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Introduction: Beta-glucan is one of the most important dietary fibers in cereal
grains, having a great impact on human health and food quality. Wheat and barley
are strategic crops and their fibers contribute toward their nutraceutical impact.
However, the health of the environment is also important to ensure sustainable
crop production. Hence the European decision makers have agreed to move
toward organic cropping and to reduce the use of mineral fertilizers. Environment
and agricultural management have a vast impact on the content of β-glucan in
cereal grains. To exploit the valuable properties of β-glucan, the knowledge of
factors increasing the amount of this component is crucial. We hypothesized that
annual weather conditions, nitrogen fertilization, and cropping system a�ect the
β-glucan amount in wheat and barley.

Methods: For this purpose, spring barley and winter wheat flour samples from
an 8-year-long period (2014-2021) were characterized. The experiment included
conventional and organic cropping systems with di�erent nitrogen rates between
0 and 150 kg ha−1. In addition, the variation of β-glucan content in di�erent
varieties was analyzed.

Results and discussion: The results showed that the content of β-glucan in barley
and wheat grains was a�ected mainly by weather conditions not by fertilization.
The latter findingmeans that the regulation of crop nutrition is not going to impact
dietary fiber content in our everyday food. Lower temperatures during tillering and
higher 1,000 kernel weight and test weight showed a positive correlation with β-
glucan content in barley grains, while precipitation during the grain filling period
had a negative correlation. Our findings suggest that β-glucan can be obtained
from low-input and organic systems as e�ciently as from fertilized treatments.
However, there is a need for adaptation strategies in industry, as β-glucan content
can vary from year to year.
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1 Introduction

Cereals are the most widely produced crops in the world, with multiple forms of
use. They are considered the major source of calories and protein in the diets of both
humans and livestock (Lafiandra et al., 2014). In Europe, in countries such as Germany,
Poland, and the Baltic countries, the routine diet is based on cereal grains, and the use
of cereal products is exclusively high (Lachman et al., 2012; Nogala-Kałucka et al., 2020).
At the same time as wheat has become the most important source of food, barley on the
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other hand has been mostly grown for animal feed and brewing
purposes. However, in recent years, the importance of barley grains
as a nutraceutical ingredient has increased because of their high
content of soluble fibers, especially as a rich source of β-glucan
(beta-glucan; Kayal and Nirmala, 2014). But when considering
that zero-waste production systems are what we are aiming for
in the near future we should try to valorize cereal crops beyond
their nutraceutical value. Considering barley the valorization of
its hulls has been a focus of much research (Martínez-Subirà
et al., 2021), but in addition the properties of cereal grain’s dietary
fibers have been studied extensively through the decades (Herforth
et al., 2019). Cereal crops are important sources of dietary fiber.
Arabinoxylans and β-glucans are primary components, accounting
for ∼70 and 20% of the total dietary fiber content of whole grain
wheat, respectively, and 20–70% of the total dietary fiber content in
barley grains, respectively (Prasadi and Joye, 2020). Paying more
attention to the content of β-glucan in cereal crops could help
to increase human dietary fiber consumption and alleviate the
problems related to their deficiency.

Cereal β-glucans are linear homopolysaccharides of D-
glucopyranosyl residues linked via β- (1–3) and β- (1–4) linkages
(Lazaridou and Biliaderis, 2007), mainly found in the endosperm
(75%) and aleurone layer (26%; Tiwari and Cummins, 2009; Mejía
et al., 2020). Among cereals, β-glucans can be found in barley,
oat, rye, and wheat (Maheshwari et al., 2017) with numeric values
ranging from 2.5 to 11.3% in barley, 2.2–7.8% in oat, 1.2–2.0% in
rye, and 0.4–1.4% in wheat (Lazaridou and Biliaderis, 2007). In
barley, β-glucans are located throughout the starchy endosperm
whereas in wheat the highest concentration is in the subaleurone
layer with little in the rest of the endosperm (Izydorczyk and
MacGregor, 2000; Lazaridou and Biliaderis, 2007).

