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In the context of the ongoing process of high-quality development in the 
new era, which is focused on improving total factor productivity, it is of 
great importance to explore the spatial and temporal variations of total 
factor productivity growth and its driving factors in China’s county regions’ 
grain cultivation industry. This paper employs a three-stage DEA-Malmquist 
productivity method, the Gini coefficient method, and a panel fixed-effects 
model to analyze data from Chinese counties between 2009 and 2019. The 
analysis indicates that the growth of county food total factor productivity (FTFP) 
exhibits a fluctuating upward trend during the examination period, with an 
average annual growth rate of 2.43%. This is primarily driven by technological 
progress, yet the core driving role of technological efficiency is not effectively 
played. The average annual growth rate of county FTFP varies across different 
regions. The highest average annual growth rate of county FTFP in the eastern 
region and the primary grain-producing area is 2.75 and 3.04%, respectively. The 
lowest growth rates were observed in the western region and the main grain 
marketing area, at 1.44 and 1.23%, respectively. Secondly, the Gini coefficient 
of county FTFP continues to demonstrate a persistent upward trend during 
the examination period, with an average annual growth rate of 14.729%. The 
primary factor contributing to the observed variation in total factor productivity 
growth of the food sector at the regional level is the existence of disparate 
technological progress. Thirdly, there is a notable positive correlation between 
county financial deepening and financial self-sufficiency rates and county FTFP 
growth, with impact coefficients of 0.0503 and 0.0924, respectively. Conversely, 
county population density, degree of economic development, farmers’ income 
level, and industrial structure exert a significant negative influence on county 
FTFP growth and technological progress.
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1 Introduction

The simultaneous occurrence of multiple crises, including the global spread of the novel 
coronavirus, climate-related shocks, and geopolitical conflicts, has led to a significant increase 
in the number of individuals experiencing hunger globally. The most recent edition of the State 
of Food Security and Nutrition in the World 2023 report indicates that there are currently 
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approximately 735 million individuals experiencing hunger globally, 
representing a 122 million increase in the number of hungry people 
since the pre-New Crown outbreak in 2019. As the world’s most 
populous country, China’s food production is not only critical for 
domestic food security, but also has a significant impact on achieving 
Sustainable Development Goal 2, which is to eradicate hunger 
by 2030.

In order to cope with the ongoing food crisis, there is an urgent 
need to increase factor resource inputs for food production and 
improve total factor productivity for food (FTFP). Nevertheless, 
resource and environmental constraints have tightened in recent 
times, and the factor-driven approach to food production growth has 
been increasingly constrained (Gao and Wang, 2020). Consequently, 
the sustainable development of grain farming in the contemporary era 
is contingent upon the growth of FTFP. Despite the consistent 
expansion of China’s grain production, there remains considerable 
scope for enhancement in grain yields relative to global benchmarks. 
This presents a promising avenue for the advancement of total factor 
productivity. China’s grain production is concentrated in counties. It 
is of great importance to study the evolutionary trends and spatial and 
temporal differentiation characteristics of FTFP growth in these 
county areas in order to accurately assess the sustainable development 
of China’s grain farming industry. Moreover, an investigation into the 
driving forces and influencing factors behind the growth of FTFP in 
the counties can provide a realistic basis for ensuring food security 
and achieving the global sustainable development goal of 
“zero hunger”.

The literature on FTFP growth rate has been subjected to extensive 
study by scholars at both the national and international levels. These 
studies have employed a variety of perspectives and methodologies to 
measure the growth rate of FTFP and to explore the factors that 
influence it. Initially, scholars concentrated on measuring broad 
agricultural TFP, including Gong (2018), Wang et al. (2020), and Hu 
et al. (2021). Nevertheless, subsequent research has broadened the 
scope to encompass grain-specific TFP. Some studies have 
concentrated on the TFP growth of individual grain crops, such as 
rice, wheat, corn, soybean, and so forth, within the plantation 
industry. For example, Muftiadi (2018), Wang and Gao (2020), and 
Wu et al. (2022) have examined the TFP growth of specific grain 
crops. Although studies on food crop varietal productivity offer 
insights into the sustainable development of individual crops, they 
may not fully represent overall changes in food productivity.

A further category of literature concerns the overall technical 
progress of the food planting industry. For example, Gao and Song 
(2014) identified spatial autocorrelation in China’s grain production 
technical efficiency, emphasizing notable disparities in technical 
efficiency across diverse grain production functional zones. Zheng 
and Cheng (2021) measured China’s FTFP growth during the period 
between 1980 and 2018 and identified an accelerated growth pattern, 
which was primarily driven by technological progress. Some studies 
have also considered environmental issues and measured the green 
TFP of food production. The majority of scholars, including Min and 
Li (2012), Tian and Wang (2016), and Li (2021), posit that China’s 
eco-efficiency in grain production evinces a fluctuating trend after 
accounting for environmental factors. Furthermore, scholars have 
investigated a range of factors influencing FTFP growth. These include 
production factors, such as an aging labor force (Peng and Wen, 2016), 
land transfer (Zeng et al., 2018), and agricultural mechanization (Peng 

and Zhang, 2020), as well as socioeconomic factors, including 
financial support for agricultural subsidies (Li et  al., 2021) 
urbanization (He and Qiang, 2019), and natural factors, such as 
climate change (Yin et al., 2016).

Two principal methodologies exist for measuring total factor 
productivity in the food industry. One category is the parametric 
approach, represented by stochastic frontier analysis (SFA). Aigner 
et  al. (1977) initially proposed the SFA framework using cross-
sectional data. The SFA permits the existence of technical inefficiencies 
and divides the error term into two components: stochastic errors that 
are beyond the producer’s control (stochastic perturbation term) and 
technological errors that are within the producer’s control 
(technological inefficiencies).

Subsequently, two broad directions for improving technical 
inefficiency have been explored. The first direction is to model the 
technological frontier in a more flexible way. For instance, Sun and 
Kumbhakar (2013) and Yao et al. (2018) proposed the semiparametric 
smooth coefficient (SPSC) stochastic production frontier model. In 
this model, the input elasticities are unknown smooth functions of 
some non-traditional inputs. These inputs can be  viewed as firm 
characteristics, policy variables, or any variables that describe the 
production environment. Guo et al. (2024) proposed the generalized 
Luenberger productivity indicator (GLPI) to analyze urban GTFP in 
China. This indicator uses distance elasticity shares as input weights 
in the production function and employs SFA for parameter 
decomposition to obtain technological change (TC), technical 
efficiency change (TEC), and scale efficiency change (SEC). The 
second direction of inquiry is to examine the manner in which error 
components of an SF model can be  modeled in different ways. 
Badunenko and Kumbhakar (2017) proposed a four-component cost 
frontier model, and Lai and Kumbhakar (2018) suggested the use of 
maximum simulated likelihood to estimate a four-component 
production frontier model. Baležentis and Sun (2020) proposed a 
four-component stochastic frontier model in which the frontier 
function is represented by an unknown smooth input distance 
function, and inefficiency is decomposed into persistent and 
transient inefficiencies.

The second method is the non-parametric approach, which is 
represented by the Data Envelopment Analysis (DEA) method. The 
DEA method considers multiple inputs to produce multiple outputs 
without setting a specific function, thereby becoming the mainstream 
method of measuring TFP and being widely used in many fields, 
including industry (Liu F. et al., 2023), banking (Zha et al., 2016), the 
environment (Baležentis et al., 2024), and so on. Nevertheless, the 
non-parametric method does not fully consider the influence of 
external environmental factors and random factors, which results in 
certain limitations in the obtained results. To address these limitations, 
Fried et al. (2002) proposed a three-stage DEA model that combines 
the advantages of SFA and DEA. This model incorporates the SFA 
method into the DEA framework, enabling the consideration of 
random errors and the removal of heterogeneous effects caused by 
external environmental factors and managerial inefficiencies. 
Furthermore, the three-stage DEA model incorporates the Malmquist 
index, allowing the analysis of changes in technical progress and 
efficiency over different time periods. Parichatnon et al. (2018) applied 
a three-stage DEA- Malmquist model to measure the efficiency of 
rubber production in four regions of Thailand from 2005 to 2014. Liu 
et al. (2022) employs a nonseparable undesirable output modified 
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three-stage DEA- Malmquist to evaluate the AGTFP of China’s 30 
provinces from 2000–2018.

