans. Population density (Pop). Expressed using rural 
population/cultivated land area. Engel’s coefficient (Eng). Expressed as 
Engel’s coefficient for rural households. Transaction situation (Trade). 
Expressed as trade in agricultural products/gross output value.

3.3 Data sources

In this study, a sample of 30 provinces in China for the years 2011 
to 2021 was employed. Data were sourced from publications such as 
the “Rural Statistical Yearbook” et al. For some instances of missing 
values, the mean imputation method was utilized to complete the 
dataset (Table 3).

4 Empirical analysis

4.1 Stationarity test

To prevent potential issues of spurious regression in subsequent 
analysis, the LLC and IPS tests were conducted (Table 4). The results 
indicate that all variables are stationary.

TABLE 3 Descriptive statistics.

Variable Obs Mean Std.Dev. Min Max

Cireco 330 0.339 0.055 0.234 0.543

Drc 330 0.147 0.126 0.002 0.704

Pop 330 410.74 1119.672 0.352 9,530

Loan 330 5.331 3.662 0.932 28.335

Eng 330 33.798 5.605 23.8 51.81

Trade 330 0.753 0.268 0.225 1.592
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4.2 Spatial econometric model examination 
and analysis

4.2.1 Spatial autocorrelation test
To examine the spatial effects of agricultural circular economy and 

assess the feasibility of employing spatial econometric models, the 
global spatial autocorrelation of agricultural circular economy was 
calculated using Eqs. (20) and (21), as presented in Table 5.

From the Table 5, it is observed that the Geary’s C coefficient of 
agricultural circular economy falls within the range of [0, 1], while 
Moran’s I coefficient is positive. This indicates a significant positive 
spatial autocorrelation and agglomeration feature in the agricultural 
circular economy, implying notable spatial spillover effects from 
neighboring regions to the local area. Over time, Geary’s C coefficient 
of agricultural circular economy exhibits an upward trend after 
fluctuations, while Moran’s I coefficient demonstrates a declining trend 
after fluctuations. This suggests a gradual reduction in the degree of 
agglomeration within the agricultural circular economy.

Further examination of local spatial agglomeration of observed 
values, i.e., identifying regions exhibiting spatial clustering 
phenomena, was conducted for representative years 2011, 2016, and 
2021. The results are depicted in Figure 3.

Figure  3 illustrates the spatial correlation among regions. 
Provinces in the first quadrant exhibit higher levels of agricultural 
circular economy both locally and in their surrounding areas, 
forming a High-High (H-H) agglomeration pattern. Provinces in 

the second quadrant show lower local levels but higher levels in 
their neighboring areas, forming a Low-High (L-H) agglomeration 
pattern. Provinces in the third quadrant have both lower local and 
neighboring levels, forming a Low-Low (L-L) agglomeration 
pattern. Provinces in the fourth quadrant possess higher local 
levels but lower levels in their surrounding areas, forming a 
High-Low (H-L) agglomeration pattern. The results indicate that 
in 2011, there were 28 provinces forming H-H and L-L 
agglomeration patterns, accounting for 93.3% of the total; this 
decreased to 24 provinces in 2016 and 2021, representing 
approximately 80%, primarily in H-H and L-L patterns, though 
with a reduction in proportion. In 2011, H-H agglomeration was 
mainly concentrated in central and western provinces such as 
Fujian, Heilongjiang and Guangxi, while L-L agglomeration was 
more prominent in provinces like Shanxi, Hebei, and Inner 
Mongolia. The spatial distribution remained remarkably similar 
over the years. In 2021, Inner Mongolia move from L-L to H-L, 
while Jilin, Hebei transitioned from H-H and L-L to H-L zones, 
respectively.

The aforementioned results highlight significant global and local 
positive spatial correlations within the agricultural circular economy, 
aligning with the prerequisites for constructing spatial econometric 
models. Consequently, the subsequent analysis is undertaken.

4.2.2 Degradation tests for spatial measurement 
models

The spatial econometric model degradation tests, including the 
LR, the Wald test, were conducted to examine whether the SDM 
model could degrade into either the SAR or SEM (Table 6). SDM was 
more suitable.