Consumption of β-glucan revealed various positive effects
on human health including regulation of blood glucose levels,
and reduction of serum cholesterol, hypertension, and obesity
(Lazaridou and Biliaderis, 2007; El Khoury et al., 2012). In the
food industry, β-glucans are used as thickeners, texture enhancers,
stabilizers, and fat substitutes (Mejía et al., 2020). Therefore, foods
with dietary fibers such as β-glucans are considered healthier foods
with lower calories and are fat-free (Elleuch et al., 2011). The
importance of β-glucans for human health is supported also by the
health claim authorized by the European Commission stating that
barley β-glucans have been shown to lower blood cholesterol with
a daily intake of 3 g of barley β-glucans (European Commission,
2012).

Content of β-glucan in grains is affected by different cropping
systems (Tiwari and Cummins, 2009; Dickin et al., 2011). Nitrogen
(N) availability in the soil is the main factor influencing β-glucan
content in cereals (Güler, 2003b; Dvončová et al., 2010). It was
reported that mineral N fertilizers increase the β-glucan content
(Güler, 2003a; Noworolnik et al., 2014; Habiyaremye et al., 2021),
particularly when they are fertilized with 100 kg N ha−1 (for wheat)
and 80 kg N ha−1 (for barley; Güler, 2003a) regardless of the fact
that β-glucan location in the grain among compared cereal grains
is different (mostly in aleurone layer for wheat and endosperm for
barley; Izydorczyk and MacGregor, 2000; Lazaridou and Biliaderis,
2007). On the other hand, β-glucan content of rye, wheat, barley,
and oat obtained from organic farming was comparable with those
from conventional farming (Menkovska et al., 2017), indicating

that β-glucan content can be associated with grain size and yield
(Güler, 2003b).

Weather and environmental conditions including temperature
and precipitation are other factors affecting the content of β-
glucans (Andersson and Börjesdotter, 2011; Dickin et al., 2011).
Menkovska et al. (2017) stated that β-glucan content in oat grains
depended on precipitation during the grain filling period. Drought
stress decreases β-glucan concentration in barley grain (Coles et al.,
1991), while Güler (2003a,b) demonstrated also a negative effect
of increased levels of irrigation on barley β-glucan content. It has
been found that rainy and cool weather during the period of grain
establishment and flowering negatively affects β-glucan content in
grain (Ehrenbergerová et al., 2008), while dry and warm growing
conditions have a positive effect (Lazaridou and Biliaderis, 2007).

Genotype is another factor influencing the β-glucan content in
cereal grains (Güler, 2003a; Dickin et al., 2011; Noworolnik et al.,
2014; Choi et al., 2020; Habiyaremye et al., 2021). Waxy (high
amylopectin; no or low amylose) barley genotypes as well as hull-
less varieties have higher β-glucan content compared to genotypes
with high amylose starch and hulled varieties (Ehrenbergerová
et al., 2003; Izydorczyk and Dexter, 2008). Fan et al. (2009) found
in the pot experiment with oat no genotype effect on grain β-glucan
content, while Saastamoinen et al. (2004) stated that oat grain
β-glucan depends significantly on cultivar. Tiwari and Cummins
(2009) suggested that genotype is the most important factor in
determining β-glucan content and found that initial levels in the
grain genotype also play an important role in β-glucan levels at
grain harvest. Choi et al. (2020) has found genotypic differences for
barley β-glucan in interactions with year and location.

It is important to know whether β-glucan content in grains can
be changed through agronomic management and varietal choice in
field conditions and thereby develop action plans for plant breeding
programs toward increased β-glucan content in grains. This study
aimed to evaluate the effect of organic and mineral fertilizers on
β-glucan content in winter wheat and spring barley grains, as well
as to determine the impact of temperature and precipitation on β-
glucan over 8 years. We hypothesized that the content of β-glucan
in grains collected from intensively fertilized treatments is greater
than in grains from organic treatments and it depends on weather
conditions in specific growth stages. In addition, we characterized
the content of β-glucan with respect to genotype variation.