In this study, we  acknowledge and build upon the valuable 
contributions of existing research in exploring the spatial and 
temporal evolution of FTFP growth and its driving factors in China’s 
county areas. Nevertheless, there are some limitations in the existing 
literature. Firstly, the existing studies primarily focus on measuring 
FTFP growth at the inter-provincial level or from the perspective of 
farmers, with a notable absence of analysis specifically at the county 
scale. As China’s grain production is predominantly concentrated in 
county areas, this gap in the literature impedes a comprehensive 
understanding of the changes in FTFP growth in these regions. To 
address this, the present study conducted empirical research based on 
panel data from 729 counties in China spanning the period from 2009 
to 2019. Secondly, a significant number of studies fail to adequately 
account for external environmental factors and random errors, 
resulting in biased assessments of China’s FTFP growth and its 
dynamic evolution. To provide a more accurate analysis, we employ a 
three-stage DEA combined with the Malmquist productivity index. 
This approach is designed to effectively eliminate factors such as 
managerial inefficiency, external environment variations, and random 
errors from the analytical framework, thereby enabling more precise 
measurement and analysis of FTFP growth in Chinese counties. 
Thirdly, the existing literature lacks an in-depth analysis of the spatial 
and temporal variations in FTFP growth, particularly in the county 
areas. To address this gap, we propose utilizing the Gini coefficient 
method to reveal and analyze regional differences in county FTFP 
growth across the three major geographic regions and grain functional 
areas. Furthermore, there is a paucity of attention devoted to 
identifying the key drivers behind the growth of FTFP in these 
regions. To this end, a panel fixed-effects model will be constructed 
with the objective of identifying and exploring the driving factors of 
county FTFP growth.

2 Methods and data

2.1 Methods

2.1.1 Three-stage DEA dynamic analysis mode
The traditional DEA methods are unable to distinguish between 

non-input technical inefficiencies caused by environmental changes 
or stochastic shocks, which leads to biased measurement results. The 
three-stage DEA model effectively removes the heterogeneous effects 
of external environmental factors, random errors, and managerial 
inefficiency by introducing the SFA method. This allows for the 
accurate reflection of the real productivity of decision-making units 
under multiple-input and multiple-output situations. This is achieved 
by placing them in the same environment and under the same 
conditions for comparison (Fried et al., 2002). For this reason, this 
paper constructs a three-stage DEA-Malmquist productivity index to 
measure the total factor productivity of grain in Chinese counties. 
First, the DEA-Malmquist index model is utilized to measure the 
initial data to obtain the efficiency values and slack variables. Then, 
the environmental variables are selected to utilize the SFA-like 
regression to eliminate the effects of external environmental factors 
and random errors in the input variables. Finally, based on the input 
variables and output variables that have eliminated the influence of 

external environmental factors, the actual production efficiency is 
measured using the DEA-Malmquist index model. The specific model 
is constructed as follows:

Stage 1: construction of the DEA-Malmquist index model. The 
Malmquist productivity index is defined in accordance with the 
distance function, which quantifies the total factor productivity 
change between two data points by calculating the ratio of the distance 
of each data point with respect to the generalized technology distance. 
The TFP index is calculated by employing the geometrical mean of the 
Malmquist productivity index between the specified periods of t to 
(t + 1). The geometric mean of the Malmquist productivity index is 
employed to calculate the output-oriented TFP index in the 
following form:
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Where, D x yi
t t t+ +( )1 1

,  denotes the technical distance between 
periods from t to (t + 1), when Mi >1 represents the growth of TFP 
from t to (t + 1), Mi =1 represents the stabilization of TFP from t to 
(t + 1), and Mi <1 represents the decline of TFP from t to (t + 1). Since 
Eq. (1) is the geometric mean of the TFP index for the two periods, it 
is collapsed at the base:
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The Malmquist productivity index is the result of the joint action 
of technical efficiency changes and technological progress. Technical 
efficiency is defined as the ability of producers to obtain the maximum 
output under the given factor inputs. This is achieved through the 
implementation of scientific management decision-making methods 
and organization, which reflect the effective degree of utilization of the 
existing technology by economic agents in the production process. 
Technological progress is reflected in productivity changes through 
the introduction of the time trend factor, which reflects productivity 
changes. The progress of production technology is manifested in the 
upward shift of the production frontier. In accordance with Eq. (2), 
the Malmquist productivity index can be further decomposed into 
two constituent parts: technical efficiency change (TE) and technical 
progress change (TC). This is expressed as follows:
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The distance function required for the Malmquist productivity 
index is calculated using the linear programming method in DEA on 
the basis of the basic form of the Malmquist productivity index and 
its decomposition. Subsequently, TFP and its decomposition 
components are obtained. In light of the fact that variable returns to 
scale align with the empirical reality of county FTFP growth, this 
paper employs the variable returns to scale (VRS) DEA model to 
calculate the distance function requisite for the Malmquist 
productivity index. The model is specified as follows:
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In Eq. (5), Xi denotes the inputs of the ith decision unit, Yi
denotes the outputs of the ith decision unit, n is the number of 
decision units, λ is the combination coefficient of input indexes of 
the decision unit, s− is the slack variable reflecting the lack of 
outputs, s+ is the residual variable reflecting the redundancy of 
inputs, and ε  is the efficiency of the decision unit, and when ε =1
indicates that the DEA is effective, and the other way around, it 
indicates that the DEA is ineffective. The above model can 
be measured to obtain the traditional TFP, TC and TE indices, as 
well as the target values and slack variables of the input indicators 
for each sample.

Stage 2: Construction of a panel SFA model. In light of the fact 
that a multitude of intricate elements, including external 
environmental factors, random errors, and managerial inefficiency, 
will inevitably exert an influence on the decision-making units in 
question, a parallel panel SFA is devised with the objective of adjusting 
the slack variables derived in the initial phase. This is done with the 
intention of eliminating environmental factors and statistical noise, 
and subsequently placing each decision-making unit under identical 
conditions for the purpose of measuring efficiency. The particular SFA 
model is as follows:
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Snit  is the input slack variable of the nth type of input factor for the 
ith decision unit in period t, f ⋅( )represents the stochastic frontier 
production function, Znit  and βn are the environmental variables and 
parameter estimates, respectively, εnit ni

t
ni
tv u= +  is the composite error 

term, vnit  is the stochastic error term, and vnit vn~ N ,0
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independently un-correlated.
In order to distinguish between managerial inefficiency and 

random error terms and to place the input indicators of each decision 
unit under comparable conditions, this paper draws upon the study of 
Luo (2012) and employs the managerial inefficiency formula proposed 
by Sun and Kumbhakar (2013), which is as follows:
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Eq. (7), λ σ σ= un vn/ , σ σ σ= +( )vn vn
2 2

1 2/
, φ ⋅( ) and Φ ⋅( )  are the 

density function and distribution function of the standard normal 
distribution, respectively. Meanwhile the estimation formula of the 
random error term is as follows:
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In order to eliminate the effects of external environmental factors, 
managerial inefficiency and random error terms of slack variables, 
according to Fried et al. (2002), it is necessary to place each decision 
unit in the same external environment for efficiency assessment, with 
the following adjustment formula:
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where xni∗  and xni are the adjusted and pre-adjusted input 
variables, respectively, and the two parentheses on the right-hand side 
of the equation indicate that all decision-making units are placed 
under the same conditions after removing environmental factors and 
random errors, respectively, independent of other factors.

Stage 3: Construction of an adjusted DEA-Malmquist index 
model. The DEA-Malmquist index model is employed to recalculate 
the adjusted data, thereby eliminating the influence of external 
environmental factors, management inefficiency, and random errors 
on the production efficiency value of each decision-making unit. 
Given that each decision-making unit is situated within the same 
environment, the adjusted efficiency values are more realistic 
and objective.

2.1.2 Panel fixed effects model
In order to analyze the driving factors of county FTFP growth, this 

paper constructs a panel fixed effects model, the model is as follows

 gtfp X u ei t i t i t i t, , ,= + + + +β β ε0 1  (10)

In Eq. (10), gtfpi t,  is the FTFP of the ith county (county-level 
city) in year t, Xi t,  denotes the driver variable of FTFP, ui denotes 
the area fixed effect, et  denotes the time fixed effect, εi t,  is the 
random disturbance term, and β0 and β1are the coefficients to 
be estimated. The corresponding variables are natural logarithmized 
in model parameter estimation to mitigate heteroskedasticity and 
multicollinearity among variables. In order to further explore the 
ways through which each driver affects FTFP, referring to the 
existing studies, the index of change in technological progress and 
the index of change in technological efficiency are taken as the 
dependent variables for regression estimation, and the model is 
as follows:
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 gtc X u ei t i t i t i t, , ,= + + + +β β ε0 1  (11)

 gec X u ei t i t i t i t, , ,= + + + +β β ε0 1  (12)

In Eqs. (11, 12), gtci t,  is the index of change in food technology 
progress in year t of the ith county (county-level city), and geci t,  is the 
index of change in food technology efficiency in year t of the ith 
county (county-level city). The rest of the variables are explained as in 
Eq. (10).

2.2 Data description

To guarantee the reliability of the empirical data presented in the 
paper, specific criteria were employed in the selection of county 
samples. In view of the unavailability or significant absence of data 
pertaining to rural economic development indicators in a number of 
counties, a selection criterion was introduced. Consecutive years of 
missing data were identified in counties, resulting in their exclusion 
from the sample. Consequently, the paper ultimately selected 729 
county samples for analysis. The paper focuses on calculating the 
Malmquist index, which requires a two-year efficiency change 
calculation. To assess the growth of FTFP over the 2010–2019 period, 
input–output variables from the 2009–2019 data of the selected 729 
county samples were utilized. It is important to note that the statistical 
data does not include municipal districts, special districts, forest 
districts, and certain regions such as Beijing Municipality, Shanghai 
Municipality, Tianjin Municipality, Tibet Autonomous Region, and 
the Hong Kong, Macao, and Taiwan regions. This exclusion is due to 
the differences in economic and financial characteristics between 
municipal districts and counties (county-level cities) and the division 
of financial power and authority. Furthermore, China’s county-level 
administrative divisions have undergone adjustments and changes in 
recent years, which have resulted in the exclusion of a small number 
of county samples due to county withdrawals or the division of 
counties into districts.