4.2.3 Spatial Durbin model regression results
When the spatial lag coefficient is significantly nonzero, the results 

obtained from the SDM model will exhibit bias. To accurately assess 
the influence, the spatial spillover effects include direct, indirect, total 
effects using partial differentiation methods (Table 7). The estimated 
coefficient value of ρ in the SDM model was 0.296, indicating a 
significant positive spatial relationship in the agricultural circular 
economy. There is a certain level of correlation between the local and 
neighboring agricultural circular economies, implying the presence of 
substantial direct and spillover effects.

Examining the direct effects, the estimated coefficient of digital 
rural development was 0.022 t, indicating that digital rural 
development effectively promotes local agricultural circular economy 
development. Regarding the indirect effects, the spatial spillover effect 
was 0.043.

TABLE 4 Smoothness test results.

Variable LLC IPS Conclusion

LnInc −6.3537***(0.0000) −10.1782***(0.0000) Stationary

lnDrd −3.8590***(0.0001) −11.0612***(0.0000) Stationary

lnLoan −9.6936***(0.0000) −9.3202***(0.0000) Stationary

lnEng −2.8348***(0.0023) −8.8314***(0.0000) Stationary

lnPop −6.2656***(0.0000) −9.6339***(0.0000) Stationary

lnTrade −7.4904***(0.0000) −10.5974***(0.0000) Stationary

***Indicates significa-nt at the 1% levels, the same below.

TABLE 5 Global Geary’s Cand Moran’s I for circular economy in 
agriculture.

Year Moran’s I Z

2011 0.367*** 4.168

2012 0.380*** 4.310

2013 0.358*** 4.088

2014 0.374*** 4.241

2015 0.372*** 4.217

2016 0.326*** 3.749

2017 0.328*** 3.762

2018 0.351*** 3.991

2019 0.345*** 3.391

2020 0.277*** 3.273

2021 0.287*** 3.372

***Indicates significant at the 1% levels.
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FIGURE 3

Moran scatterplot of agricultural circular economy.
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4.2.4 Robustness check
To guarantee the dependability of the spatial econometric results, 

this study take robust tests: (1) Changing weight matrices - the spatial 
weight matrix was replaced with economic weight matrix and 
adjacency weight matrix; (2) Replacing core variables - the results of 

agricultural circular economy obtained by replacing the dependent 
variable with the one obtained from entropy-based weighted 
estimation. The outcomes are presented in Table 8. Comparing with 
Table 7, the estimated coefficient of digital rural development and its 
significance level remain largely consistent.

TABLE 8 Robustness test results.

Category Substitution of spatial weight matrices Replacement of core variables

Geographic matrix Adjacency matrix Replacement of the dependent 
variable

Direct effect
0.022*** 0.024*** 0.020***

(0.00) (0.00) (0.00)

Spatial spillover effects
0.020* 0.044*** 0.021***

(0.01) (0.01) (0.01)

Total effect
0.042*** 0.067*** 0.041***

(0.01) (0.01) (0.01)

ρ 0.416***(0.07) 0.314***(0.06) 0.352***(0.07)

R2 0.8315 0.8371 0.9947

N 330 330 330

*,***Respectively indicate significant at the 10% and 1% levels.

TABLE 6 Results of the degradation test.

Type of test Test model Statistic P Sig

Wald test
SAR 44.94 0.0000 ***

SEM 78.95 0.0000 ***

LR test
SAR 45.71 0.0000 ***

SEM 93.41 0.0000 ***

Huasman test / 16.43 0.0000 ***

***Indicates significant at the 1% levels.

TABLE 7 Direct and spillover effects.