2 Materials and methods

2.1 Experimental setup

In this study, being a part of a larger field experiment
evaluating cropping systems’ effect on crop production, two cereal
grains, winter wheat and spring barley, were assessed based on
their β-glucan content. Winter wheat “Fredis” variety and spring
barley “Anni” variety grains were collected from 2014 to 2021
from the long-term field crop rotation experiment located at the
Estonian University of Life Sciences in Tartu County (Eerika field).
Experimental crop rotation consisting of barley (Hordeum vulgare

L.) with under-sown red clover, red clover (Trifolium pratense L.),
wheat (Triticum aestivum L.), pea (Pisum sativum L.), and potato
(Solanum tuberosum L.) in four replications was established on
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Stagnic Luvisol soil. All species were cultivated organically (Org0,
Org1, and Org2) and conventionally (N0, N1, N2, and N3) in
parallel, as described in detail earlier by Alaru et al. (2014) and
Keres et al. (2021). Organic treatments were organic control (Org0),
off-season cover crops as green manure (Org1), and off-season
cover crops with fully composted cattle manure (10 t ha−1 for
barley + 10 t ha−1 for wheat and 20 t ha−1 for potato; Org2).
Nitrogen amounts for barley and wheat in trial years were between
44 and 54 kg ha−1 depending on manure dry matter content.
Conventional treatments were control N0 (N0P0K0), minerally
(NH4NO3) fertilized N1 (N40−50P25K95), N2 (N80−100P25K95), and
N3 (N120−150P25K95). Lower N rates (N40, N80, N120) were used
for barley undersown with red clover, and higher rates (N50, N100,
N150) for wheat.

Samples for the genotype analysis were collected in 2021 from
the Estonian Crop Research Institute in Jõgeva County (50 km
north of Tartu; Jõgeva field), the breeding institution of cereal
grains. The soil type was Luvisol and fertilizer rates were N90P24K54

for spring barley and N151P36K75 for winter wheat. All studied
spring barley varieties (Maali, Grace, Planet, Feedway, Tuuli,
Breustar, Irina, Quench, Anneli, and Anni) were hulled two-row
grains listed on Estonian Plant Variety Register. Most winter wheat
varieties (Ada, Creator, Perenaise, Julie, Fredis, Kallas) are listed on
Estonian Plant Variety Register (except for “Širvinta,” which is an
Estonian heritage wheat grain).

After collection, all samples were milled [Perten Laboratory
Mill 3100 (Perten Instruments AB, Sweden)]. The level of β-
glucan in wheat (N = 179) and barley (N = 221) grains from
the crop rotation experiment and barley (N = 10) and wheat
(N = 7) varieties were determined using Mixed-linkage β-glucan
assay kit (Megazyme, Ireland) based on the method published by
Limberger-Bayer et al. (2014). This method is accepted by the
Association of Official Analytical Chemists International (AOACI;
Method 995.16) and the American Association of Cereal Chemists
International (AACCI; Method 32-23). In brief, samples (100mg)
were suspended and hydrated in a sodium phosphate buffer (pH
6.5), incubated with purified lichenase enzyme, and an aliquot
of filtrate was reacted with purified β-glucosidase enzymes. The
glucose product was assayed using an oxidase/peroxidase reagent.
The measurement of the content of β-glucan was performed in
wheat and barley parallel assays, respectively, using a Helios Omega
UV-Vis Spectrophotometer (Thermo Scientific) at 510 nm. The β-
glucan content was calculated in dry weights and values of each
sample were presented as mean± standard deviation.

2.2 Weather conditions during the
experiment

Air temperatures and precipitation during the study growing
periods, which were collected from a weather station near the trial
site, were fluctuating (Tables 1, 2). Tables represents the data from
January to December from 2014 to 2021. The period between 2014
and 2017 was relatively colder (with an average temperature of
13.1◦C) whereas the period between 2018 and 2021 was warmer
(with an average temperature of 14.5◦C). Precipitation was higher
in the period of 2014–2017 (an average of 322mm) when compared
with the period of 2018–2021 (an average of 276 mm).

