
Frontiers in Sustainable Food Systems 01 frontiersin.org

Robotics, environmental 
regulation, and agricultural 
carbon emissions: an examination 
of the environmental Kuznets 
curve theory and moderating 
effects
Ye Li 1 and Yiyan Chen 2*
1 College of Economic and Social Development, Nankai University, Tianjin, China, 2 Economics 
Program, School of Social Sciences, Universiti Sains Malaysia, Penang, Malaysia

Introduction: Reducing carbon emissions from agriculture is essential to 
ensuring food security and human prosperity. As a country with approximately 
20% of the global population, China has begun actively practicing the low-
carbon agricultural development conception. Against the backdrop of disruptive 
technologies that continue to be integrated into various industries, the massive 
application of agricultural robots has opened the way to intelligent agriculture. 
This paper tries to answer whether there is some non-linear nexus between the 
application of agricultural robots and agricultural carbon emissions in China. As 
an essential tool for carbon emission reduction in China, does environmental 
regulation moderate the nexus between agricultural robot applications and 
agricultural carbon emissions? If so, how does this effect manifest itself?

Methods: This work takes China as an example by collecting macro-regional 
panel data from 30 provinces from 2006 to 2019. The environmental Kuznets 
curve theory is extended to agricultural carbon emissions, and we carried out 
empirical tests utilizing the panel fixed effects model and the moderating effects 
model.

Results: This study verifies the inverted U-shaped nexus between agricultural 
robotics applications and agricultural carbon emissions in Chinese provinces, 
i.e., the agricultural carbon emissions (ACE)-Kuznets curve holds. The higher the 
level of formal environmental regulation, the larger the peak of the ACE-Kuznets 
curve and the more the inflection point is pushed back. The higher the level 
of informal environmental regulation, the lower the peak of the ACE-Kuznets 
curve and the later the inflection point.

Discussion: The findings in this paper represent the first exploration of the 
environmental Kuznets curve in agricultural carbon emissions. It is noteworthy 
that the moderating effect of formal environmental regulation does not lower 
the peak of the curve as we expect. This appearance is attributed to the reality 
that China is still in a phase of rising agricultural carbon emissions, which is 
exacerbated by the overlapping positive effects of agricultural robotics 
applications and formal environmental regulations. Informal environmental 
regulation is more effective than formal environmental regulation in reducing 
agricultural carbon emissions at this stage.
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1 Introduction

Since 1970, agriculture has been responsible for around a quarter 
of global greenhouse gas emissions (Smith et al., 2014; Bennetzen 
et al., 2016), and at one point this share reached a third (Gilbert, 2012). 
In the long run, agricultural carbon emissions (ACE), such as black 
carbon from straw burning, impact the quantity and quality of cereal 
foods (Gupta, 2014). ACE are one of the most important influencing 
factors that cause harm to sustainable agricultural development 
(Koondhar et  al., 2021). Whereas, reducing ACE can effectively 
guarantee the food system’s sustainability, thus ensuring human 
beings’ basic survival and sustainable development (Singh and 
Khanna, 2021; Costa et al., 2022; Opoku et al., 2022) China has about 
21.5% of the global population size, but only 7% of the global arable 
land, and its arable land continues to shrink (Greenwood, 2022). 
Therefore, to cope with food security, China needs to achieve 
agricultural carbon reduction (Fu et al., 2022).

At present, Chinese agriculture has begun to step into the stage of 
high-quality evolution with low carbon as the keynote, but an 
unpromising phenomenon still exists (Chen and Xu, 2023). Due to the 
limitations of objective conditions such as population size and arable 
land area, China’s agricultural carbon emission reduction must rely on 
the input of disruptive technologies to take advantage of the 
technological innovation effect to drive the agricultural green 
upgrading and transformation under the premise of guaranteeing 
food security. Digital technologies, including big data, blockchain, 
digital twin, artificial intelligence (AI), and the Internet of Things 
(IoT), can attract an influx of high-level production factors, including 
high-end talents, cutting-edge knowledge, advanced technological 
processes and production procedures, thereby optimizing the factor 
structure of conventional agriculture and expanding the scale and 
quality of agricultural technological innovation (Klerkx et al., 2019; 
Bolfe et  al., 2020), and ultimately promote agricultural carbon 
emission reduction (Ali et  al., 2021; Luo et  al., 2023). Robots are 
loaded with AI (Rajan and Saffiotti, 2017), blockchain (Aditya et al., 
2021), big data (Zhang, 2021), 5G (Sophocleous et al., 2022), digital 
twins (Hoebert et al., 2019) and a host of other digital technologies as 
physical carriers (Sodikjanov and Khayitboyev, 2023). Its unique 
potential for cutting carbon emissions. Robots can contribute 
significantly to reducing carbon emissions in electricity, gas, 
manufacturing, or agriculture (Li et  al., 2022). The application of 
robots in agricultural production could ultimately reduce ACE by 
improving nitrogen utilization, accelerating plant breeding, promoting 
sustainable agricultural models, and reducing food waste (Pearson 
et al., 2022). However, to date, policies introduced in many countries 
to “promote the adoption of robots” still lack rigorous environmental 
assessments (Dusík et al., 2018), which has led to a heated debate in 
academia on how robots affect carbon emissions. Agricultural 
machinery, including harvesters, vans, tractors, trucks, etc., are used 
to perform various agrarian tasks and processes (Malik and Kohli, 
2020). However, due to deficient maintenance and lack of strict 

environmental regulation (ER) on these fossil fuel-power agricultural 
machinery, their increasing emission levels have led to pollution, 
environmental degradation, and significant carbon emissions (Zhang 
et al., 2017).

Research addressing the nexus between agricultural robotics and 
ACE is still in its infancy and currently focuses on the linear 
relationship between them (Oliveira et al., 2021). The relationship 
between other disruptive technologies, such as ICTs, or new economic 
models under the impact of disruptive techniques and carbon 
emissions has been discussed in greater depth by scholars (Melnyk 
et  al., 2019). ICTs and the digital economy all have an inverted 
U-shaped nexus with carbon emissions (Higón et al., 2017; Sorrell, 
2020; Bai et al., 2023; Lei et al., 2023; Li et al., 2023; Zheng et al., 2023). 
Can these findings be extended to robotic applications in agriculture? 
i.e., is there some nonlinear relationship, such as an inverted U-shaped 
relationship, between agricultural robotics applications (ARA) and 
ACE? To solve this hesitation, this paper takes the Chinese province 
as the research object and “dissects” the nonlinear nexus between the 
two variables.