Category of 
effect

Variant Ratio Standard 
error

T P 95% confidence 
interval

ρ R2 N

Direct effect

lnDrc 0.022*** 0.004 5.680 0.000 0.015 0.030

0.296***

(0.000)
0.8463 330

lnLoan 0.002 0.008 0.270 0.785 −0.014 0.019

lnPop 0.038*** 0.006 6.780 0.000 0.027 0.049

lnEng 0.030 0.028 1.060 0.289 −0.025 0.086

lnTrade −0.016** 0.007 −2.270 0.023 −0.030 −0.002

Spatial spillover 

effects

lnDrc 0.043*** 0.008 5.470 0.000 0.027 0.058

lnLoan 0.062*** 0.016 3.930 0.000 0.031 0.093

lnPop 0.038* 0.022 1.700 0.090 −0.006 0.081

lnEng 0.152*** 0.044 3.450 0.001 0.066 0.238

lnTrade 0.087*** 0.021 4.200 0.000 0.046 0.127

Total effect

lnDrc 0.065*** 0.009 6.910 0.000 0.047 0.084

lnLoan 0.065*** 0.016 3.910 0.000 0.032 0.097

lnPop 0.076*** 0.025 3.080 0.002 0.028 0.124

lnEng 0.182*** 0.038 4.840 0.000 0.108 0.255

lnTrade 0.071*** 0.021 3.360 0.001 0.029 0.112

*,**,***Respectively indicate significant at the 10%, 5% and 1% levels.
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4.3 Threshold characteristics test

4.3.1 Threshold effect test
As demonstrated earlier, digital rural development significantly 

affects the local and neighboring agricultural circular economy. 
However, due to substantial variations in the degree of digital rural 
and economic growth among different provinces, a panel threshold 
model is employed to further investigate whether there exists a 
turning point in digital rural development.

Taking the digital rural as threshold variable, the existence of a 
threshold is examined before estimating the threshold. Firstly, a single 
threshold effect is tested. If it is found to exist, subsequent tests for 
double and multiple thresholds are performed (see Table  9). The 
results indicate that only the single threshold test is confirmed. The 
F-value for the double threshold effect is 3.20, p-value is 0.833, 
indicating the double threshold effect is not established. Consequently, 
the influence of digital rural development exhibits a single 
threshold effect.

The results of the further estimation of the threshold (Table 10). 
The threshold estimate is −2.7669.

4.3.2 Threshold model regression results
The estimated results of the threshold model are presented in 

Table  11. The findings reveal that the impact of digital rural 
development on the agricultural circular economy is divided into two 
intervals. When the natural logarithm of digital rural development is 
less than the value of −2.7669, the effect of digital rural development 
on the agricultural circular economy is significantly positive, with an 
elasticity coefficient of 0.048. As the level of digital rural development 

surpasses the threshold value, the enhancing effect of digital rural 
development on the agricultural circular economy intensifies, with an 
elasticity coefficient of 0.058. On the one hand, the digital rural 
infrastructure construction is incomplete; on the other hand, talent is 
insufficient. When the digital rural construction is within the first 
threshold range, which can not well cover agricultural production and 
operation, Therefore, it has a limited effect, especially in Inner 
Mongolia and other farming and animal pastoral areas, the key to the 
development of agricultural circular economy lies in accelerating the 
transformation of digital technology to traditional agriculture in 
various fields and links. When the level of digital rural construction 
continues to improve, agricultural industry information technology 
standards are gradually improved. Establishing a circulation system of 
agricultural big data collection, analysis and application, deeply 
integrating digital technology with resource utilization rate, labor 
utilization rate and land yield rate, digital technology will be fully 
utilized. Therefore, the promoting effect has been enhanced. This is in 
line with the actual situation, in Zhejiang, Fujian, Chongqing and 
other provinces beyond the threshold value, the development level of 
agricultural circular economy is generally high.

5 Discussion

(1) Arable land area, forest coverage, and efficient machinery 
utilization emerge as pivotal factors. Arable land constitutes the 
fundamental basis of agricultural production and a key element in 
agricultural modernization. Vegetation resources possess inherent 
regenerative capabilities, bolstering agricultural ecological potential. 

TABLE 9 Threshold effect self-sampling test.

Threshold type Fstat Prob Crit1 Crit5 Crit10

Single threshold 14.83* 0.100 14.5427 25.0280 27.9590

Double threshold 3.20 0.833 12.2191 16.7815 17.1697

*Indicate significant at the 10% levels.

TABLE 10 Threshold estimates and confidence intervals.

Model Threshold Lower Upper

Single threshold −2.7669 −2.8992 −2.7543

TABLE 11 Results of threshold.