2.3 Statistical analysis

All β-glucan measurements were performed in two replicates
and the results were expressed as means ± standard error. Results
were analyzed using one-way and factorial analysis of variance
(ANOVA), where factors were treated as fixed effects with the
statistical software package Statistica version 13 (TIBCO Software
Inc, USA). In case of significant (P < 0.05) differences, Fisher’s
least significant difference test (LSD post-hoc test) determined
the differences among means. Pearson’s correlation coefficient R
was calculated for measuring the strength of a linear association
between variables studied.

3 Results

3.1 Factors a�ecting the β-glucan content
in barley and wheat kernels

3.1.1 Year conditions
Of the two factors investigated in the Eerika field experiment,

only the year (weather) factor significantly influenced the β-glucan
content of barley and wheat grains (R= 0.64, p< 0.001; R= 0.62, p
< 0.001, respectively; Figures 1, 2). The proportion of variance was
90% for year and 2% for N treatment.

Mean β-glucan content of spring barley “Anni” over N
treatments in different trial years ranged between 3.74 and 5.60 g
100 g−1, whereas the same data for winter wheat “Fredis” were
0.40–0.57 100 g−1, respectively. It should be taken into account
that at this particular time there were two crop rotations, the first
in 2014–2017 and the second in 2018–2021. In general, the second
rotation was much warmer and the β-glucan content in the grains
was much higher for barley (4.41 and 5.12 g 100 g−1 for 2014–2017
and 2018–2021, respectively) and also for wheat (0.49 and 0.56 g
100 g−1 for 2014–2017 and 2018–2021, respectively).

The content of β-glucan of wheat correlated negatively with
the sum of precipitation in June and July (i.e., in the flowering
and grain filling period of wheat; Figure 3A) and positively with air
temperature in grain filling period (R=−0.23, p< 0.05; R=−0.35,
p < 0.01 and R = 0.28, p < 0.05, respectively). Barley “Anni” β-
glucan content correlated negatively with the sum of precipitation
in June (flowering stage of barley; R = 0.67, p < 0.001) and July
(grain filling period, R = 0.85, p < 0.001; Figure 3B). β-glucan
content of barley correlated also negatively with air temperature in
May (tillering and stem elongation stage of barley; R = 0.48, p <

0.01; Table 4).

3.1.2 Crop production system and N treatment
Data analysis of 8 years of results showed that the grain β-

glucan content of barley and wheat was not significantly influenced
by either crop production system or N treatments. Mean β-glucan
content of barley grains over trial years fluctuated in different N
treatments between 4.55 and 4.80 g 100 g−1 and in wheat from 0.51
to 0.56 g 100g−1.
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TABLE 1 Average air temperatures during the experimental period and their long-term averages.

Month Average air temperature per month, ◦C

2014 2015 2016 2017 2018 2019 2020 2021 1964–2021 average, ◦C

January −8.1 −1.9 −9.2 −3.4 −2.3 −6 2.5 −4.2 −5.4

February −0.3 −1 0.3 −2.9 −7.6 −0.3 1.1 −6.9 −5.3

March 2.2 2.6 0 1.4 −3.4 1.4 2.3 0.1 −1.2

April 6.5 5.4 6.1 3.4 7.2 7.7 4.8 5.3 5.0

May 12.0 10.3 14.0 10.4 16.0 11.4 9.5 10.9 11.4

June 13.4 14.2 15.9 14.0 15.9 18.6 18.4 19.8 15.4

July 19.4 15.7 17.9 16.0 20.8 16.4 16.3 22.2 17.4

August 16.7 17.0 16.1 16.7 18.8 16.7 16.8 15.8 16.0

September 12.1 12.6 12.3 12.2 14.3 11.8 13.8 10 11.1

October 5.2 4.6 4.1 5.2 7.4 7.1 8.9 7.6 5.8

November 1.4 3.6 −1 2.4 2.4 2.6 4.2 2.4 0.7

December −1.6 2.4 −0.3 0.2 −2.7 1.8 −0.7 −6.5 −3.1

TABLE 2 Monthly precipitation during the experimental period and their long-term averages.