In addition, ER has consistently been recognized as one of the 
crucial factors effecting carbon emissions (Dietzenbacher and 
Mukhopadhyay, 2007; Van der Ploeg and Withagen, 2015; Najm, 2019; 
Ouyang et al., 2019; Danish Ulucak et al., 2020; Neves et al., 2020), and 
is no exception for ACE (Jiang et al., 2018; Tang et al., 2019; Laborde 
et al., 2021; Du et al., 2023). Scholars’ cognition of ER is evolving and 
deepening. Initially, the direct intervention, allocation and utilization 
of environmental resources by the government through administrative 
orders for the environment protection were regarded as direct 
regulation. With the participation and growth of market forces, the 
types of ER have become more and more abundant, including 
governmental command-and-control ER, market-incentive ER, and 
voluntary agreement ER, among others. Subsequently, the 
introduction of informal regulation (Pargal and Wheeler, 1996) 
expanded the meaning of ER. China is a vast country with various 
types of ER, combining statutory, local, informal, and other means. 
China’s emphasis on ER has deepened significantly over the past few 
years (Green and Stern, 2017; Kostka and Nahm, 2017), e.g., the 
Chinese government has strengthened the formulation and 
improvement of environmental laws and regulations (Fang et  al., 
2021). Environmental protection departments’ supervisory and 
enforcement capabilities have continued to improve, and investigations 
and prosecutions of environmental violations have become timelier 
and more effective (Hu et al., 2023). Chinese society’s concern for 
environmental issues has gradually increased, and the public’s 
willingness to partake in environmental protection actions has 
increased (Flatø, 2020). Therefore, this work tries to reply another 
query: How does the overlay of formal and informal ER and 
agricultural robotics applications act on ACE in China in the context 
of widespread regional ER? And how does the overlap between the 
two styles of ER and ARA differ? The practical implications of 
answering these questions are that they can help improve China’s 
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agricultural management capacity to comply food security and 
sustainable agrarian development. Theoretically, placing agricultural 
robotics, ER, and ACE under the same research framework is essential, 
thus expanding the study of the interrelationships between modern 
agricultural production and sustainable agricultural development.

This work complements the existing corpus in the next three ways. 
First, it extends the findings of the traditional environmental Kuznets 
curve (EKC) to the field of ACE. It constructs a theoretical framework 
for the nonlinear nexus between ARA and ACE. Second, this paper 
takes the Chinese provincial area as the research object and verifies 
the inverted U-shaped nexus between ARA and ACE for the first time. 
Third, this paper incorporates formal and informal ER into the 
research framework and analyzes their direct effects on ACE and their 
moderating effects on the nexus between ARA and ACE, which, 
according to our knowledge, is a brand-new attempt and exploration.

2 Theory and hypotheses

2.1 Relationship between agricultural 
robotics applications and agricultural 
carbon emissions

There is no consensus among scholars on exactly how the use of 
agricultural robots will affect ACE. One view is that using robots 
increases agrarian green total factor productivity in the first place, 
suppressing agricultural carbon intensity (Lin and Li, 2023). For 
example, robotic tractors fitted with hybrid energy systems for weeding 
and pest control can reduce emissions by 50%, i.e., reducing substances 
emissions such as carbon monoxide, carbondioxide, and nitrogen 
oxides (Gonzalez-de-Soto et al., 2016). Another view is that although 
the wave of agricultural automation has produced many agricultural 
robots, diesel-powered robots, which use diesel as an energy source, are 
the mainstay in all areas of agriculture (Bručienė et al., 2021; Niu et al., 
2022; Jiang et al., 2023). The current widespread adoption of robots in 
agriculture still carries the risk of increasing carbon emissions, as solar- 
and electric-powered agricultural robots have not yet been able to fully 
replace those using traditional fossil fuels. Current research has showed 
solicitude for discussing the linear effects of ARA on ACE.

Only constructing a linear regression model to analyze the effect 
of ARA on ACE and ignoring the nonlinear relationship between the 
two can lead to the negative or positive effects being ignored, making 
the research conclusions unable to reveal the actual results (Wang 
et al., 2023a). This study leads into the idea of the EKC and constructs 
the influence mechanism of the nonlinear relationship between ARA 
and ACE based on scale, structure, and technology effects (Wang 
et al., 2023b). Overall, this work concludes that as ARA increase, ACE 
will show an inverted U-shaped tendency of increasing and then 
decreasing. The ARA-ACE theoretical link is as follows.

For one thing, when ARA starts to increase from a lower level, the 
scale effect causes the application of agricultural robots to change in 
the same direction as ACE. Therefore, It exhibits an upward movement 
on the curve’s left side. First, ARA expand agricultural energy demand. 
Robotics, as a digital technology, has a clear dependence on electricity. 
With the popularization of ARA, agricultural electricity consumption 
will continue to rise (Song et al., 2023). China’s electricity production 
currently relies on coal-fired power generation (Yang et al., 2022). To 
meet the electricity requirement insufficiency created by the ARA 

rollout and to guarantee electricity supply, the high-carbon energy 
sources consumption will increase, inevitably leading to more ACE 
(Böhringer and Rivers, 2021). In addition, ARA will scale up 
agricultural production. The application of digital technology-based 
agricultural robots can transform traditional agricultural production 
methods and automate agriculture (Oliveira et al., 2021), which leads 
to extensive labor force replacements and significant increases in 
agricultural productivity. This advantage drives the scaling up of 
agriculture, i.e., more agricultural products can be produced when the 
production time remains the same as in the traditional way (Bechar 
and Vigneault, 2016, 2017). Increasing agricultural production 
consumes more resources and energy, which subsequently increases 
yield-based ACE (van Loon et al., 2019; Lamb et al., 2021). At this 
stage, since the level of ARA is still relatively limited, the decrease in 
ACE due to technological effects is not yet able to entirely neutralize 
the increase in ACE due to scale effects.

On the other hand, when ARA grows to a certain level and continues 
to grow, the technology effect and structural effect will lead to the 
application of agricultural robots and ACE reverse change, so it shows 
the characteristics of the right side of the curve down rise. First, ARA can 
improve the agrarian production efficiency. ARA will promote the 
realization of agrarian production automation and intelligence. For 
example, ARA can realize precise fertilizer application and irrigation 
(Oliveira et  al., 2021), reduce resource waste and environmental 
pollution, and promote the agrarian development in the direction of 
being more environmentally friendly and sustainable. In addition, ARA 
can optimize the structure of agricultural production. Agricultural 
robots, equipped with advanced sensors and data analysis technologies, 
can monitor multiple factors such as soil, weather, and plant growth in 
real-time (Bručienė et al., 2021; Niu et al., 2022). Through the intelligent 
decision support system, farmers can make production plans more 
scientifically, select suitable crop varieties, and optimize the production 
structure to adapt to local soil, climate conditions, and market demand 
to reduce resource waste and environmental pollution.

In short, this work argues that the effect of ARA on ACE has a 
non-linear trend. First, the scale effect will dominate. Then, the other 
two effects dominate, thus forming an ACE-Kuznets curve (KC) 
shaped like an EKC. Based on this analysis, hypothesis 1 is proposed:

H1: The effect of ARA on ACE is characterized by an inverted 
U-shape, i.e., ACE initially increases with the increase in the 
application of agricultural robots and then gradually decreases 
after reaching the peak point.

2.2 Impact of environmental regulations on 
the ACE-Kuznets curve

ER is a prerequisite for the formation of the EKC (Wang et al., 
2022), which is particularly evident in developed countries (Zhang 
et  al., 2019) such as the United  States (Pata, 2021), the 
United  Kingdom (Yilanci et  al., 2023), France (Ma et  al., 2021), 
Germany (Pata et al., 2023) and Italy (Kalisvaart et al., 2023). This 
phenomenon may be because developed countries have more robust 
legal systems regarding environmental protection (Song et al., 2020). 
In addition to promoting the formation of the EKC, ER is also one 
factor that influences the shape of the EKC. Scholars deemed that if 
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appropriate environmental policies are implemented, a horizontal 
path can be  found, and even the inflection point can be  reached 
earlier (Munasinghe, 1995; Dai et al., 2022). In terms of the intensity 
of ER, low-intensity ER can make the EKC flatter and the position of 
the inflection point lower. In contrast, high-intensity ER can make 
the inflection point of the EKC more advanced (more advanced 
compared to low-intensity), the position of the inflection point 
higher, and the shape of the curve steeper (Yin et al., 2015). After 
going through the experience of covering EKC in several countries, 
Dasgupta et al. (2002) found that the number of EKC thresholds 
based on a sample of developing countries is lower than that of 
developed countries. They suggested that ER in developing countries 
may be one of the most considerable grounds for this trend. Not 
coincidentally, Blackman et al. (2006) reached similar conclusions on 
environmental issues such as climate change, air quality, waste 
management, land degradation, and natural disasters. Zhang et al. 
(2009) used carbon dioxide, sulfur dioxide, industrial smog, and solid 
waste as indicators of environmental quality. They found that 
stringent and systematic ER can change the EKC pattern and its 
inflection point. These effects show the unique role of ER for EKC.