The county sample data presented in this paper is representative 
in two key respects. Primarily, the selection of samples is focused on 
China’s principal grain-producing areas and the regions exhibiting a 
balance between production and marketing. In accordance with the 
standard delineation set forth in the Medium- and Long-Term Plan 
for National Food Security (2008–2020), the 729 county samples 
selected for analysis in this study are distributed across 381 counties 
in the primary grain production region, 277 counties in the production 
and marketing balance area, and 71 counties in the primary marketing 
region. This selection ensures that the samples are representative of 
the areas with significant grain production and marketing activities. 
Secondly, the samples were selected from different geographic regions, 
with consideration given to the variations in resource endowment, 
economic development level, and food production across these 
regions. In accordance with the regional divisions delineated by the 
National Bureau of Statistics (NBS) in 2017, the 729 county samples 
presented in this paper encompass 233 counties in the eastern region, 
315 counties in the central region, and 181 counties in the western 
region. The inclusion of samples from these disparate regions ensures 
a certain level of representativeness across the entire country. In 

conclusion, the selection of county samples in this paper considers 
both the concentration of grain production areas and the 
representation of different geographic regions in China. This approach 
guarantees the representativeness of the data and, to a certain extent, 
enhances the generalizability of the findings.

2.3 Selection of variables

The FTFP is a measure of the comprehensive use efficiency of all 
input factors in the grain production process. In accordance with the 
calculation requirements of the three-stage DEA method, the relevant 
variables primarily encompass grain output variables, production 
input variables, and environmental variables. The grain output 
variable is derived from the study of Liu and Yan (2022), and the total 
grain output for each county area is selected for measurement.

The food production input factors include land, labor, and capital 
factors such as machinery and fertilizer. In this paper, we refer to the 
study of Zhao and Zhou (2020) and select the sown area of grain the 
labor input for grain cultivation, the total power of machinery for 
grain cultivation, and the amount of fertilizer applied for grain 
cultivation as input factor variables. The measurement of each input 
factor must be based on the production input data of food crops. As 
the China County Statistical Yearbook does not distinguish between 
factor input data for grain crops and cash crops, this paper draws on 
the studies of Wang et al. (2013) and employs the weight coefficient 
method to isolate the production input factor data for grain crops 
from generalized agriculture. The following formulae may 
be employed to calculate the input factors for grain cultivation:

 • Grain cultivation labour input = number of employees in 
agriculture, forestry, animal husbandry and fishery × (agricultural 
output value/total output value of agriculture, forestry, animal 
husbandry and fishery) × (grain sown area/crop sown area)

 • Grain cultivation total mechanical power = total power of 
agricultural machinery × (grain sown area/crop sown area)

 • Grain cultivation fertilizer application (discounted pure 
quantity) = agricultural fertilizer application (discounted pure 
quantity) × (grain sown area)/(sown area of crops).

In order to eliminate the influence of external environmental 
factors on the efficiency evaluation of decision-making units, this 
paper selects the population conditions, industrial structure, and 
human capital of each county area as uncontrollable external social 
conditions. Among these factors, the demographic conditions are 
quantified by the ratio of the population size to the administrative area 
of each county. The industrial structure is quantified by the ratio of the 
sum of the value added of the secondary and tertiary industries to the 
gross regional product. The quality of human resources is measured 
according to the study of Liu and Xie (2016), which defines it as the 
ratio of the number of students enrolled in secondary schools in each 
county region to the regional population (Liu et al., 2024).

The data for the aforementioned variables were primarily sourced 
from the China County Statistical Yearbook, the China County (City) 
Social and Economic Statistical Yearbook, the Wind database, and the 
EPS database. In order to address the issue of missing values, the paper 
employs a number of different strategies. Firstly, some missing data 
are supplemented based on the statistical bulletins of counties 
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(county-level cities and flags). Secondly, missing data are 
supplemented and improved using the statistical yearbooks of the 
provinces, cities, where the sample counties (county-level cities and 
banners) are located. This process helps to fill in any gaps in the data. 
Finally, linear interpolation and linear extrapolation methods are 
employed to mitigate the impact of missing data on individual 
indicators. Furthermore, in order to accurately reflect economic 
growth, the relevant nominal economic variables are adjusted using 
the provincial GDP price deflators of the sample counties. This process 
ensures that the data is deflated to account for changes in prices over 
time, thereby providing a more accurate representation of 
economic growth.

2.4 Descriptive statistical analysis

The results of the definition and descriptive statistical analysis of 
the sample data are presented in Table  1. The principle of 
“homogeneous correlation” represents a fundamental assumption in 
the field of DEA. In order to test the correlation between input and 
output variables, the Pearson correlation test method was employed. 
The results of this test are presented in Table  2 of the paper. As 
evidenced by the data presented in the table, the correlation 
coefficients between the input variables and the output variables are 
positive and statistically significant at the 5% level. The positive 
correlation coefficient indicates that as the values of the input variables 
increase, so too do the values of the output variables. This confirms 
that the selected input and output variables in this study comply with 
the principle of isotropy or homogeneous correlation, thereby 
corroborating the accuracy and validity of the DEA analysis presented 
in the paper.

3 Measurement of county FTFP and 
spatio-temporal divergence

3.1 Measurement and decomposition of 
county FTFP growth rates

In order to ascertain the genuine county FTFP growth rate, this 
paper considers the input slack variables of agricultural fertilizer, 
agricultural machinery, labor, and grain sown area, which are 
measured by traditional DEA, as dependent variables. Furthermore, 
the paper considers external environmental variables, including 
industrial structure, population density, and the level of human 
capital, as independent variables. The parameters are estimated using 
SFA-like regression to exclude the effects of managerial inefficiencies, 
external environment factors, and random errors on the effects of 
input slack variables. The resulting estimation results are presented in 
Table 3.

As evidenced in Table 3, the γ value and LR one-sided test in the 
SFA regression of all slack variables surpassed the 1% significance test, 
with the γ value approaching 1. This indicates that managerial 
inefficiency exerts a dominant influence on the composite error term, 
or the deviation error between the actual input value and the target 
input value, which is predominantly affected by the external 
environment. Consequently, employing the SFA model to account for 
the stochastic factor and managerial inefficiency factor for each input 
variable is a suitable approach. If the coefficients are positive, an 
increase in the environmental variables will lead to an increase in the 
input slack variables or output. If the coefficients are negative, an 
increase in the environmental variables will lead to a decrease in the 
input slack variables or output. This is analyzed as follows:

The regression coefficients of the slack variables of industrial 
structure on agricultural machinery inputs are significantly positive, 
indicating that the optimization and upgrading of industrial structure 
promote agricultural mechanization inputs. This indicates that as 
industrial structure undergoes transformation and upgrading, there 
is an increase in the input of agricultural machinery, which 
consequently enhances the efficiency of agricultural production. It is, 
however, important to note that the transformation and upgrading of 

TABLE 1 Descriptive statistics of variables.

Variable name and 
symbol

Meaning of variables and units Average value Standard deviation

Food output (grain) Total grain production (tons) 29255.660 36767.303

Land inputs (land) Area sown with grain (ha) 5382.193 5307.790

Agricultural machinery inputs 

(machinery)
Total power of machinery for food cultivation (kWh) 34309.371 33331.171

Agricultural fertilizer inputs (fert) Fertilizer application for food cultivation (net amount) (tons) 2211.393 3068.022

Agricultural labor inputs (labor) Number of labor inputs for food cultivation (persons) 4555.762 4167.424

Rural human capital (hum) Ratio of secondary school enrolment to total regional population 0.051 0.023

Industrial structure (industries) Ratio of value added of secondary and tertiary industries to GDP 0.798 0.123

Population density (popu) Ratio of district population to administrative area 0.032 0.031

County financial deepening (finas) Loans to GDP ratio of financial institutions 0.668 0.410

Financial self-sufficiency (govz) Ratio of fiscal expenditures to fiscal revenues 0.298 0.226

Level of farmers’ income (income) Disposable income of rural residents (ten thousand yuan) 1.049 0.578

TABLE 2 Pearson test for variables.

variable 
name

Land 
input

Mechanical 
inputs

Fertilizer 
inputs

Labor 
input

total grain 

production

0.9087*** 

(0.0000)

0.7293*** 

(0.0000)

0.8527*** 

(0.0000)

0.5633*** 

(0.0000)

1 *** indicates significant at the 1% significance level; numbers in parentheses are p-values.
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regional industrial structure may also result in a loss of food 
production efficiency. This is due to the marginalization of the food 
cultivation industry as other industries become dominant. This 
suggests that while industrial restructuring may promote agricultural 
mechanization, it may also result in a decline in food production 
efficiency as the focus shifts away from agriculture. Conversely, the 
regression coefficients of the slack variables of industrial structure on 
fertilizer, arable land, and labor inputs are significantly negative. This 
suggests that the optimization and upgrading of the county’s industrial 
structure result in a reduction in the production and input of 
agricultural fertilizers. This reduction is achieved through the gradual 
elimination of high-pollution chemical industries, which improves the 
efficiency of food production, particularly in the stage of diminishing 
marginal effect of fertilizer input. Furthermore, the growth of 
non-agricultural industries facilitates the transfer of residual factors 
of production from the agricultural sector to the industrial and 
commercial sectors. This process optimizes the efficiency of 
agricultural factors and contributes to the growth of FTFP. The growth 
of non-agricultural industries results in the reallocation of surplus 
production factors from agriculture to other sectors, thereby 
enhancing the overall allocation of agricultural resources.