Month Sum of precipitation per month, mm

2014 2015 2016 2017 2018 2019 2020 2021 1964–2021, mm

January 25.0 29.6 34.0 27.4 20.4 16.4 19.8 19.0 32.6

February 12.4 8.4 55.8 22.4 11.7 36.0 64.0 16.6 27.2

March 9.0 12.0 23.3 17.0 12.9 35.2 33.6 23.2 26.7

April 13.4 69.0 51.6 51.5 28.1 3.2 49.6 29.4 32.5

May 83.8 62.0 1.6 15.5 7.8 59.8 32.2 107.8 53.3

June 103.4 39.4 124.6 94.3 60.8 50.8 117.4 18.5 72.4

July 71.4 61.4 81.6 60.7 14.0 40.8 68.8 17.4 67.2

August 113.0 41.2 42.0 106.2 59.3 58.0 64.2 216.6 79.6

September 22.2 59.0 15.4 83.4 72.1 75.2 45.2 58.2 59.6

October 35.8 10.8 33.2 75.3 55.3 82.4 50.2 43.0 57.5

November 10.4 53.8 45.5 26.1 18.9 59.8 36.8 59.2 48.7

December 41.6 46.3 30.6 51.8 36.9 32.8 31.5 23.0 40.5

3.1.3 Genotype
β-glucan content of barley “Anni” measured in the Eerika field

experiment varied between 3.53 and 5.85 g 100 g−1. Such a large
variation in the results was caused by different weather conditions
and crop production systems (fertilizing with organic or mineral
fertilizers) during the experimental period. Genotype of barley
influenced the content of β-glucan in the Jõgeva field significantly,
whereas the lowest value was obtained from “Maali” kernels and
the highest from “Anni” kernels (Table 3). Differences between
varieties reached up to 1.51 g 100 g−1.

β-glucan content in wheat kernels measured was ∼10 times
lower than that of barley values. β-glucan content of wheat “Fredis”
in the Eerika field fluctuated during eight trial years between 0.32
and 0.63 g 100 g−1. As with barley, genotype also affected wheat β-
glucan values in the Jõgeva field experiment. Differences between

wheat varieties reached up to 0.14 g 100 g−1, which was a relatively
small difference, but still significant nonetheless.

The experiment showed that the effect of location on the β-
glucan content of barley variety “Anni” was significant (p < 0.001;
Table 3). We compared the β-glucan content of “Anni” variety
obtained from the Eerika field with the data from the Jõgeva field
(β-glucan values in 2021 at the same level of N quantities – 100 kg
ha−1). Mean β-glucan values over repetitions were 5.85± 0.366 and
4.51 ± 0.192 g 100 g−1 in Eerika and Jõgeva fields, respectively.
Higher 1,000 kernel weight values of barley resulted in higher
β-glucan values (Figure 4).

The 1,000 kernel weight (TKW) values of barley and winter
wheat cultivars were not significantly influenced by genotype. The
TKW values of barley cultivars ranged between 37.6 (“Anneli”)
and 43.6 (“Tuuli”) g, and for winter wheat cultivars between
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FIGURE 1

β-glucan content as an average of N treatments in spring barley “Anni” from Eerika field in di�erent experimental years, g 100 g−1. Lower-case letter
on the bars refer to significant di�erences (P < 0.05).

FIGURE 2

β-glucan content as an average of N treatments in winter wheat “Fredis” from Eerika field in di�erent experimental years, g 100 g−1. Lower-case letter
on the bars refer to significant di�erences (P < 0.05).