Variable Coef. Std. Err. t P  >  |t| [95% Conf. Interval]

lnFix 0.076*** 0.008 9.240 0.000 0.060 0.092

lnTech 0.039*** 0.008 5.120 0.000 0.024 0.053

lnDisa 0.059** 0.027 2.160 0.031 0.005 0.112

lnPop 0.015* 0.009 1.690 0.093 −0.003 0.033

lnDrc< − 2.7669 0.048*** 0.005 10.450 0.000 0.039 0.057

–2.7669 ≤ lnDrc 0.058*** 0.006 9.480 0.000 0.046 0.070

_cons −1.127*** 0.053 −21.440 0.000 −1.230 −1.023

N 330

Number of id 30

Within R2 0.7605

*,**,***Respectively indicate significant at the 10%, 5% and 1% levels.
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Mechanization plays a crucial role in enhancing agricultural 
production conditions and augmenting both economic and 
ecological benefits.

(2) The developmental trajectory of agricultural circular economy 
displays a steady ascent. The province of Heilongjiang consistently 
maintains an absolute advantage in agricultural circular economy 
development, while Chongqing exhibits a latecomer surge. This 
ultimately configures a spatial structure centered around Heilongjiang 
and Chongqing as primary cores, with secondary cores encompassing 
Guizhou, Sichuan, Guangdong, Hainan, and Fujian. This spatial 
arrangement showcases an olive-shaped pattern characterized by 
fewer regions at the extremities and greater concentration in the 
middle. Heilongjiang province boasts fertile land and the most 
abundant agricultural resource endowment, consistently securing the 
top position in annual grain production. Moreover, the province’s 
complete agricultural industry value chain elevation fosters resource 
conservation and provides favorable conditions for bolstering green 
food production. Leveraging its strategic geographic position, 
Chongqing possesses abundant water resources and high soil organic 
matter content, with forest coverage exceeding 55%. Consequently, 
Chongqing exhibits a higher degree of agricultural circular 
economy development.

The spatial and resource-driven dynamics showcased by 
Heilongjiang and Chongqing underscore the significance of regional 
resource endowments and geographical attributes in shaping the 
agricultural circular economy landscape in China. These observations 
align with the broader goals of promoting sustainability and balanced 
development across different regions of the country.

(3) The estimated coefficient of 0.022 for digital rural 
development, supported by a significant 1% level of significance, 
underscores its effective act on boosting local agricultural circular 
economy. This could be attributed to the convenience digital rural 
development brings to new rural construction. Local governments, 
aiming to bridge the urban–rural gap, are inclined to increase 
financial investment in promoting digital rural development. On 
one hand, the integration of digital technologies in rural areas not 
only augments crop yield per unit area but also frees up labor, 
reducing costs and enhancing labor productivity. This consequently 
generates economic benefits. On the other hand, the introduction 
of green technologies via digital rural development effectively curbs 
excessive use of fertilizers and pesticides, safeguarding the 
environment for green agricultural. Catering to the trend of green 
consumption, products gradually transition toward being pollution-
minimized, environmentally friendly, and free from contamination. 
Furthermore, digital rural development provides networking 
convenience, bolstering the promotion of green agricultural 
products during sales and marketing phases, thereby advancing 
agricultural circular economy development.

(4) The influence of digital rural development on the agricultural 
circular economy exhibits a single threshold effect. As the level of digital 
rural development crosses the threshold value, the elasticity coefficient 
of its impact on the agricultural circular economy increases from 0.048 
to 0.058. In general, digital rural development acts as a driving force. 
With the elevation of digital rural development levels, its role in 
promoting agricultural circular economy development showcases a 
marginal increase. Which can be owed to the incremental nature of 
digital rural development, which encompasses information 
infrastructure, digital economy, and intelligent green practices. 

Comparatively advanced regions, equipped with higher education levels 
and rapid adoption of digitalization, demonstrate a higher utilization of 
digital technology and a greater propensity to foster green development 
and resource utilization in agriculture through digital rural 
development. Consequently, these regions are more likely to earn profit.

In conclusion, the integration of digital technologies through 
rural development initiatives holds substantial potential for advancing 
sustainable agricultural practices, enhancing resource efficiency, and 
fostering green economic growth.

