AUTHOR=Bansal Sangeeta , Sanyal Debankur , Graham Christopher , Gonzalez Hernandez Jose L. , Menendez Hector , Kumar Sandeep TITLE=Impacts of stocking densities on soil biochemical and microbial properties in a mixed-grass prairie ecosystem at two landscape positions JOURNAL=Frontiers in Sustainable Food Systems VOLUME=8 YEAR=2024 URL=https://www.frontiersin.org/journals/sustainable-food-systems/articles/10.3389/fsufs.2024.1254973 DOI=10.3389/fsufs.2024.1254973 ISSN=2571-581X ABSTRACT=

Grazing management is a critical land-use requirement that facilitates the preservation of plant community composition, soil properties and environmental quality. Grazing density of livestock has a significant impact on soil health, and there is a need to study the interactions of grazing densities and topographical positions influencing soil biochemical and microbial properties. This study was conducted at Cottonwood Field Station in Philip, South Dakota to assess the influence of more than 7 years of low, medium, and high grazing stocking densities (0.33, 0.41, 0.72 animal units/ac, respectively) at summit and footslope landscape positions on soil carbon (C) and nitrogen (N) fractions, microbial community composition, and enzymatic activities in a mixed-grass prairie ecosystem. Medium grazing density showed a 16% increase in soil N at the footslope compared with summit. Low grazing density significantly reduced microbial biomass C (~269 μg g−1 soil) and N (~26 μg g−1 soil) at summit compared with other grazing densities and landscape positions, except, the summit at high grazing density. Medium grazing density significantly enhanced hot-water extractable N by 21–23% at footslope compared with low grazing density at the footslope and high grazing density at the summit. Low grazing density increased urease (3.64 μg NH4+ g−1 soil h−1) at footslope than all other grazing densities and landscape positions. Low grazing density enhanced β-glucosidase by 75% than high grazing density; alkaline phosphatase was significantly greater by 60% at footslope than summit. High grazing density at the summit decreased total PLFA (mean 56.53 nmol g−1 soil) due to lower AM fungi, G (+), G (−) and actinomycetes biomass. Microbial stress indicators such as G (+)/G (−), saturated/unsaturated, monosaturated/polysaturated, GNeg stress revealed that high grazing density especially at summit position posed elevated physiological stressed conditions to the microbial community. Overall, long-term medium grazing density of 0.41 animal units/ac may enhance soil N, microbial composition, microbial biomass C and N, hot-water extractable C and N fractions, and reduce stress conditions for microbial community at both footslope as well as summit landscape positions. Moreover, long-term overgrazing of pastures, particularly at summit slopes, appears to inhibit microbial populations and degrade overall soil health.