In addition, the causes of EKC formation can be decomposed into 
scale, structural, and technological effects (Grossman and Krueger, 
1991). ER can promote industrial structure upgrading to enhance the 
structural effect, and industrial structure upgrading can further 
promote technological innovation to enhance the technical effect 
(Wen and Dai, 2021). ER can also increase total factor productivity 
(Peng et al., 2021), which is conducive to expanding production scale 
under the condition of ER.

In addition to formal environmental regulation (FER), the effects 
of informal environmental regulation (IER), i.e., individuals’ 
environmental thoughts, concepts, awareness, attitudes, and 
perceptions of environmental protection, become more and more 
obvious (Whitburn et al., 2019; Torres et al., 2020; Peter et al., 2021; 
Smith, 2021; Kousar et al., 2022).

However, the current study does not address the impact of ER on 
EKC in agriculture. Does ER have a similar effect on the shape of the 
ACE-KC? Can ER positively impact the agrarian low-carbon 
development in China? Based on the above discussion, hypothesis 2 
is proposed:

H2: ER (including FER and IER) changes the shape of the 
ACE-KC, and higher levels of regulation bring the curve’s 
inflection point forward.

In conclusion, based on the EKC theory, we  hypothesize an 
inverted U-shaped nexus between ARA and ACE and that the two 
moderating variables, formal and informal ER, moderated the 
relationship simultaneously. Therefore, the following conceptual 
model is developed to reflect these influences (see Figure 1).

3 Materials and methods

3.1 Variable selection

3.1.1 Explained variables: agricultural carbon 
emissions (ACE)

This study combines practical experience in production and 
relevant research results. Also, it takes into account that the 
decarbonization of agriculture mainly manifests itself in the reduction 
of inputs of high-carbon agricultural materials and high-carbon 
agricultural production activities, and concludes that the carbon 
emissions from agriculture mainly originate from the following 
aspects: (1) direct or indirect carbon emissions from the production 
and utilize of fertilizers, pesticides, and agricultural films (Long and 
Tang, 2021); (2) carbon emissions from the direct ordiesel fuel’s 
indirect consumption by agrarian machinery (Mantoam et al., 2020); 
(3) carbon emissions from the use of electricity in irrigation (McCarthy 
et al., 2020); (4) carbon emissions from the destruction of soil organic 
carbon pools during agricultural ploughing, i.e., organic carbon loss 
(Mukumbuta and Hatano, 2020). Accordingly, this study mainly 
examines the carbon emissions directly or indirectly caused by six 
carbon sources touched upon the agricultural production procedure, 
such as fertilizers, pesticides, agricultural films, diesel fuel, irrigation, 
and ploughing, and adopts the IPCC Carbon Emission Coefficient 
Method to estimate the ACE. The estimation method for ACE is shown 
in Equation (1).

 ACE ACE Ti i i= ∑ = ∑ .δ  (1)

Where ACE is the total amount of ACE, ACEi is the amount of 
carbon emissions from each carbon source, Ti is the amount of each 
carbon source, and δi is the emission coefficient of the carbon source 
(In Table  1, there are agricultural carbon emission sources and 
emission coefficients). Fertilizer, pesticide, agricultural film, diesel 

FIGURE 1

Conceptual model.

TABLE 1 Agricultural carbon emission sources and emission coefficients.

Carbon source Carbon emission 
coefficients

Reference 
source

Diesel fuel 0.59 kg/kg Stocker (2014)

Fertilizer 0.89 kg/kg
West and Marland 

(2002a,b)

Pesticide 4.93 kg/kg
West and Marland 

(2002a,b)

Agricultural film 5.18 kg/kg Wang and Zhang (2016)

Irrigation 266.48 kg/hm2 Duan et al. (2011)

Tillage 312.60 kg/km2 Zhi and Gao (2009)
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fuel, irrigation, and ploughing are calculated using the actual amount 
of use, irrigated area, and crops sown area in that year, respectively.

3.1.2 Explanatory variable: agricultural robot 
installations (ARI)

This paper uses the amount of agricultural robots installed as a 
proxy variable for ARA. Referring to the practices of existing studies 
(Cheng et al., 2019; Acemoglu and Restrepo, 2020), this study uses the 
Bartik instrumental variables method to estimate the installation of 
agricultural robots at the regional level. The robot stock data provided 
by the International Federation of Robotics (IFR) is at the country-
industry level, and its industry classification standards are inconsistent 
with those of China. This work draws on Yan et al. (2020) to group and 
organize relevant industries and use the food and beverage industry 
as a proxy for agriculture. The formula for measuring the number of 
agricultural robots installed at the regional level is shown in 
Equation (2).

 
ARI L

L
ARIit

it

t
t= ×
 

(2)

where Lit is the number of people employed in the food and 
beverage industry in region i in year t; ARIt is the national stock of 
robots in the food and beverage industry in year t; and Lt is the 
number of people employed in the national food and beverage 
industry in year t. The larger the value of ARI, the higher the level of 
application of agricultural robots.

3.1.3 Moderator variables
In this paper, ER is categorized into formal and informal 

ER. First, this work uses the amount of regional environmental laws 
as a proxy variable for FER (Yu and Wang, 2021). In addition, this 
paper draws on the methodology of Pargal and Wheeler (1996), 
which selects a range of indicators such as income level, educational 
attainment, population density, and age structure to synthesize a 
measure of the intensity of informal regulation in each region. 
Specific indicators are explained as follows: (1) Income level. The 
higher the income level, the stronger the public demand for a high-
quality living environment. Compared with poorer areas, high-
income areas are more concerned about the impact of environmental 
pollution (Nahar et al., 2023). In this paper, the average salary of 
urban workers is used to measure the income level of each region. 
(2) Education level. The higher the education level, the more intense 
the environmental protection awareness and the higher the degree 
of public concern for environmental quality (Al-Shidi et al., 2021). 
In this paper, the proportion of employed people with a tertiary 
education level or above in each region is chosen as an indicator to 
portray the more significant influence of higher education levels in 
informal regulation. (3) Population density. Higher population 
density means that the number of people affected by the negative 
externalities of environmental pollution is higher, and the number 
of people involved in informal regulation is also higher 
(Muktiwibowo, 2018). In this paper, the density of the resident 
population is selected to measure the population density of each 
region. (4) Age structure. Provinces with a high proportion of 
young people are more concerned about pollution and have a 
higher level of participation in environmental non-governmental 
organizations (NGOs) (Bi et al., 2010; Yapici et al., 2017). This paper 

chooses the proportion of the population under 15 years old as the 
age structure variable. We  use the entropy weight method to 
calculate the final comprehensive index.