Moreover, the regression coefficients of population density on the 
slack variables of fertilizer, labor, and arable land inputs are negative. 
The significance test indicates that the fertilizer and labor inputs are 
particularly affected. In regions with elevated population density and 

constrained arable land, the labor force is compelled to transition to 
the non-agricultural sector. This rational allocation of labor resources 
helps to protect regional grain cultivation through the use of intensive 
cultivation methods. This ultimately enhances grain production 
efficiency by reducing excessive fertilizer inputs. Finally, the regression 
coefficients of human capital on the slack variables of fertilizer, 
machinery, labor, and cropland inputs are all significantly positive. 
This suggests that regions with higher levels of human capital tend to 
have higher employment thresholds in the industrial and commercial 
sectors. Consequently, there is an increase in the agricultural labor 
force and land inputs due to the structural adjustment of human 
capital. Furthermore, individuals with higher levels of human capital 
are more likely to engage in non-agricultural employment, which in 
turn leads to higher disposable incomes. This leads family farmers to 
increase the inputs they make, such as those related to the use of 
fertilizers and machinery for food cultivation. However, an excessive 
input of production factors can result in an imbalance in factor 
allocation, which in turn hinders the growth of FTFP.

The input variables, with the exception of the influence of external 
environmental factors, were derived through the use of SFA-like 
regression. Subsequently, these variables were employed, in 
conjunction with the initial output data, to calculate the county’s FTFP 
index, EC (Efficiency Change) index, and TC (Technological Change) 
index. Tables 4, 5 illustrate the dynamic evolution of these indices. A 
review of the tables reveals that the annual average growth rates of the 
TFP index, EC index, and TC index for the county as a whole are 
1.0257, 0.9956, and 1.0335, respectively. These values indicate that the 

TABLE 3 SFA-like regression results.

Parameter estimate Fert Machine Labor Land

β0 3467.431*** 3.570E+04*** 6982.249*** 6211.491***

β1 (industs) −997.078*** 7781.338*** −3726.739*** −1755.694***

β2 (popu) −0.051*** 0.440*** −0.056*** −0.046

β3 (hum) 5371.760*** 1.189E+05*** 6.317E+04*** 7120.024***

σ 2 5.582E+06*** 1.294E+10*** 2.512E+07*** 1.245E+07***

γ 0.932*** 0.938*** 0.929*** 0.950***

LR test 8906.947*** 1.012E+04*** 1.006E+04*** 1.300E+04***

1 ***, ** and * indicate 1, 5, and 10% significance levels, respectively.

TABLE 4 Changes in county FTFP, EC & TC indices.

Particular year EC index TC index TFP index

2009–2010 0.9400 1.1000 1.0340

2010–2011 0.9600 1.0640 1.0214

2011–2012 0.9980 1.0130 1.0110

2012–2013 0.9940 1.0370 1.0308

2013–2014 1.0240 0.9610 0.9841

2014–2015 0.9670 1.0740 1.0386

2015–2016 1.0900 0.9300 1.0137

2016–2017 0.9450 1.0550 0.9970

2017–2018 1.0800 0.9310 1.0055

2018–2019 0.9580 1.1700 1.1209

average 0.9956 1.0335 1.0257

TABLE 5 Changes in county FTFP, EC & TC indices in different regions.

Area EC index TC index TFP index

Eastern counties 0.9991 1.0405 1.0312

Central counties 1.0146 1.0350 1.0431

Western counties 1.0040 1.0311 1.0301

Major food 

producing area
1.0100 1.0391 1.0426

Food production 

and marketing 

balance area

1.0073 1.0293 1.0308

Major food 

marketing area
0.9901 1.0437 1.0217
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FTFP and EC indices for the county have exhibited an overall upward 
trend during the examination period. However, the EC index has 
demonstrated a downward trend, suggesting the potential for 
improvements in management practices. Upon examination of the 
subregions, it becomes evident that the EC indexes of the central 
region, western region, main grain-producing region, and production 
and marketing balance region have exhibited an upward trend. This 
indicates that these regions have experienced improvements in 
agricultural management efficiency. Moreover, all regions have 
exhibited an increasing trend in both the TFP and EC indexes. This 
indicates that there have been advancements in overall food 
production efficiency and technological progress across all subregions. 
In conclusion, after accounting for external environmental factors, 
management inefficiencies, and random error factors, the county’s 
FTFP index, TC index, and EC index have exhibited notable growth 
characteristics during the examination period. The growth of the 
county’s FTFP has been influenced by the combined effect of 
technological progress and changes in technical efficiency.

3.2 Trend analysis of the dynamic evolution 
of county FTFP growth

The Malmquist productivity index was employed to ascertain the 
cumulative multiplication characteristics. In accordance with the 
study conducted by Zhang and Guo (2021), the county FTFP and its 
decomposition term for the period between 2010 and 2019 were 
calculated with 2009 as the base period. In addition, county FTFP and 
its decomposition terms were calculated for the three major 
geographic regions (East, Central, and West) and the three major 
grain functional areas (main grain producing areas, production and 
marketing balance areas, and main marketing areas), respectively. The 
results of the calculations are presented in Tables 6–8.

As illustrated in Table 6, the county FTFP exhibited a fluctuating 
upward trajectory during the 2010–2019 period, with an average 
annual growth rate of 2.43%. With regard to regional heterogeneity, 
the average annual growth rate of county FTFP in the three major 
geographic regions is highest in the east region at 2.75%, while the 

western region exhibits the lowest growth rate at 1.44%. In general, the 
eastern region is characterized by a high concentration of talent and a 
robust technological innovation capacity, which collectively contribute 
to enhanced food production efficiency. The western region is not only 
less technologically innovative than the eastern region, but also has a 
lower population density, which hinders the dissemination and 
adoption of new technologies and methods of food cultivation. 
Consequently, the growth of county FTFP is lower than that of the 
developed regions in the east and center.

Among the food production functional areas, the annual average 
growth rate of FTFP in the main production areas is the highest at 
3.04%, while that in the main marketing areas is the lowest at 1.23%. 
Although the economy of the main marketing areas is more developed, 
with a high degree of technological innovation agglomeration, which 
contributes to the overflow of new technologies into the agricultural 
sector to bring about the growth of FTFP. This is also reflected in the 
economic and industrial structure of the main marketing areas, which 
is more inclined towards the secondary and tertiary industries. The 
level of urbanization is relatively high, which has led to a significant 
number of farmers moving out of the agricultural sector to enter the 
non-agricultural sector in search of employment and a better quality 
of life. This has resulted in a decline in the number of rural laborers 
and the level of human capital. Consequently, the number of rural 
laborers and the level of human capital have declined at a more rapid 
pace, and the phenomenon of “de-farming” and “de-fooding” in the 
countryside has become pronounced, with the food plantation 
industry becoming increasingly marginalized. In comparison, in the 
context of the strategy of guaranteeing national food security, the 
main grain-producing areas and areas with balanced production and 
marketing attach a high degree of importance to grain cultivation. 
Furthermore, the allocation efficiency of agricultural capital and labor 
factor inputs is relatively high, resulting in a higher growth of FTFP in 
the main grain-producing areas and areas with balanced production 
and marketing than in the main marketing areas.

Table 7 illustrates that the level of technological advancement in 
food production exhibited an upward trajectory with fluctuations, 
both at the county level and within each notable region, from 2010 to 
2019. This trend aligns with the changes in county FTFP and suggests 

TABLE 6 Evolution of county FTFP trends.