6 Conclusion and suggestions

6.1 Conclusion

Effectively promoting the development of circular agriculture is 
an essential path for rural revitalization. Based on calculations of the 
agricultural circular economy from 2011 to 2021 across 30 provinces 
in China, this study employed spatial econometric and threshold 
panel models to empirically explore the spatial spillover effects of 
digital rural development on agricultural circular economy and the 
threshold effects of varying levels of digital rural development on the 
latter. The study findings indicate that per capita arable land, forest 
coverage rate, and machinery utilization are crucial factors influencing 
the agricultural circular economy. While the level of agricultural 
circular economy development is gradually increasing, regional 
disparities persist, presenting an overall “low at the ends, high in the 
middle” olive-shaped pattern. Digital rural development exhibits a 
positive direct effect and spatial spillover effect. Which suggests that 
advancements in digital rural development exert a promotive 
influence on both local and neighboring regions’ agricultural circular 
economy development. The impact of digital rural development on 
the agricultural circular economy demonstrates a single threshold 
effect, with its influence gradually intensifying as digital rural 
development levels rise. Specifically, when the logarithm of the digital 
rural level is less than −2.7669, the coefficient of its impact on the 
agricultural circular economy is 0.048. Beyond this threshold, the 
coefficient increases to 0.058. This conclusion has certain 
enlightenment for the government and scholars.

The conclusions of this paper include three contributions, 
academics, politicians and practitioners engaged in agricultural 
production may be interested in the above conclusions.

Knowledge contribution: The research conclusion expands the 
boundary of the academic field of Beautiful China, and complement 
the range of applications of threshold theory and space theory, 
scholars may be  interested in this conclusion, which provides a 
research direction;

Practical contribution 1: The research conclusion reveals the 
current situation of agricultural circular economy development, and 
understand its barrier factors, politicians may be interested in this 
conclusion, which provide relevant decision-making basis for the 
politicians to improve the key constraints of the agricultural industry 
and formulate rural development plans, agricultural policies.

Practical contribution 2: The research conclusion reveals that the 
influence of rural digital development on agricultural circular 
economy shows the law of increasing marginal effect, practitioners 
engaged in agricultural production may be  interested in this 
conclusion. Practitioners actively participate in the construction of 
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digital rural areas with relying on information technology, network 
and big data to improve agricultural economic benefits.

Besides, it still has some shortcomings in this paper. First, due to 
the limited availability of relevant data in rural China, this paper 
selects Provincial level data for analysis, the following research should 
obtain primary data through field visits, interviews and other 
methods. Second, the construction of the index system of agricultural 
circular economy needs to be improved, and there is no authoritative 
conclusion at present. Therefore, there may be some errors in choosing 
some relevant indicators to measure the level of agricultural 
circular economy.

6.2 Suggestions

Drawing from the conclusions above, several insights are derived:

First, address the insufficient development of rural circular 
economy and narrow provincial disparities. Despite the 
continuous improvement in China’s agricultural circular economy 
development index, the overall level remains relatively low, with a 
declining growth rate. Measures such as comprehensive utilization 
of undeveloped land, revitalization of abandoned land in “hollow 
villages,” and adjusting the area of arable land are to 
be implemented.

Second, establish a collaborative mechanism for interregional 
digital development and agricultural industry to expedite the 
fusion of digital rural development and agriculture. On one hand, 
augment the radiative effect of digital rural development on 
neighboring provinces to elevate the capacity of agricultural 
circular economy development. Gradually eliminate 
administrative barriers, facilitate the free flow of information 
resources, digital technology resources, and other resources, and 
realize efficient resource circulation and recycling to propel green, 
low-carbon, and efficient development in the agricultural industry. 
On the other hand, utilize smart agricultural big data platforms 
for real-time data monitoring in various stages of farming, 
planting, and fertilizing. This will facilitate information sharing 
and interconnection along the agricultural industry chain. 
Additionally, synchronize the development and industrial layout 
of agriculture in interregional planning.

Third, concentrate on the threshold characteristics between digital 
rural development and agricultural circular economy 

development. While comprehensively considering the objectives 
of digital rural and agricultural circular economy development, 
progress in digital rural development should be tailored according 
to the different development stages of regional digital rural 
construction. Address information infrastructure gaps, bridge the 
urban–rural digital divide, and simultaneously enhance digital 
literacy training among farmers.
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