37.6 (“Perenaise”) and 45.2 (“Julie”) g. Test weight of different
spring barley and winter wheat cultivars also was not influenced
by genotype; it ranged between 62 (“Anneli”) and 68 (“Grace”)
and 75 (“Creator”) and 83 (“Ada”) kg hl−1, respectively. One
thousand kernel weight values of barley “Anni” from Jõgeva
(treatment N90) and Eerika (treatment N100) experimental field
in 2021 were 40.3 ± 0.22 g and 44.0 ± 0.32 g, respectively. The
β-glucan content of barley grains was positively correlated with
grain TKW (Figure 4) and test weight values (R = 0.64, R = 0.54,
respectively, p< 0.001, for both values), while the β-glucan content
of winter wheat “Fredis” was not affected by either TKW or test
weight (4).

4 Discussion

The quantity and quality of β-glucans are affected by
fertilization, genotypes and their interaction with environment,
including year and location (Güler, 2003b; Dvončová et al., 2010;
Choi et al., 2020; Habiyaremye et al., 2021). Realization of β-
glucan benefits requires an understanding of how those factors
affect β-glucan concentration and how this variation affects the
biological activity of cereals (Dickin et al., 2011). In order to
optimize the quality of cereal grain, we should not only consider
the traditional quality but also β-glucan concentration that may
greatly benefit people facing high levels of blood-serum cholesterol.

Frontiers in Sustainable FoodSystems 05 frontiersin.org

https://doi.org/10.3389/fsufs.2023.1326716
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Khaleghdoust et al. 10.3389/fsufs.2023.1326716

FIGURE 3

The influence of precipitation in grain filling period on β-glucan content of winter wheat “Fredis” (A) and spring barley “Anni” (B) of Eerika field.

TABLE 3 Content of β-glucan (g 100 g−1) in spring barley and winter

wheat genotypes in 2021 from Jõgeva field and Eerika field.

Barley
genotype

β-glucan (g
100 g−1)

Wheat
genotype

β-glucan (g
100 g−1)

Maali 3.14± 0.03 d∗ Ada 0.47± 0.03 b

Grace 3.26± 0.21 d Creator 0.53± 0.05 a

Planet 3.36± 0.17 cd Perenaise 0.55± 0.01 a

Feedway 3.37± 0.13 cd Širvinta 0.55± 0.01 a

Tuuli 3.46± 0.07 cd Julie 0.55± 0.00 a

Breustar 3.49± 0.13 cd Fredis 0.55± 0.05 a

Irina 3.78± 0.18 bcd Kallas 0.55± 0.03 a

Quench 3.52± 0.15 bc Fredis (Eerika
field)

0.55± 0.02 a

Anneli 3.92± 0.18 bc

Anni 4.51± 0.19 b

Anni (Eerika
field)

5.85± 0.29 a

∗Mean values (averaged from replicates in the same field and same year) are presented

with±SE.

n: different lowercase letters in the columns indicate significant differences, values with the

same letter are not significantly different (P < 0.05).

In the present experiment, β-glucan content was influenced by year
(weather) conditions including air temperature and precipitation
(Table 4). Previously, we showed that weather conditions had a
greater impact on the content of arabinoxylan, another important
polysaccharide, in barley and wheat than fertilization and cropping
systems within the same experimental field (Korge et al., 2023).
Our current result showed that there was a negative correlation
between air temperature in May and the β-glucan content of barley
grains. Conditions favorable to endosperm development would
increase the accumulation of β-glucan in the grain, but β-glucan
content may decrease under moist growing conditions and high
temperatures in this period (Goudar et al., 2020). In Estonia’s
climate, barley is in the tillering/elongation stage in May, therefore,

FIGURE 4

Relationship between 1,000 kernel weight and β-glucan content in
spring barley “Anni” from Eerika field; R = 0.64, p < 0.001; n = 55.