Timing County 
overall

Eastern 
counties

Central 
counties

Western 
counties

Major food 
producing 

area

Food 
production 

and marketing 
balance area

Major food 
marketing 

area

2010 1.0584 1.0690 1.0484 1.0620 1.0759 1.0513 0.9918

2011 1.0917 1.1504 1.0905 1.0181 1.1513 1.0274 1.0223

2012 1.1076 1.1478 1.1213 1.0321 1.1673 1.0443 1.0342

2013 1.1656 1.1651 1.1999 1.1066 1.2393 1.1057 1.0039

2014 1.1441 1.1493 1.1568 1.1153 1.1873 1.1114 1.0401

2015 1.1942 1.2052 1.2002 1.1696 1.2380 1.1670 1.0651

2016 1.2214 1.2562 1.2137 1.1903 1.2617 1.1968 1.1013

2017 1.2548 1.2972 1.2455 1.2164 1.2929 1.2622 1.0216

2018 1.2407 1.2882 1.2373 1.1855 1.2884 1.2206 1.0632

2019 1.3917 1.4355 1.4177 1.2900 1.4938 1.3043 1.1842

average 1.1870 1.2164 1.1931 1.1386 1.2396 1.1491 1.0528
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that technological progress is the primary driver of growth in county 
FTFP. When considering geographic regions, the eastern counties 
exhibit the highest average value of food TC, followed by the central 
counties, and the western counties have the lowest average value. This 
pattern is consistent with the varying levels of economic development 
observed across these regions. Regions with higher economic 
development tend to allocate a greater proportion of resources 
towards technological research and development, thereby enhancing 
their innovation capabilities. This, in turn, facilitates advancements in 
food cultivation technology. Conversely, the western regions 
encounter greater obstacles in agricultural technological innovation 
and adoption due to geographical and economic factors. Consequently, 
their levels of technological progress are comparatively lower. In terms 
of grain functional areas, the main grain-producing areas have the 
highest average value of grain TC, followed by the main marketing 
areas and the balance of production and marketing areas. The primary 
food-producing regions typically exhibit a higher ratio of food 

cultivation output to gross domestic product (GDP) compared to 
other regions. As income from food cultivation represents a significant 
source of revenue for farmers in these regions, there is a greater focus 
on activities related to food cultivation, including agricultural 
technology research and development, as well as the promotion and 
adoption of new agricultural machinery and equipment. Consequently, 
the main food-producing and marketing regions, as well as the 
balance-of-production and marketing regions, exhibit a higher level 
of technological progress.

Table 8 illustrates that the overall grain EC growth in counties and 
that of each significant region exhibit a cyclical pattern, characterised 
by an upward-declining fluctuation. This pattern reflects the relatively 
low level of technological efficiency in grain production within China’s 
counties, which has hindered the improvement of FTFP. However, 
beginning in 2016, the grain EC growth in counties exhibited an 
upward trend with fluctuations, indicating that in recent years, 
advancements in management knowledge and planting experience, 

TABLE 7 Evolution of county food TC trends.

Timing County 
overall

Eastern 
counties

Central 
counties

Western 
counties

Major food 
producing 

area

Food 
production 

and marketing 
balance area

Major food 
marketing 

area

2010 1.1018 1.1198 1.1054 1.0725 1.1126 1.0837 1.1150

2011 1.1729 1.1946 1.1764 1.1388 1.1856 1.1529 1.1831

2012 1.1899 1.2100 1.1974 1.1509 1.2059 1.1656 1.1986

2013 1.2327 1.2404 1.2403 1.2095 1.2487 1.2138 1.2203

2014 1.1851 1.1972 1.1941 1.1539 1.2053 1.1601 1.1744

2015 1.2772 1.2595 1.2759 1.3023 1.2751 1.2944 1.2215

2016 1.1942 1.1601 1.1859 1.2526 1.1777 1.2358 1.1203

2017 1.2532 1.2575 1.2451 1.2618 1.2589 1.2491 1.2389

2018 1.1582 1.1371 1.1634 1.1764 1.1611 1.1617 1.1291

2019 1.3638 1.4151 1.3564 1.3105 1.4003 1.2912 1.4508

average 1.2129 1.2191 1.2140 1.2029 1.2231 1.2008 1.2052

TABLE 8 Evolution of county food EC trends.

Timing County 
overall

Eastern 
counties

Central 
counties

Western 
counties

Major food 
producing 

area

Food 
production 

and marketing 
balance area

Major food 
marketing 

area

2010 0.9623 0.9567 0.9507 0.9897 0.9695 0.9709 0.8897

2011 0.9333 0.9686 0.9305 0.8929 0.9764 0.8913 0.8663

2012 0.9363 0.9572 0.9433 0.8972 0.9771 0.8974 0.8693

2013 0.9410 0.9419 0.9594 0.9078 0.9876 0.9065 0.8251

2014 0.9608 0.9638 0.9610 0.9566 0.9810 0.9518 0.8875

2015 0.9266 0.9342 0.9430 0.8881 0.9575 0.8973 0.8749

2016 1.0124 1.0434 1.0279 0.9455 1.0476 0.9718 0.9819

2017 0.9821 0.9883 0.9947 0.9521 0.9996 0.9980 0.8261

2018 1.0485 1.0822 1.0598 0.9855 1.0806 1.0318 0.9415

2019 1.0182 1.0100 1.0506 0.9723 1.0660 0.9982 0.8394

average 0.9721 0.9846 0.9821 0.9388 1.0043 0.9515 0.8802
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TABLE 10 Intra-group Gini coefficients by geographic region.

Timing FTFP Technological progress Technical efficiency

Eastern 
county

Central 
county

Western 
county

Eastern 
county

Central 
county

Western 
county

Eastern 
county

Central 
county

Western 
county

2010 0.0740 0.1119 0.1027 0.0787 0.1175 0.1043 0.0144 0.0208 0.0182

2011 0.1210 0.1450 0.1241 0.1189 0.1454 0.1235 0.0027 0.0055 0.0040

2012 0.1240 0.1495 0.1711 0.1214 0.1489 0.1702 0.0077 0.0077 0.0072

2013 0.1442 0.1877 0.2093 0.1450 0.1897 0.2098 0.0089 0.0152 0.0118

2014 0.1669 0.1861 0.2343 0.1656 0.1870 0.2340 0.0049 0.0097 0.0075

2015 0.1741 0.1808 0.2920 0.1713 0.1806 0.2917 0.0048 0.0091 0.0065

2016 0.1916 0.1863 0.3042 0.2204 0.1872 0.3043 0.0049 0.0097 0.0075

2017 0.2579 0.1793 0.2608 0.2562 0.1800 0.2613 0.0052 0.0094 0.0068

2018 0.2616 0.1716 0.2891 0.2487 0.1687 0.2895 0.0189 0.0236 0.0145

2019 0.2666 0.2000 0.2648 0.2555 0.1977 0.2642 0.0164 0.0211 0.0119

average 0.1782 0.1698 0.2252 0.1782 0.1703 0.2253 0.0089 0.0132 0.0096

facilitated by the application of agricultural socialization services and 
agricultural production trusteeship, have been contributing 
continuously to the grain cultivation industry in counties. 
Consequently, the supportive role of FTFP growth in counties has 
gradually emerged. In contrast, the technical efficiency value of the 
principal grain marketing areas is the lowest. There are several 
potential explanations for this phenomenon. Firstly, the main grain 
marketing areas are predominantly comprised of economically 
developed regions along the eastern coast, such as Zhejiang. These 
regions have a dominant industrial structure in the secondary and 
tertiary sectors, with a relatively low percentage of agricultural output 
value in GDP. Consequently, the grain cultivation industry is 
undervalued in these areas. Furthermore, the main marketing areas 
have a high level of urbanization and industrialization, which has 
resulted in a significant transfer of the rural labor force from 
agricultural employment to non-agricultural sectors. This shift results 
in a decline in the levels of human capital in rural areas and an aging 
of the labor force, which in turn leads to a continuous decline in the 
technical efficiency of food production.

Secondly, there is a notable shift towards a “non-food” agricultural 
cultivation structure in the primary grain marketing regions. The high 
levels of urbanization and population concentration in these areas 
result in an increased demand for cash crops such as green fruits and 
vegetables. The high levels of urbanization and population 
concentration in these areas result in increased demand for cash crops 
such as green fruits and vegetables, thereby driving structural 
adjustments in the agricultural industry. As the income generated 
from cash crops is significantly higher than that from grain crops, 
farmers who are rational in their decision-making, when faced with a 
decline in agricultural labor and land resources and an increase in 
prices, adjust the internal planting structure by increasing the planting 
area of cash crops and reducing the area of grain crops. This reduction 
in the area dedicated to food crops is intended to generate higher 
agricultural operating income while simultaneously reducing factor 
inputs in the food cultivation industry. Consequently, the food 
cultivation industry becomes increasingly marginalized, impeding the 
improvement of technical efficiency in food production.

3.3 Analysis of regional differences in 
county FTFP growth based on the Gini 
coefficient

Table  9 presents the Gini coefficients for county FTFP and its 
decomposition terms from 2010 to 2019. The analysis demonstrates 
that both the overall Gini coefficients for county FTFP and technical 
progress demonstrate a consistent upward trend over the examination 
period. Conversely, technical efficiency evinces a cyclical pattern, 
typified by a “downward-rising” cycle. It is noteworthy that there are 
considerable structural discrepancies between the overall Gini 
coefficients for county FTFP and its decomposition terms. 
Furthermore, the overall discrepancy in county food technical progress 
is markedly greater than that observed in technical efficiency. This 
finding indicates that regional disparities in county FTFP growth are 
predominantly influenced by variations in regional technical progress.