3.1.4 Control variables
Referring to existing research (Rehman et al., 2019; He et al., 2021; 

Liu et al., 2021; Xu et al., 2023), this article chooses the intensity of 
financial support for agriculture (X1), rural electricity consumption 
(X2), total sown area of crops (X3), the total power of agricultural 
machinery (X4), agricultural disaster area (X5) and agricultural 
industry structure (X6) as control variables. Among them, the intensity 
of financial support for agriculture is measured by the amount of 
agriculture-related expenditure as a proportion of financial 
expenditure. The structure of the agricultural industry is measured by 
the value-added of primary industry/gross regional product.

3.2 Data sources

This work takes 30 provincial administrative regions in China 
(excluding Tibet, Hong Kong, Macao, and Taiwan region) as the study 
area, with a sample period of 2006–2019 (given the data availability). 
The raw data for measuring the ARI come from reports published by 
the IFR and the China Labor Statistics Yearbook. The remaining 
variables are from the National Bureau of Statistics of China, China 
Statistical Yearbook, CEIdata database, China Rural Statistical 
Yearbook, and the China Three Rural Areas (agriculture, rural areas, 
and peasants) Research Database. Table  2 presents the results of 
descriptive statistics for each variable.

3.3 Model and estimation

Based on the theoretical hypotheses of Section 2 and the variable 
selection of Section 3.1, this study first establishes a benchmark 
regression model to test the inverted U-shaped relationship between 
ARI and ACE, namely the ACE-KC hypothesis. The benchmark 
regression model setup is as follows:

 ACE ARI ARI Zit it it it i it= + ⋅ + ⋅ + ⋅ + +β β β β µ ε0 1 2
2

3  (3)

Following this, to test the moderating effect of FER and IER on 
the inverted U-shaped relationship between ARI and ACE, this study 
adds the interaction term of FER (IER) with ARI and the interaction 
term of FER (IER) with ARI2 to Equation (3). The constructed 
moderating effect model is as follows:

 

2
0 1 2 3

4 5 6
2

7 8
2

9

it it itit

it it it it

it it it it

it it iti

ACE ARI ARI FER
IER Z ARI FER
ARI FER ARI IER
ARI IER

β β β β
β β β

β β

β µ ε

= + ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅ ⋅

+ ⋅ ⋅ + ⋅ ⋅

+ ⋅ ⋅ + +  (4)

In Equations (3, 4), subscripts i and t denote province and year, 
respectively; Z is a matrix of control variables; β0 is a constant term; 
βi i ≠( )0  denotes the parameter to be estimated. iµ denotes individual 
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fixed effects, which control the inherent characteristics of provinces 
that do not change over time, and εit  is the error term. In addition, 
ACE, ARI, and control variables are logarithmized before empirical 
analysis to reduce heteroskedasticity and non-stationarity.

We estimate Equations (3, 4) using fixed-effects (within) 
regression. The selection of the estimation method is accomplished in 
two steps. In the first step, a choice between pooled and random 
effects regression is made. The p-value of the Breusch and Pagan 
Lagrange Multiplier (BP-LM) test rejects the null hypothesis. There is 
evidence of substantial random effect. Therefore, we run a random 
effects model. In the second step, the Hausman test is utilized to select 
a fixed effects or random effects model. This paper uses robust 
Hausman with looser assumptions to conduct the test. We use fixed 
effects since the p-value is significant (p < 0.05).

4 Results

4.1 The impact of agricultural robot 
installation on agricultural carbon 
emissions

In this section, we  make a preliminary judgment on the 
relationship between ARI and ACE to verify their nonlinear 
relationship. Columns (1)–(2) of Table 3 show the results of the direct 
impact of ARI on ACE. The coefficient of the linear term of ARI is 
0.0738 (p < 0.01), and the coefficient of the quadratic term is −0.0048 
(p < 0.01) when only the primary term of ARI, the secondary term, 
and the rest of the control variables are included. With the inclusion 
of the FER and IER variables, for the panel fixed-effects model with 
both individual (province) and time effects, the coefficient of the 
linear term of ARI is 0.0694 (p < 0.01), and the coefficient of the 
quadratic term is −0.0041 (p < 0.01). And they all pass the correlation 
significance test. Therefore, it can be inferred that ARI and ACE show 
an inverted U-shaped curve relationship. This result indicates that 
hypothesis 1 has been verified.

A possible explanation for this result is that in the early stages of 
introducing agricultural robotics, the amount of agricultural robots 
installed may be relatively low due to the time required for the public 
to accept and absorb new technologies. However, the demand for 
agricultural development will continue to increase as society develops, 

and traditional agriculture is mainly dependent on fossil fuels and 
resources (Rosati et al., 2021; Sumberg and Giller, 2022), which may 
bring about a continued rise in ACE. However, as the amount of 
agricultural robots continues to increase, on the one hand, the 
automation of agrarian production increases, reducing the need for 
human labor, and how agriculture is practiced is likely to change 
during this phase (Marinoudi et al., 2019; Lowenberg-DeBoer et al., 
2020). For example, the delicate management of agriculture and the 
reduction of pesticide and fertilizer use. For one thing, the greater the 
number of agrarian robots, the lower the cost of utilizing clean energy 
to power the robots due to scale effects. Therefore, as agricultural 
robots gradually become more common, the energy source of the 
robots will also use more clean energy. Both may lead to a gradual 
decline in ACE during this period. In addition, among the control 
variables, X3, X4, and X5 always have significant positive effects on 
ACE, and the rest of the control variables do not have consistent 
effects on ACE in different models.

4.2 The impact of the interaction between 
the number of agricultural robots installed 
and environmental regulations on 
agricultural carbon emissions

The estimation result of adding the interaction terms ARI⸱FER 
and ARI2⸱FER is shown in column (3) of Table 3. In the individual-
time fixed-effects model, the coefficient of FER is 0.0003; The 
coefficient of the interaction term of FER with the linear term of ARI 
is −0.0001 (p < 0.1); The coefficient of the interaction term of FER with 
the quadratic term of ARI is 0.00008 (p < 0.05). The estimation result 
of adding the interaction terms ARI⸱IER and ARI2⸱IER is shown in 
columns (4) of Table 3. In the individual-time fixed-effects model, the 
coefficient of IER is −1.3598 (p < 0.01); The coefficient of the 
interaction term of IER with the linear term of ARI is −0.2166 
(p < 0.01); The coefficient of the interaction term of IER with the 
quadratic term of ARI is 0.0179 (p < 0.05). These results indicate that 
FER and IER both have independent significant moderating effect on 
the ACE-KC.

The estimation results of adding the interaction terms ARI⸱FER, 
ARI2⸱FER, ARI⸱IER, and ARI2⸱IER are shown in columns (5) and (6) 
of Table 3. The inverted U-shaped nexus between ARI and ACE still 

TABLE 2 Descriptive statistics of variables.