lower temperatures in May (9–10◦C) extend the tillering and
stem elongation phase accompanied by stronger rooting, higher
number of shoots and formation of larger above ground biomass.
Barley plants with higher above-ground biomass take up more
nutrients to transport to the head during the grain filling period,
resulting in higher 1,000 kernel weight and test weight. There was
a positive correlation between barley “Anni” β-glucan and 1,000
kernel weight (Figure 4) as well as test weight (R = 0.64, p <

0.001 and R = 0.50, p < 0.01, respectively). Similarly, Yalçin et al.
(2007) found a positive correlation between β-glucan content and
1,000 kernel weight in hull-less barleys grown in Turkey. They
showed that dense and large grains have higher endosperm content
compared to smaller grains, leading to a higher content of β-glucan.
Test weight (TW), which is considered an indicator of grain density
and properties, had a positive correlation with β-glucan content
in barley grains in our experiment (Table 4). Since grains with a
higher 1,000 kernel weight have a higher test weight, the β-glucan
content of larger seeds is higher. The same correlations were not
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TABLE 4 Spring barley and winter wheat correlation coe�cients (R)

between β-glucan content and grains quality factors and environmental

indicators (for Eerika field trial).

Indicator/factor β-glucan of
spring barley
“Anni”

β-glucan of
winter wheat
“Fredis”

Trial year 0.64∗∗∗ 0.62∗∗∗

N treatment Ns Ns

Temperature in
tillering stage, ◦C

−0.48∗∗∗ Ns

Precipitation in
grain filling period,
mm

−0.57∗∗∗ −0.35∗∗

TKW, g 0.64∗∗∗ Ns

TW, g l−1 0.54∗∗∗ Ns

TKW, thousand kernel weight; TW, test weight.
∗∗p < 0.01; ∗∗∗p < 0.001. Ns, not significant.

significant for wheat. This may be due to the fact that β-glucan is
biosynthesizedmainly in the endosperm of barley grains whereas in
wheat grains, it is biosynthesized in the aleurone layer (Sapirstein,
2016).

A negative correlation between the β-glucan content of barley
and wheat grains and precipitation in June and July (Table 4)
indicates that precipitation during the grain-filling period decreases
the β-glucan content. While Choi et al. (2020) demonstrated a
positive effect of rainfall on grain β-glucan content, current results
are in accordance with Ehrenbergerová et al. (2008), who found
that higher precipitation during barley flowering and grain filling
decrease grain β-glucan content. Since β-glucan accumulates in the
late stage of grain development, stress resulting from temperature
and precipitation, which causes the end of early grain development,
also reduces β-glucan concentration (Zhang et al., 2001; Tiwari
and Cummins, 2009). The timing of water availability influences
synthesis and deposition of main storage substances and their
relative proportions in the grain (Havrlentová et al., 2023). The
content of β-glucan in wheat grains was comparable in all studied
years, except for 2014. High precipitation in June, July, and August
(until harvesting) may be the reason for the low content of β-glucan
in the year 2014. The lowest β-glucan content of barley grains was
found for the year 2016, where the sum of precipitation for June
and July was the highest among all studied years (2014–2021) and
the highest for the year 2021, when we had the lowest precipitation
in June and July compared to all other studied years. In Estonia’s
climate, barley is in flowering and grain-filling stages in June and
July, respectively. Therefore, higher precipitation during this period
can induce a dilution effect, which increases the water content in
the grains and reduces the viscosity of the acid flour extract, leading
to a decrease in β-glucan content (Aastrup, 1979; Güler, 2003a,b).
In contrast, precipitation during the flowering time can lead to a
reduction of the yield by disturbing the pollination process and
decreasing the quality of grains including their β-glucan content
(Aastrup, 1979).