Table  10 presents the intra-group Gini coefficients for county 
FTFP and its decomposition terms within the three major geographic 

TABLE 9 Overall Gini coefficient for county FTFP.

Timing FTFP Technological 
progress

Technical 
efficiency

2010 0.0981 0.1025 0.0183

2011 0.1331 0.1325 0.0042

2012 0.1481 0.1470 0.0077

2013 0.1830 0.1843 0.0126

2014 0.1984 0.1986 0.0077

2015 0.2192 0.2187 0.0071

2016 0.2285 0.2288 0.0076

2017 0.2307 0.2308 0.0074

2018 0.2358 0.2315 0.0200

2019 0.2426 0.2389 0.0175

average 0.1918 0.1914 0.0110
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regions. Upon examination of the longitudinal dynamics, it becomes 
evident that the Gini coefficients for FTFP and technological progress 
in the eastern counties exhibit an increasing trend. Conversely, in the 
central and western regions, these coefficients exhibit an increase from 
2010 to 2016, followed by a decrease from 2017 to 2019. This indicates 
that the discrepancies in FTFP and technological progress within the 
eastern regions continue to widen, while the disparities within the 
central and western regions are gradually diminishing. When 
comparing horizontally, the Gini coefficients for FTFP and technical 
progress in western counties are found to be higher than those in the 
east and central regions, suggesting a higher degree of imbalance in 
food production and a “polarization effect” in the west. Nevertheless, 
the Gini coefficients for technical efficiency across disparate 
geographic regions are relatively modest, suggesting that the 
divergence in technical efficiency is not pronounced across these 
regions. In conclusion, it is imperative to enhance the spatial 
coordination and linkage mechanisms among different geographical 
regions and counties within the region.

Table 11 presents the intra-group Gini coefficients of county FTFP 
and the decomposition terms for various food functional areas. When 
a vertical dynamic comparison is undertaken, the Gini coefficient of 
county FTFP is observed to demonstrate an upward trajectory within 
the primary production area. However, a cyclical pattern is observed 
in the production and marketing balance area and the main marketing 
area, with fluctuations in the overall trend remaining relatively stable. 
The Gini coefficients of county food technological progress 
demonstrate a fluctuating trend in different functional areas, with a 
relatively stable fluctuation amplitude. Furthermore, the Gini 
coefficients of county food technology progress also exhibit a “rising-
declining-rising” trend in different functional areas. It is noteworthy 
that the Gini coefficient of technical efficiency in different food 
functional areas experiences cyclical fluctuations of “down-up,” with 
some years exhibiting significant volatility. A horizontal comparison 
of the Gini coefficients of county FTFP and technical progress in the 
investigated period reveals that the Balance of Production and 
Marketing Area exhibits the greatest difference in terms of the other 
two areas, namely the Main Producing Area and the Main Marketing 
Area. This indicates that the greatest discrepancy between county 
FTFP and technical progress can be  observed in the Balance of 
Production and Marketing Area, whereas the Gini coefficients of 
technical efficiency are typically smaller. In general, the differences 
between counties within different food functional zones with regard 
to FTFP and its decomposition terms are on the rise. The most 
pronounced intra-group differences are observed in the main 
production and marketing balance zones.

4 Analysis of drivers of county FTFP 
growth

4.1 Drivers and variable selection

This paper examines the impact of county financial deepening 
(finas), financial self-sufficiency (govz), population density (popu), 
farmers’ income level (income), economic development level (pgdp), 
and regional industrial structure (indust) on the FTFP. The variables 
selected and described below are as follows:T
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 • The level of county financial deepening is measured by the county 
financial correlation ratio indicator, which is defined as the ratio 
of financial institution loans to GDP in each county area. The 
modern food production mode, driven by TFP, places greater 
emphasis on the contribution of various factors, in addition to 
traditional factor inputs, to the growth of food output. These 
include agricultural scientific and technological progress, the 
optimization of the factor allocation structure, the quality of 
factors, and so forth (Gautam and Yu, 2015). Furthermore, the 
process of scientific and technological research and development, 
as well as the rational allocation of factors and numerous other 
economic links, cannot be dissociated from the financial support 
of financial capital. Consequently, the level of financial deepening 
in the county area is positively correlated with the FTFP.

 • The fiscal self-sufficiency of a government is gauged by the ratio 
of its general budget revenues to its general budget expenditures. 
A higher fiscal self-sufficiency of a government is indicative of 
greater financial self-sufficiency, which in turn implies stronger 
local economic strength, greater government “self-blood-
creation” ability, and potentially higher government investment 
in the field of agricultural production. Consequently, the fiscal 
self-sufficiency of a government may have a positive impact on 
the FTFP.

 • It is possible that there may be a negative correlation between 
population density and FTFP. This is because, as the population 
density increases, the land area per capita decreases, and the land 
parcels become smaller. Consequently, the characteristics of the 
area become less conducive to food production, and it becomes 
more challenging to improve the level of food yields through the 
economy of scale. The population density of a county is quantified 
by dividing the county’s total population by its administrative area.

 • The income level of farmers (expressed in terms of disposable 
income of rural residents) is related to their incentive to grow 
food and investment capacity. A higher level of farmers’ income 
increases the investment of agricultural capital in the process of 
food production and the adoption of advanced agricultural 
production technology. This, in turn, positively affects the growth 
rate of FTFP. Nevertheless, at present, the proportion of farmers’ 
income derived from wages has been on the rise, while that 
derived from agricultural production has been on the decline. 
This shift in income sources will inevitably result in a reduction 
in farmers’ capital investment in food cultivation. Such a 
reduction will be  detrimental to the application of advanced 
agricultural production technology and production methods, 
and will have a negative impact on the FTFP growth rate. 
Consequently, the relationship between the impact of farmers’ 
income and FTFP is uncertain in theory.

 • The level of economic development is quantified by the gross 
domestic product (GDP) per capita. As economic development 
progresses, the transfer of non-agricultural employment from the 
agricultural labor force with a high level of human capital 
becomes increasingly pronounced. This transfer, however, has the 
unintended consequence of reducing the quality of the labor 
force in the food planting industry. Consequently, this is not 
conducive to the growth of FTFP. Concurrently, the higher the 
level of economic development, the greater the agricultural 
capital investment, which in turn stimulates agricultural 
technology progress, thereby promoting FTFP growth. 

Consequently, the relationship between the impact of economic 
development and FTFP is uncertain in theory.

 • The regional industrial structure plays a pivotal role in 
determining the quality of economic development and the 
strength of the resources received. The development of the 
non-agricultural sector is conducive to the deepening of the 
agricultural capital, but if the relationship between agriculture 
and industry, and urban–rural relations is improperly dealt with, 
it will not be  conducive to the “three rural” industry. In this 
paper, the proportion of the added value of the secondary 
industry and the tertiary industry in the GDP of a county is 
employed as a metric for gauging the alterations in the industrial 
structure of the county.

4.2 Empirical analysis

4.2.1 Smoothness testing
To guarantee the accuracy of the estimated parameters in the 

model and circumvent the phenomenon of “pseudo-regression,” it is 
standard practice to assess the degree of smoothness exhibited by 
panel data series prior to conducting regression analysis. This entails 
evaluating whether the panel data exhibit smoothness through unit 
root tests. There are two principal types of unit root tests: the LLC test 
and the Breitung method for homogeneous panel hypotheses, and the 
IPS, ADF-Fisher, and PP-Fisher methods for heterogeneous panel 
hypotheses. In order to ensure the robustness and persuasiveness of 
the results, this paper employs a number of different unit root tests, 
including the LLC test, the HT test, the Fisher-ADF test, and the 
Fisher-PP test. If the variables fail to reject the null hypothesis of the 
existence of a unit root in two or more tests, it can be concluded that 
the series is smooth. Conversely, if the variables are rejected, it 
indicates instability. The results of the tests are presented in Table 12. 
The table indicates that all variables pass the LLC test and Fisher-ADF 
test, while the majority of variables also pass the HT test and Fisher-PP 
test. Consequently, it can be concluded that all variables are stationary 
and can be subjected to regression analysis.

4.2.2 Empirical tests of drivers
This paper employs a random effects model along with a two-way 

fixed effects model (Two-way FE) for estimation. The optimal 
estimation model is determined through the application of the 
Hausman test. To mitigate the influence of data outliers on the 
regression results, the shrinking-tail method is employed prior to 
conducting the benchmark regression. The corresponding estimation 
results are presented in Table 13. It is observed that the Hausman test 
rejects the original hypothesis for all regression equations at a 
significance level of 5%. This indicates that the estimation results 
obtained from the two-way fixed effects model outperform those of 
the random effects model. Consequently, the analysis primarily 
focuses on the estimation results derived from the two-way fixed 
effects model.