Variable Observations Mean Standard 
deviation

Minimum value Maximum value

ACE 420 320.45 233.57 9.80 995.75

ARI 420 136.03 246.40 0.03 1842.58

FER 420 133.62 118.64 7 774

IER 420 0.20 0.11 0.07 0.84

X1 420 10.72 3.76 1.57 20.38

X2 420 253.51 385.51 0.60 2011

X3 420 3097.52 2840.92 93.97 13,353.02

X4 420 993.24 974.07 2 7,394

X5 420 0.11 0.06 0.003 0.33

X6 420 0.35 0.15 0.02 0.73
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holds, suggesting the relationship is robust. The coefficients on FER 
are 0.0004 (p < 0.1) in the individual fixed-effects model and 0.0003 in 
the individual-time fixed-effects model. This result suggests that FER 
does not have a significant inhibitory effect on ACE. The coefficients 
of the interaction term of FER with the linear term of ARI are −0.0001 
(p < 0.05) in the individual fixed-effects model and − 0.0001 (p < 0.1) 
in the individual-time fixed-effects model; the coefficients of the 
interaction term of FER with the quadratic term of ARI are 0.000014 
(p < 0.05) in the individual fixed-effects model and 0.000012 (p < 0.1) 
in the individual-time fixed effects model. This result indicates that 
FER has a significant moderating effect on the ACE-KC. The 
coefficients for IER are −1.2550 (p < 0.01) in the individual fixed-
effects model and − 1.5500 (p < 0.01) in the individual-time fixed-
effects model. This result indicates that IER has a significant inhibitory 
effect on ACE. The coefficients of the interaction term of IER with the 
liner term of ARI are −0.1906 (p < 0.01) in the individual fixed-effects 
model and − 0.1809 (p < 0.01) in the individual-time fixed-effects 
model; the coefficients of the interaction term of IER with the 
quadratic term of ARI are 0.0122 in the individual fixed-effects model 
and 0.0138 (p < 0.1) in the individual-time fixed-effects model. This 
result suggests that IER has the same significant moderating effect on 
the ACE-KC.

At this point, hypothesis 2 is halfway confirmed, i.e., ER (both 
formal and informal ER) changes the shape of the ACE-KC, and 
exactly how the shape changes will be discussed in Section 4.3. In 

addition, the control variables X2, X3, X4, and X5 have significant 
positive effects on ACE, while the rest have insignificant 
effects on ACE.

4.3 Robustness test and endogeneity test

4.3.1 Robustness test
To ensure the reliability of the above conclusions, we draw on the 

practices of existing studies (Liu P. et al., 2024) and further conduct 
robustness tests on the benchmark regression model and the 
moderating effects model. The specific approach is as follows: We use 
the first-order lag terms of ARI, FER, and IER as new variables to 
re-estimate each model in Table  3, respectively. The results are 
displayed in Table 4. The results of the robustness test show that the 
direction and significance of the coefficients in the re-estimate model 
and the original model remain the same, indicating that the empirical 
findings of this study are robust.

4.3.2 Endogeneity test
To prevent model estimation errors caused by endogeneity 

problems, we  use the two-stage least squares (2SLS) method for 
re-estimation in this study. Drawing on the idea of Huang et al. (2019) 
selecting historical data from the time dimension as a viable 
instrumental variable, this study uses the number of agricultural small 

TABLE 3 Empirical results on direct and moderating effects.

Variables (1) (2) (3) (4) (5) (6)

ACE ACE ACE ACE ACE ACE

ARI 0.0738*** (0.0066) 0.0694*** (0.0192) 0.0952*** (0.0222) 0.1127*** (0.0220) 0.1026*** (0.0099) 0.1086*** (0.0228)

ARI2 −0.0048*** (0.0007) −0.0041*** (0.0008) −0.0055*** (0.0012) −0.0061*** (0.0015) −0.0042*** (0.0016) −0.0054*** (0.0016)

FER −0.000033 (0.0000) 0.0003 (0.0002) 0.0004* (0.0002) 0.0003 (0.0002)

IER −2.8186*** (0.2803) −1.3598*** (0.4738) −1.2550*** (0.3671) −1.5500*** (0.4866)

ARI·FER −0.0001* (0.0001) −0.0001** (0.0001) −0.0001* (0.0001)

ARI·IER −0.2166*** (0.0616) −0.1906*** (0.0581) −0.1809*** (0.0650)

ARI2·FER 0.00008** (0.0000) 0.000014** (0.0000) 0.000012* (0.0000)

ARI2·IER 0.0179** (0.0078) 0.0122 (0.0081) 0.0138* (0.0083)

X1 −0.0384** (0.0166) 0.0282 (0.0286) −0.0071 (0.0320) 0.0349 (0.0283) −0.0416*** (0.0148) 0.0344 (0.0284)

X2 −0.0255 (0.0204) 0.0283 (0.0199) −0.0350 (0.0214) 0.0545*** (0.0208) 0.0821*** (0.0207) 0.0555*** (0.0211)

X3 0.2773*** (0.0234) 0.2303*** (0.0229) 0.2924*** (0.0249) 0.2249*** (0.0223) 0.1893*** (0.0223) 0.2161*** (0.0229)

X4 0.0145** (0.0057) 0.0094* (0.0050) 0.0132** (0.0057) 0.0112** (0.0050) 0.0106** (0.0050) 0.0102** (0.0050)

X5 0.2718*** (0.0289) 0.1127*** (0.0303) 0.2735*** (0.0307) 0.1145*** (0.0305) 0.1465*** (0.0290) 0.1231*** (0.0310)

X6 0.0959*** (0.0363) 0.0144 (0.0329) 0.0789** (0.0371) −0.0046 (0.0326) 0.0294 (0.0330) 0.0045 (0.0332)

Constant 4.0843*** (0.2175) 4.1315*** (0.2024) 3.9690*** (0.2302) 3.8252*** (0.2141) 4.1219*** (0.2171) 3.9326*** (0.2237)

Year fixed effects No Yes Yes Yse No Yes

Individual fixed effects Yes Yes Yes Yes Yes Yes

Observations 413 413 413 413 413 413

R-squared 0.7080 0.7911 0.7356 0.7990 0.7837 0.8011

F_value 186.81*** 181.97*** 142.57*** 184.89*** 234.41*** 184.18***

BP-LM test statistic 1582.38*** 1563.18*** 1570.94*** 1643.22*** 1515.64*** 1605.64***

Hausman test statistic 177.19*** 172.70*** 168.72*** 179.88*** 182.51*** 181.11***

Standard errors in parentheses; *p < 0.1, **p < 0.05, ***p < 0.01.
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tractors in each province from 1978 to 1991 as an instrumental 
variable (IV) for regional ARI. The instrumental variable satisfies both 
the correlation and exogenous conditions.

The 2SLS estimation results are shown in Table 5. In column (1), 
both the F-statistic and instrumental variables show significant results 
at the 1% level. This result confirms the validity of the selected 
instrumental variables, i.e., no weak instrumental variables exist. The 

regression results in column (2) show that ARI contributes 
significantly to ACE, confirming that the results of the benchmark 
regression are robust.

4.4 Analysis of the moderation effect

We already know that FER and IER have significant moderating 
effects on the ACE-KC. Next, this paper further analyzes how the two 
styles of ER affect the shape of the ACE-KC. After concluding that the 
coefficients of both interaction terms of FER with ARI and ARI2 are 
significant, we  extract the corresponding estimated regression 
equation (see Equation 5) based on the estimation results 
demonstrated by columns (6) in Table 3 (the estimated coefficients of 
FER are not significant, so they are deleted).