We hypothesized that the content of β-glucan increases with
higher mineral nitrogen rates compared to organic fertilizers.
Previously, Güler (2003a) showed that the highest β-glucan content

in their two-year experiment was observed when barley was
fertilized with 80 kg N ha−1, which was the maximum N rate in
their experiment. Our result showed that, in barley and wheat,
fertilization up to 150 kg N ha−1 did not have a significant effect
on β-glucan content throughout the 8 years (Table 4). Similarly, to
our result Habiyaremye et al. (2021) did not find any effect of N
fertilizers on barley β-glucan content in their three-year experiment
with N rates varying from 0 to 162 kg ha−1. Although the β-glucan
content of wheat grains is significantly less than barley grains, this
result suggests that both crops can produce high β-glucan content
without adding high mineral fertilizers into the soil. These results
provide the opportunity for achieving strategies of the European
Commission for increasing sustainability through organic farming.

However, the content of β-glucan can be influenced by locations
and growing conditions rather than fertilization (Aastrup, 1979;
Hesselman et al., 1981; Zhang et al., 2001). In our experiment, this
was true for the barley variety “Anni,” in which β-glucan content
was significantly different between the two locations (Table 3). In
the crop rotation experiment, we had barley undersownwith clover,
which can affect the absorption of N fertilizer andmake it easier and
more accessible for the plant. Overall, undersowing legumes can be
a beneficial practice for improving the absorption of N fertilizer and
increasing the yield and quality of cereal grains (Lagerquist et al.,
2022).

Genotype is another factor which significantly influences the
content of β-glucan in grains of cereal (Choi et al., 2020). One
reason can be that different genotypes have variations in sequence
and transcript for genes engaged in the biosynthesis of β-glucan,
which leads to a genotype-dependent production of β-glucan at
grain development (Garcia-Gimenez et al., 2019). In addition,
genotype directly affects the quality properties of grains such as
1,000 kernel weight (Yalçin et al., 2007). Similarly to Sinkovič
et al. (2023) we found that β-glucan content is higher in barley
grains compared to wheat and genotype has an impact on grain
β-glucan content. This result shows that barley could have a
greater role in human food as it can improve its physiological
effect and provide health benefits (Izydorczyk and Dexter, 2008).
In our experiment barley “Anni” had the highest content of β-
glucan compared to varieties “Maali,” “Grace,” “Planet,” “Feedway,”
“Tuuli,” and “Breustar.” This result indicates that the propensity of
different genotypes for developing grains with higher content of β-
glucan is different. Similarly, in wheat, the content of β-glucan was
influenced by genotype, and variety Ada had the lowest β-glucan
content compared to all other varieties. Unlike barley, we did
not find a correlation between β-glucan content and 1,000 kernel
weight of wheat grains in our experiment (Table 4), therefore,
differences in β-glucan content may be the result of a genotype-
environment interaction, which is the main factor deciding grain
end use, as shown by Choi et al. (2020). Future studies should take
a more detailed look on genotype and management interactions in
conditions of changing climate.

5 Conclusions

The content of β-glucan in barley and wheat grains is affected
mainly by year (weather) conditions in different plant growth
stages, which supports our hypothesis. Lower temperatures during
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tillering and stem elongation and higher temperatures during
grain filling period result in higher β-glucan content in barley
grains. High amounts of precipitation during flowering and grain
filling period reduce the content of β-glucan in grains. Future
research could use this data for model development, to provide
early information to industry for adoption. As there is a positive
correlation between 1,000 kernel weight and β-glucan content
then the conditions favoring 1,000 kernel weight increase also
the β-glucan content in barley grains. This study did not support
the idea that higher mineral fertilizer rates increase grain β-
glucan content. The latter means that the regulation of crop
nutrition is not going to impact dietary fiber content in our
everyday food. These findings suggest that β-glucan can be obtained
efficiently from systems managed organically or with low inputs.
Genotype and growing location were other factors influencing
β-glucan amount in our experiment. The content of β-glucan
was 0.6–1.4 g 100 g−1 higher in “Anni” compared to other
barley varieties, whereas variety “Ada” had the lowest β-glucan
content in wheat. However, achieving cereal grains with higher
quality including higher β-glucan content requires consideration of
different factors, and different strategiesmay be needed for different
crops and varieties.
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