As demonstrated by columns (2), (4), and (5) of Table 13, county 
financial deepening has a positive and significant impact on FTFP and 
technological progress at a 1% significance level. This indicates that 
county financial deepening exerts a considerable impact on FTFP and 
technological progress. Nevertheless, the estimation of technological 
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efficiency is not significant, indicating that the impact of county 
financial deepening on FTFP primarily originates from its influence 
on food production technological progress rather than technical 
efficiency in food production. In general, financial savings in county 
areas serve as a crucial source of funds for agricultural technology 

innovation and technological advancement. Historically, rural areas 
in China’s counties have faced common financial constraints and 
interest rate control issues, which have constrained social savings 
growth. The implementation of interest rate control policies has 
resulted in the suppression of deposit interest rates in financial 
institutions, which has in turn hindered the efficiency with which 
county residents’ income is transformed into social savings. As 
financial reform progresses in counties, the government is gradually 
relaxing its interest rate control policies. The liberalization of interest 
rates in response to market forces is conducive to the establishment of 
equilibrium interest rates within the county’s financial market. 
Consequently, there has been a considerable increase in the propensity 
to save among residents and the overall amount of regional savings, 
which has resulted in an expansion of the pool of credit funds within 
the county’s financial system. Consequently, this enhances the supply 
of rural finance and credit, thereby facilitating agricultural 
technological innovation, transformation, and the acquisition of 
advanced agricultural machinery and equipment by agricultural 
entities. In conclusion, these financial support measures contribute to 
the growth of FTFP.

As illustrated in Table  13, there is a discernible correlation 
between the financial self-sufficiency rate and both FTFP and 
technological progress. Although the coefficient of food technical 
efficiency is positive, it did not meet the criteria for statistical 
significance. This indicates that the fiscal self-sufficiency variable 
exerts a significant influence on food production, particularly in terms 
of technical progress. A higher financial self-sufficiency rate is 
indicative of enhanced local economic strength and a government’s 
capacity to invest more in food production in accordance with the 
strategy of ensuring food security. In conclusion, the financial self-
sufficiency rate allows for the expansion of FTFP.

As illustrated in Table  13, the population density variable is 
defined as the number of individuals per unit area. The population 

TABLE 12 Smoothness test results for variable data.

LLC HT Fisher-
ADF

Fisher-PP

GTFP
−19.7111*** 

(0.0000)

−15.8971*** 

(0.0000)

2328.5492*** 

(0.0000)

2991.8271*** 

(0.0000)

gec
−15.8294*** 

(0.0000)

−14.3044*** 

(0.0000)

2495.6069*** 

(0.0000)

3574.7831*** 

(0.0000)

Gtc
−2.5049*** 

(0.0000)

−47.8490*** 

(0.0000)

2284.5087*** 

(0.0000)

6513.9601*** 

(0.0000)

finas
−9.7418*** 

(0.0000)

1.8444 

(0.9674)

1913.8592*** 

(0.0000)

1614.6836*** 

(0.0024)

govz
−88.0414*** 

(0.0000)

−18.8398*** 

(0.0000)

2404.2829*** 

(0.0000)

2726.1008*** 

(0.0000)

popu
−110*** 

(0.0000)

−12.8483*** 

(0.0000)

2248.6925*** 

(0.0000)

2137.3719 *** 

(0.0000)

Income
−730*** 

(0.0000)

8.6828 

(1.0000)

1553.4296*** 

(0.0376)

1979.5503*** 

(0.0000)

pgdp
−5.9699*** 

(0.0000)

6.3165 

(1.0000)

1786.6603*** 

(0.0000)

1451.8857 

(0.5402)

industs
−7.2877*** 

(0.0000)

−6.6372*** 

(0.0000)

1947.9784*** 

(0.0000)

2534.3272*** 

(0.0000)

1 The HT test reports results as Z-values, while the rest of the tests report results as statistical 
values, with statistical. Test p-values in parentheses; 2 T or Z statistics p < 10, <5, and < 1% are 
marked with *, **, and ***, respectively.

TABLE 13 Analysis of Drivers of County FTFP.

Equation (1) (2) (3) (4) (5) (6)

Method RE Two-way FE RE Two-way FE RE Two-way FE

Variable FTFP TC TE

finas 0.0601*** (4.20) 0.0503*** (3.15) 0.1038*** (7.42) 0.0495*** (3.27) −0.0284*** (−13.79) 0.0016 (0.88)

govz 0.0137 (0.35) 0.0924** (1.98) −0.0609 (−1.60) 0.0917** (2.07) 0.1017*** (23.45) 0.0082 (1.58)

popu −3.0473*** (−6.98) −2.2881*** (−2.97) −3.0187*** (−7.36) −2.3214*** (−3.18) 0.0321 (1.07) 0.0628 (0.73)

Income 0.0022 (0.18) −0.0252 (−1.39) 0.1053*** (9.00) −0.0282* (−1.65) −0.0777*** (−38.24) 0.0020 (1.01)

pgdp 0.0010 (0.33) −0.0078** (−2.15) 0.0031 (1.01) −0.0090*** (−2.63) 0.0025*** (7.28) 0.0004 (0.87)

industs −0.1949*** (−2.81) −0.1890** (−2.24) −0.0773 (−1.15) −0.2580*** (−3.23) −0.0230*** (−3.36) 0.0431*** (4.61)

cons 1.3815*** (25.07) 1.2965*** (18.30) 1.0589*** (20.00) 1.1393*** (16.98) 1.1805*** (223.99) 1.2112*** (154.13)

Individual fixed No Yes No Yes No Yes

Time fixed No Yes No Yes No Yes

Hausman p-value 0.000 0.000 0.000

F-test
83.86*** 22.51*** 517.35*** 93.60*** 2837.82*** 4588.74***

Wald chi2

R-squared 0.007 0.049 0.073 0.177 0.480 0.913

Sample size 7290 7290 7290 7290 7290 7290

1 ***, ** and * denote 1, 5 and 10% significance levels, respectively; 2 Z-values or T-values of the estimated parameters are in parentheses.
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density variable has a significant negative impact on both FTFP and 
technological progress at the 1% level of significance. This indicates 
that a higher regional population density is an impediment to the 
growth of FTFP. As population density increases, the characteristics 
of “many people and little land, land parcels are scattered” become 
more prominent in the region. These characteristics are not conducive 
to large-scale food cultivation, thereby impeding the realization of 
economies of scale. Conversely, regions with low population density 
may facilitate the growth of FTFP by prioritizing the scale and 
intensification of grain cultivation.

According to Table 13, it can be seen that the coefficient of the 
farmers’ income variable on FTFP and technological progress is 
negative. Additionally, the coefficient of technological progress in food 
production passes the significance test at a 10% level. These findings 
suggest that an increase in farmers’ income leads to a reduction in 
FTFP. Currently, farmers’ wage income has become the primary 
component of their income structure, while income from agricultural 
production has declined. Consequently, farmers’ capital investment in 
food cultivation has decreased, impeding the adoption of advanced 
agricultural production technology and methods. This situation has a 
negative effect on FTFP and technological progress.

Table 13 indicates that the level of regional economic development 
exerts a net substitution effect on the impact of FTFP and technological 
progress, which aligns with the direction of the farmers’ income 
variable. A higher level of regional economic development is 
associated with a faster urbanization process and increased 
opportunities for farmers to earn non-farm income. This dynamic 
results in a continuous decline in the quantity and quality of the labor 
force engaged in food cultivation, as well as low profitability and high-
risk attributes associated with food cultivation. Consequently, it 
becomes challenging to attract industrial and commercial capital to 
rural areas. In light of the constraints on labor and capital in food 
cultivation, agricultural businesses tend to adopt relatively 
unsophisticated management practices, which impede the growth 
of FTFP.

As illustrated in Table 13, the variable of industrial structure exerts 
a pronounced negative influence on FTFP, technological progress, and 
technical efficiency. The process of upgrading the regional industrial 
structure has the effect of further weakening the food plantation 
industry. As the production efficiency of the industrial and commercial 
sectors surpasses that of the agricultural sector, factors such as capital 
and talent are drawn to the non-agricultural sector, where higher 
returns are anticipated. Consequently, this results in a reduction in 
capital input for the food plantation industry, which ultimately has a 
negative impact on the growth of FTFP.

4.3 Discussion of environmental factors

The growth of FTFP is closely related to a number of factors, 
which, in addition to the economic system factors mentioned above, 
are influenced by climate, the state of arable land, water availability, 
and a number of other environmental factors. It is important to 
acknowledge that the lack of data on climate, natural conditions, water 
resources, and other pertinent factors at the county level in China 
presents a significant challenge in empirically analyzing the impact of 
these environmental factors on the FTFP in counties. Next, we will 

theorize the mechanisms by which these environmental factors 
affect FTFP.

The high degree of dependence of food production processes on 
climatic resources renders them susceptible to the effects of climate 
change. An increase in temperature results in a greater caloric 
requirement for food production, necessitating longer crop growing 
periods. Additionally, there is a northward shift in cropping system 
boundaries, with one- or two-crop areas being gradually replaced by 
two- or three-crop areas, which results in an increase in grain yields 
(Yang et al., 2010). However, extreme temperature changes can result 
in an increase in the frequency of disasters such as high temperatures 
and droughts, which directly impact the growth and production of 
food crops (Yang et al., 2022). Furthermore, the occurrence of extreme 
high temperatures has been observed to result in an increase in the 
prevalence and severity of pests and diseases, which in turn has been 
linked to a reduction in the viability of food crops, thereby impeding 
the growth of FTFP.