 

2
1 2 6

2
7 0

ˆ ˆ ˆ ˆ
ˆ ˆ

ACE ARI ARI ARI FER
ARI FER

β β β
β β

= ⋅ + ⋅ + ⋅ ⋅

+ ⋅ ⋅ +  (5)

Where ˆACE  represents the estimated value of ACE. 1̂β  is 0.1086, 
2β̂  is −0.0054, 6β̂  is −0.0001, 7β̂  is 0.000012, and 0β̂  is 3.9326.

Figure 2 shows the Kuznets plots of ACE and ARI for different levels 
of FER at low, medium, and high. FER(0) represents the relation diagram 

TABLE 4 Robustness test results on direct and moderating effects.

Variables (1) (2) (3) (4) (5) (6)

ACE ACE ACE ACE ACE ACE

ARI 0.0631*** (0.0057) 0.0570*** (0.0191) 0.0788*** (0.0229) 0.0814*** (0.0221) 0.0783*** (0.0077) 0.0753*** (0.0228)

ARI2 −0.0039*** (0.0007) −0.0031*** (0.0008) −0.0046*** (0.0012) −0.0044*** (0.0014) −0.0019* (0.0011) −0.0040*** (0.0015)

FER −0.00003 (0.0000)
0.0003 (0.0002)

0.0002 (0.0002) 0.0002 (0.0002)

IER −3. 0630*** (0.2741) −2.3279*** (0.4952) −2.0977*** (0.3883) −2.5091*** (0.5128)

ARI·FER −0.0001* (0.0001) −0.0001** (0.0001) −0.0001* (0.0001)

ARI·IER −0.1042* (0.0552) −0.0984* (0.0502) −0.0699* (0.0482)

ARI2·FER 0.00001* (0.0000) 0.00001* (0.0000) 0.00001* (0.0000)

ARI2·IER 0.0104 (0.0073) 0.0051 (0.0074) 0.0059 (0.0077)

X1 −0.0770** (0.0313) 0.0163 (0.0304) −0.0544 (0.0348) 0.0184 (0.0303) −0.0084 (0.0273) 0.0226 (0.0305)

X2 −0.0287 (0.0211) 0.0437** (0.0198) −0.0367* (0.0218) 0.0572*** (0.0213) 0.0820*** (0.0213) 0.0573*** (0.0217)

X3 0.2592*** (0.0240) 0.2191*** (0.0228) 0.2724*** (0.0260) 0.2122*** (0.0223) 0.1731*** (0.0219) 0.2039*** (0.0231)

X4 0.0135** (0.0057) 0.0076 (0.0049) 0.0104* (0.0057) 0.0085* (0.0049) 0.0087* (0.0049) 0.0073 (0.0050)

X5 0.2827*** (0.0302) 0.1031*** (0.0306) 0.2859*** (0.0316) 0.1111*** (0.0316) 0.1320*** (0.0300) 0.1157*** (0.0319)

X6 0.1021*** (0.0370) 0.0031 (0.0326) 0.0876** (0.0377) −0.0014 (0.0324) 0.0235 (0.0326) 0.0091 (0.0330)

Constant 4.4142*** (0.2395) 4.2297*** (0.2185) 4.3224*** (0.2558) 4.0765*** (0.2289) 4.3180*** (0.2302) 4.1725*** (0.2406)

Year fixed effects No Yes Yes Yse No Yes

Individual fixed effects Yes Yes Yes Yes Yes Yes

Observations 384 384 384 384 384 384

R-squared 0.6599 0.7759 0.6952 0.7782 0.7625 0.7805

F_value 188.60*** 189.93*** 143.07*** 188.94*** 247.71*** 187.36***

BP-LM test statistic 1445.83*** 1310.33*** 1316.49*** 1414.21*** 1359.83*** 1374.32***

Hausman test statistic 168.52*** 177.75*** 175.74*** 191.78*** 188.05*** 183.47***

Standard errors in parentheses; *p < 0.1, **p < 0.05, ***p < 0.01.

TABLE 5 2SLS regression results.

Variables (1) (2)

ARI ACE

IV 0.3665*** (0.0433)

ARI 0.0245* (0.0134)

Control variable Yes Yes

Year fixed effects Yes Yes

Individual fixed effects Yes Yes

Observations 391 391

R-squared 0.9122 0.6093

F_value 40.59*** 161.26***

Standard errors in parentheses; *p < 0.1, **p < 0.05, ***p < 0.01.
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between ARI and ACE when FER is taken as 0, i.e., when there is no 
FER. As a continuous variable, FER was divided using a generalized 
method (Aiken et al., 1991). The mean was used to represent the medium 
level (M). The mean plus one standard deviation represents a high level 
(H). The mean minus one standard deviation represents a low level (L). 
The results of the delineation are shown below:

 FER L FER M FER H( ) = ( ) = ( ) =14 9817 133 619 252 2563. , . , .

As shown in Figure 2, at lower levels of FER, the ACE-KC almost 
overlaps with the absence of FER, suggesting that lenient FER barely 
alters the relationship between ARI and ACE. The slope of the 
ACE-KC is smaller (in absolute value) under strict FER than under 
loose FER. The curve rises more slowly in the rising phase and falls 
more slowly in the falling phase. In addition, the higher the level of 
FER, the peak of the ACE-KC rises gradually, and its inflection point 
becomes more delayed. In conclusion, FER does not improve the 
relationship between ARI and ACE, while the higher the FER level, 
the worse the situation perhaps becomes. Therefore, the second half 
of hypothesis 2 was not tested. One possible reason for this is that ER 
itself may lead to a “green paradox” effect (Liu et al., 2018), which can 
occur especially in developing countries (Dietzenbacher and 
Mukhopadhyay, 2007; Van der Ploeg and Withagen, 2015). Some 
studies have found an inverted U-shaped relationship between ER and 
carbon emissions (Chen et al., 2020). The positive coefficient of FER 
in our results indicates that the current FER in China is in the 
increasing stage for ACE. Since the sample maximum value of ARI is 
7.5189 (ARI is logarithmic value for consistency with the regression 
results), the black curve in Figure 2 shows that ARI is in an increasing 
stage before 7.5189, which indicates that the current ARI on ACE in 
China is also positive. When the positive effect of FER on ACE is 
superimposed on the positive effect of ARI on ACE, the phenomenon 
of the peak of the ACE-KC increasing with the increase of the FER 
level is shown in Figure 2.

After concluding that the coefficients of both interaction terms of 
IER with ARI and ARI2 are significant, we extracted the corresponding 
estimated regression equations (see Equation 6) based on the 
estimation results exhibited by columns (6) in Table 3.
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Where ˆACE  represents the estimated value of ACE. 1̂β  is 0.1086, 
2β̂  is −0.0054, 4β̂  is −1.5500, 8β̂  is −0.1809, 9β̂  is 0.0138, and 0β̂  

is 3.9326.
Kuznets plots of ACE and ARI at different levels of IER at low, 

medium, and high levels are shown in Figure 3. IER was divided in the 
same way as FER. The division results are as follows:

 IER L IER M IER H( ) = ( ) = ( ) =0 0841 0 1989 0 3137. , . , .

Figure 3 shows that the ACE-KC’s slope (in absolute value) is 
smaller under strict IER pieces than under loose IER. The curve 
rises more slowly in the rising phase and falls more slowly in the 
falling phase. Also, the higher the level of IER, the peak of the 
ACE-KC gradually decreases, but its inflection point becomes more 
pushed back. Alternatively, the inverted “U” shaped nexus between 
the number of ARI and ACE becomes closer to a linear relationship 
as the level of IER increases. In short, the relatively strict IER is 
more conducive to realizing the decline of ACE peak than the 
relatively lenient FER, but the emission reduction process is not 
accelerated. Therefore, the second half of hypothesis 2 was not 
tested. However, compared to FER, IER did not advance the 
inflection point of the ACE-KC, but it reduced the peak of the 
ACE-KC. This result suggests that IER has a more significant effect 
on improving the relationship between ARI and ACE compared 
with FER. The main reason may be that the current ARI in China 
positively affects ACE. In contrast, IER has a negative effect on ACE 
(the coefficient of IER is significantly negative in Table  3). The 
superposition of both positive and negative effects makes the 
ACE-KC’s slope (absolute value) smaller, i.e., the curve becomes 
flatter. It also indicates that the positive effect of ARI on ACE is 
stronger than the negative effect of IER on ACE.

4.5 Heterogeneity analysis

There are “gradient differences” in agricultural development and 
AI levels in China’s eastern, central, and western regions, leading to 
regional heterogeneity in ARA. In addition, ARA may have a 
heterogeneous impact on the ACE due to differences in regional 
natural conditions and digitalization bases. Therefore, this study 
explores the moderating effects of FER and IER on the ACE-KC in 
China’s eastern, central, and western regions.

FIGURE 3

Moderating effect of IER on ACE-Kuznets curve.
FIGURE 2

Moderating effect of FER on ACE-Kuznets curve.
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The results of the heterogeneity regressions for the eastern, 
central, and western regions are shown in Table  6. In the eastern 
region, the estimated coefficient of ARI is 0.1560; ARI2 is −0.0148; 
ARI⸱FER is −0.0001; ARI2⸱FER is 0.00003; ARI⸱IER is −0.2155; and 
ARI2⸱IER is 0.0306. All coefficients except ARI⸱FER pass the 
significance test. These results indicate that the inverted U-shaped 
relationship between ARI and ACE holds in the eastern region and 
that FER and IER have significant moderating effects on ACE-KC. In 
the central region, the estimated coefficient of ARI is 0.0376; 0.0010 
for ARI2; −0.0002 for ARI⸱FER; 0.00002 for ARI2⸱FER; −0.5835 for 
ARI⸱IER; and 0.0365 for ARI2⸱IER. The ARI and ARI2 coefficients are 
insignificant, while the interaction term coefficients all pass the 
significance test. This suggests that the inverted U-shaped relationship 

between ARI and ACE does not hold in the central region, but FER 
and IER have significant moderating effects.

In contrast, the inverted U-shaped relationship between ARI and 
ACE and the moderating effects of FER and IER are insignificant in 
the western region. The heterogeneity results suggest that ACE-KC is 
particularly pronounced in the relatively economically developed 
eastern region, consistent with the finding that EKC is particularly 
pronounced in developed countries (Kalisvaart et  al., 2023). The 
moderating effects of FER and IER in the western region are not 
significant, perhaps because the region is sparsely populated, the level 
of economic development and environmental pollution is low, and the 
strength of ER is relatively small, so there are no significant 
moderating effects.

5 Discussion and conclusion

This study uses the Chinese provincial areas as the objects of study 
to explore the nonlinear effect of the application of agricultural robots 
on ACE in the context of various disruptive technologies that shape 
the outlook for changes in agricultural production. We also explore 
the moderating effects of FER and IER on the nexus between the 
application of agrarian robots and ACE, based on the context that 
China has been prioritizing environmental and climate issues in 
recent years and incorporating both formal and informal ERs into the 
research framework. It is found that there is an inverted U-shaped 
relationship between the application of agricultural robots and ACE, 
i.e., as the application of agricultural robots increases, ACE first 
increases and then decreases. The results obtained in this paper are 
like those of Liu B. et al. (2024), except that their study was on the 
nonlinear nexus between the extent of application of all industrial 
robots in the region and regional carbon emissions. On the other 
hand, this paper focuses on the agricultural sector, making our study 
a novel exploration of academia.

According to the moderating effects analysis of the study, both 
formal and informal ER changed the shape of the ACE-KC. Specifically, 
FER increased the peak of the ACE-KC and delayed the inflection 
point. IER decreased the peak of the ACE-KC but delayed the 
inflection point. The current literature studying the effect of ER on 
CO2 KC focuses on FER. The research by Yin et al. (2015) found that 
higher levels of ER, while causing the peak of CO2 KC to rise, also had 
a more advanced inflection point, which is inconsistent with the 
results obtained in this paper. The possible reasons for this discrepancy 
are the different fields of study, where our study is focused on 
agriculture. Secondly, the independent variable used in this paper is 
ARI, while Yin et al. (2015) use gross regional product. Again, the 
period of the study sample is different. Our sample interval is from 
2006 to 2019, while Yin et al. (2015) adopted the sample interval from 
1999 to 2011. Some of the reasons FER makes the peak of the ACE-KC 
higher are discussed in depth next.

First, the spillover effects of environmental justice and 
environmental governance make it imperative that environmental 
protection, including carbon emission reduction, be carried out in the 
context of efficient synergies within the region (Gunningham, 2009; 
Holley and Sinclair, 2013). Although China’s Beijing-Tianjin-Hebei 
and Yangtze River Delta regions are already engaged in collaborative 
legislation on regional environmental governance, collaborative 
legislation is a “new sprout” from China’s traditional legislative system. 

TABLE 6 Heterogeneity analysis results on moderating effects.

Variables Eastern 
region

Central 
region

Western 
region

ARI
0.1560*** 

(0.0474)
0.0376 (0.0352)

0.0638 (0.0451)

ARI2
−0.0148*** 

(0.0035)
0.0010 (0.0035)

−0.0015 (0.0055)

FER −0.0003 (0.0003)
0.0007*** 

(0.0002)

0.0008* (0.0004)

IER −0.8779 (0.7427) −0.1641 (0.8960) 2.2750* (1.3702)

ARI·FER −0.0001 (0.0001)
−0.0002*** 

(0.0001)

−0.0001 (0.0002)

ARI·IER
−0.2155*** 

(0.0737)

−0.5835*** 

(0.1236)

−0.6397** 

(0.2640)

ARI2·FER
0.00003*** 

(0.0000)

0.00002*** 

(0.0000)

−0.00001 (0.0000)

ARI2·IER
0.0306*** 

(0.0101)

0.0365** 

(0.0172)

0.0212 (0.0400)

X1

−0.0766* 

(0.0403)

0.1880*** 

(0.0319)

−0.1116* (0.0580)

X2 0.0233 (0.0242)
−0.1138** 

(0.0518)

−0.0287 (0.0479)

X3

0.2386*** 

(0.0479)

0.0448** 

(0.0185)

0.3014*** 

(0.0701)

X4

0.0115** 

(0.0057)
−0.0064 (0.0061)

0.0278*** 

(0.0101)

X5

0.2503*** 

(0.0691)
0.0051 (0.0266)

0.1872*** 

(0.0701)

X6

−0.0686* 

(0.0377)
−0.0073 (0.0476)

0.0012 (0.0666)

Constant
4.2659*** 

(0.4721)

5.7269*** 

(0.2811)

2.9735*** 

(0.5178)