Cropland fragmentation refers to the spatial division of cropland 
owned by farmers, which is of different sizes, and the utilization of 
cropland is dispersed and disordered. In the case of fine fragmentation, 
the existence of ridges not only results in the waste of arable land 
resources (Chen et  al., 2022), but also causes inconvenience with 
regard to field management. Furthermore, it restricts the large-scale 
operation of farmers and hinders the use of factors of production, 
such as agricultural mechanization, and the construction of farmland 
infrastructure (Zhao et al., 2023). Consequently, the fine fragmentation 
of arable land will result in a reduction in the efficiency with which 
agricultural production factors are allocated and will also lead to a 
decline in the technical efficiency of agricultural production.

The scarcity of water represents a significant constraint on food 
crop production. The scarcity of water can impede the growth and 
development of plants, affecting their photosynthetic processes and 
biomass accumulation (Gautam and Yu, 2015). This can ultimately 
result in a reduction in yields or even the extinction of food crops, 
which is detrimental to the growth of FTFP. In addition, the natural 
terrain is also a significant factor influencing the FTFP. Flat terrain 
provides optimal conditions for the implementation of mechanized 
farming and irrigation systems, thereby enhancing production 
efficiency. In contrast, complex and variable terrain may present 
challenges to farming operations, impede the implementation of 
technology, and diminish overall efficiency. Concurrently, topography 
serves to delineate regional climatic attributes and hydrological 
conditions, which in turn influence crop growth cycles and yields. 
These factors, in conjunction with the economic factors previously 
discussed, exert an influence on the overall FTFP.

5 Conclusions and policy implications

5.1 Conclusions and discussions

In this paper, the three-stage DEA-Malmquist productivity index 
model was employed to assess the FTFP in Chinese counties from 
2009 to 2019. Subsequently, the Gini coefficient method with a fixed 
panel efficiency model was utilized to investigate the spatio-temporal 
divergence of FTFP growth in counties and its underlying drivers. The 
study’s principal conclusions are as follows:
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Firstly, the county FTFP demonstrates a fluctuating upward trend 
during the period under examination, with an average annual growth 
rate of 2.43%. This is comparable to the findings of the studies 
conducted by Wang et al. (2020) and Zheng and Cheng (2021) for the 
corresponding period. However, the average annual growth rates of 
FTFP and TC estimated in this paper are lower than the average 
annual growth rates of agricultural TFP and TC estimated in existing 
studies (Gautam and Yu, 2015; Gong, 2018; Yin et al., 2022). Over the 
past two decades, China has witnessed a surge in technological 
advancement and output growth in livestock, aquaculture, and 
horticultural plantations, including vegetables, fruits, flowers, and 
other crops. In contrast, technological advancement and output 
growth in traditional grain farming have exhibited a slower pace of 
advancement relative to these other sectors. Accordingly, the TFP 
growth rate of the food plantation sector under examination is lower 
than the TFP growth rate of agriculture estimated by the majority of 
existing studies. This finding aligns with both theoretical expectations 
and realistic observations. Moreover, the findings of this study exceed 
the mean annual growth rate of ecological total factor productivity for 
food, as determined by Tian et al. (2024), which was 0.98% over the 
period 2012–2020. This is due to the fact that the calculation of 
ecological total factor productivity takes into account not only the 
inputs and desired outputs inherent to the production process, but 
also non-desired outputs, such as environmental pollution and 
resource waste. These non-desired outputs serve to increase 
production costs and reduce production efficiency. In contrast, total 
factor productivity primarily measures production efficiency without 
accounting for environmental costs. Consequently, the value of 
ecological total factor productivity is typically lower than that of TFP 
when environmental factors are taken into account.

Secondly, this paper also identifies that the average annual growth 
rate of county FTFP in different regions is uneven. The highest average 
annual growth rate of county FTFP is observed in the eastern region and 
the main grain-producing region, at 2.75 and 3.04%, respectively. In 
contrast, the western region and the main grain marketing area exhibited 
the lowest rates, at 1.44 and 1.23%, respectively. Furthermore, the Gini 
coefficients of county total factor productivity and technological progress 
demonstrate an upward trajectory throughout the examined sample 
period. This indicates that the discrepancy between food total factor 
productivity and technological progress is still expanding among different 
counties. This finding aligns with the conclusions of Yin et al. (2022), who 
analyzed panel data from 1,173 counties in China from 2000 to 2017 and 
reported a widening trend in regional differences in agricultural TFP 
growth. In addition, the county FTFP growth is primarily driven by 
changes in technological progress, while the core driving role of technical 
efficiency is not effectively played. This is also consistent with the findings 
of Yue et al. (2022) and Min et al. (2023) that FTFP changes are mainly 
influenced by the technical progress index.

Thirdly, with regard to the driving factors, county financial 
deepening and financial self-sufficiency exert a considerable positive 
influence on FTFP, primarily through their impact on technological 
progress. This is consistent with the findings of Liu Y. et al. (2023), which 
indicate that county financial development acts with FTFP through the 
promotion of technological progress. The level of county population 
density, the degree of economic development, the income level of 
farmers, and the industrial structure all exert a significant negative 
influence on county FTFP and technological progress. This is not 
consistent with the findings of Liu and Xie (2016), who found that 

farmers’ income and financial subsidies do not have a significant impact 
on food production. Over the course of the past four decades, the 
structure of farmers’ income has undergone a significant transformation, 
shifting from a predominantly agricultural income base to a primarily 
wage-based income stream. This shift has also witnessed a decline in the 
proportion of income derived from grain cultivation, and it has 
constrained farmers’ capacity to invest in food production. Consequently, 
the growth of food production efficiency is not influenced by farmers’ 
income, and may even be hindered by it, which aligns with the current 
state of China’s agricultural economy. Furthermore, the fiscal subsidy 
effect may be offset by the rising prices of production materials, resulting 
in a negligible impact. However, this paper’s research indicates that the 
fiscal input can indirectly influence the growth of FTFP by promoting 
the advancement of agricultural technology.

In addition to the economic factors previously discussed, food 
productivity growth is also influenced by a number of environmental 
factors, including climate, the status of arable land, and the availability 
of water sources. This is also consistent with the findings of 
Mohammadi et al. (2023), Rezaei et al. (2023), and Vadez et al. (2024).

5.2 Policy implications

In light of the aforementioned research conclusions, the following 
insights can be derived:

Currently, there are discernible disparities in FTFP growth across 
counties in disparate geographic regions and grain functional areas in 
China. It is thus imperative to devise differentiated grain industry 
development strategies. On the one hand, it is imperative to vigorously 
develop production organization modes such as cross-area operation 
of agricultural machinery and agricultural socialized services. This 
will effectively improve the county grain production efficiency 
differences between regions through the common sharing of 
resources, specialized division of labor and collaboration, and 
integrated construction of infrastructure between different counties. 
On the other hand, the strategic positioning and development 
direction of the grain industry in each county must be fully defined 
according to the characteristics of the industrial structure, 
development mode, and geographical characteristics of each county. 
This is essential for the precise design and implementation of urban 
and rural factor mobility, factor reconfiguration, and food-related 
industrial layout, as well as the formation of the staggered development 
and complementary advantages of the grain industry strategy.

From the viewpoint of driving factors, financial deepening and 
financial self-sufficiency in counties significantly and positively affect 
FTFP growth by promoting technological progress. Consequently, it 
is imperative that counties cultivate and develop novel technologies 
and innovative production methods that are compatible with food 
production. This will reinforce the core driving function of 
agricultural technological innovation, transformation, and the 
application of achievements, thereby promoting the continuous 
improvement of county FTFP. Concurrently, it is imperative to persist 
in the county’s financial market-oriented reform, prioritize the 
construction of a robust county financial ecology, and foster a fair, 
open, and secure financial environment. Concurrently, it is 
imperative to reinforce the notion that county financial institutions 
must cater to the advancement of agriculture and rural regions. 
Furthermore, it is essential to expedite the growth of inclusive finance 
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within the county and enhance the accessibility of credit for rural 
customers with limited financial resources.

The level of population density in a county, the state of economic 
development, the income level of farmers, and the structure of the 
industrial sector have a considerable negative impact on the FTFP and 
technological progress of the county in question. Consequently, it is 
imperative to hasten the urbanization of counties, attract the remaining 
rural population to work and settle in cities, optimize the allocation of 
factors and the structure of the agricultural industry, and facilitate the 
transfer of rural land and the implementation of large-scale operations. 
Furthermore, while underscoring the necessity of industrial restructuring 
and economic growth, it is imperative to facilitate the transfer of 
sophisticated production techniques and industrial and commercial 
capital from the county’s industrial sector to rural areas. The promotion 
of agriculture through industry will facilitate the deepening of 
agricultural capital and the overall improvement of agricultural TFP.
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