Year fixed effects Yes Yes Yes

Individual fixed 

effects
Yes Yes Yes

Observations 147 112 154

R-squared 0.8849 0.9572 0.8880

F_value 30.62*** 273.35*** 245.57***

Standard errors in parentheses; *p < 0.1, **p < 0.05, ***p < 0.01.
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Therefore, China’s Constitution, the Legislative Law, and other relevant 
laws on the legal effect of regional environmental governance 
collaborative legislation are not yet clear, which often leads to China’s 
regional environmental governance collaborative legislation being 
faced with the problem of constitutionality, legislative conflicts and 
other problems (Van Rooij, 2006; Li, 2019; Zhu, 2019). Insufficient 
synchronization of regional environmental governance collaborative 
legislation will directly affect regional environmental governance 
synergistic law enforcement and reduce the effectiveness of law 
enforcement. Inadequate supporting policies and measures are not 
conducive to enhancing the efficiency of collaborative legislation on 
regional environmental governance. For example, the legal effect of 
different local normative documents on environmental protection 
issues varies greatly (Zhang and Fu, 2008). In practice, in the same 
region, various local normative documents are formulated by different 
subjects for the same environmental governance issues, which leads 
to local laws in some places and local government regulations in 
others (Shen et al., 2017). The difference in legal effect will directly 
affect the enforcement behavior of regional environmental law 
enforcement subjects, which will have a certain adverse effect on the 
future regional environmental collaborative governance, making the 
input of ER and governance effects often disproportionate.

Second, even without considering collaborative environmental 
governance, environmental laws established in different regions often 
contradict legislation and enforcement (Marquis et  al., 2011), 
undermining their actual regulatory effect in curbing carbon 
emissions. For example, Shanghai has relatively clear provisions for 
local cooperative governance for air pollution prevention and control. 
However, some local legislation, such as Jiangsu’s, is more general. The 
Tianjin Water Pollution Prevention and Control Regulations, 
compared with the water pollution prevention and control regulations 
of Beijing and Hebei, have a particular chapter on “Regional Water 
Pollution Prevention and Control Collaboration.” Hebei Province 
stipulates the specific procedures for determining the list of enterprises 
participating in mandatory cleaner production audits. In contrast, 
Beijing and Tianjin only generally stipulate that the competent 
authorities in charge of cleaner production and the environmental 
protection authorities shall determine the list following the law 
without stipulating the specific procedures. The incomplete 
harmonization of legislative content is not only reflected in the 
inconsistency of substantive provisions but also includes procedural 
provisions that are not uniform. The inconsistency of the legislation 
makes regional environmental governance less effective (Lo et al., 
2006) and weakens the inhibiting effect of environmental laws on 
carbon emissions.

Finally, FER (FER), such as strict environmental laws, may lead to 
escalating compliance costs for firms in STI activities (Delmas and 
Marcus, 2004; Shi et  al., 2018; Chen and Qian, 2020), thereby 
weakening firms’ technological innovation capabilities (Ramanathan 
et al., 2017; Jiang et al., 2021), limited R&D funds being used for 
environmental compliance and reducing R&D investment in 
non-environmental areas (Rubashkina et al., 2015), resulting in the 
technological value added declining in non-environmental areas of 
the robots, affecting its function of curbing carbon emissions. On the 
other hand, strict environmental laws may lead to an increasing 
number of agribusinesses engaging in greenwashing or carbon credit 
speculation, i.e., avoiding their current environmental responsibilities 
through differences in the price of carbon offsets between different 

enterprises, purchasing green bonds, and purchasing carbon emission 
quota through the carbon trading mechanism (Kalesnik et al., 2020; 
Gao and Schmittmann, 2022), and increasing their emissions from 
agricultural activities (Kalesnik et  al., 2020; Gao and 
Schmittmann, 2022).

Because of these reflections, in the future, we will focus on some 
issues related to ARA and synergistic carbon emission reduction in 
China’s regional agriculture and thus continue to enrich the findings 
of this paper.

According to our knowledge, no literature examines the effect of 
IER on the KC. IER is more like a soft external constraining force than 
FER. For example, environmental media reports, as IER, can promote 
industrial structure upgrading by monitoring the government and 
guiding public opinion (Chen et  al., 2020), thus protecting the 
environment and reducing carbon emissions. In addition, other 
variables that can be used as proxies for IER include the number of 
petition visits (Ren et  al., 2018), community pressure (Féres and 
Reynaud, 2012), neighborhood income inequality (Moser and Zwickl, 
2014), Pollution Information Transparency Index (PITI) (Zhang and 
Huang, 2023), etc., all have positive effects on environmental 
protection and carbon emission reduction. In agriculture, the PITI, an 
IER, can similarly increase total factor productivity and reduce ACE 
(Liu et al., 2022). In addition to the PITI, village rules, as a kind of IER, 
can likewise promote cleaner production behaviors among farmers 
and reduce ACE (Du et al., 2023). It follows that IER can effectively 
lower ACE. That is why we  included IER in our model. In future 
research, we can continue to explore how different measures of IER 
differ in their impact on ACE and how the effect on the relationship 
between ARA and ACE differs, which would be a further extension of 
this study.

6 Policy implications

To realize “Agricultural Zero-Carbonism,” our work can furnish 
the following recommendations to administrations.

The first suggestion. Although there is a significant ARA-ACE 
inverted U-shaped curve, China is still in the left half of the curve. 
At this stage, an increase in ARA leads to an increase in ACE. Since 
this trend is problematic to avoid before the inflection point, the 
government should vigorously promote agricultural robots and 
reach the inflection point as soon as possible. Meanwhile, the 
government should exploit and release numerous national, industry, 
and association-level standards for green agricultural robots, 
covering all agrarian corners with green agricultural robot 
standards, encouraging the manufacture of more clean energy-
powered agrarian robots and minimizing the environmental 
damage brought about by the scale effect of agricultural 
robot applications.

The second recommendation. Since FER is insignificant for ACE, 
the government should adopt a lean governance approach by 
proposing a lean FER for agriculture to reduce the rising regulatory 
costs associated with policy redundancy. The government only needs 
to set more disbursements into the censor procedure. Being an 
all-around nanny in policy design, formulation, censor, 
implementation, and feedback is unnecessary. The government should 
adopt a scientific and elastic lean FER to replace the rigid and 
traditional FER.
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The third recommendation. Since IER can limit and suppress 
ACE, the government should gradually delegate various powers of IER 
to the public, instructing the public to actively participate in the 
standard design, formulation, censoring, implementation, and 
feedback of IER and ultimately establish a system that is shared and 
governed by everyone. of “pro-environmental civil society.”

The fourth recommendation. Due to the regulatory effect of 
FER, the peak value of the inverted U-shaped curve rises, and the 
inflection point is pushed back. Plus, FER is not significant on 
ACE. Therefore, the government should reduce the FER for the 
agricultural sector or provide exemptions to qualified agricultural 
enterprises and self-employed agricultural workers and allow them 
to carry out agricultural operations under the prerequisites of “weak 
FER” or even “zero FER” under the premise of complying with 
the constitution.

The fifth recommendation. Due to the regulating effect of IER, the 
peak value of the inverted U-shaped curve decreases, and the 
inflection point is pushed back. Plus, IER can significantly reduce the 
ACE; therefore, the government should further promote IER and 
integrate it with the ARA’s development strategy, encourage more 
societal forces to partake in the investigation and application 
promotion of ARA, and customize the corresponding IER, increase 
the suitability between ARA and IER, reduce the internal consumption 
and increase the resonance effect, so that the superposition of IER and 
ARA can make the inflection point earlier.
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