AUTHOR=Yang Taoqing , Zheng Xia , Xiao Hongwei , Shan Chunhui , Zhang Jikai TITLE=Online monitoring system of material moisture content based on the Kalman filter fusion algorithm in air-impingement dryer JOURNAL=Frontiers in Sustainable Food Systems VOLUME=7 YEAR=2024 URL=https://www.frontiersin.org/journals/sustainable-food-systems/articles/10.3389/fsufs.2023.1325367 DOI=10.3389/fsufs.2023.1325367 ISSN=2571-581X ABSTRACT=
A Kalman filter fusion algorithm was proposed, and an online monitoring system was developed for real-time monitoring of the moisture content of materials in an air-impingement dryer. The Kalman filter algorithm was used to estimate the optimal state of the original detection values of the weighting sensor and air velocity sensor. A backpropagation (BP) neural network fusion model was established, where the weight detection value, elastic substrate temperature, air velocity, and impingement distance were considered inputs and the real weight of the material was the output. The optimal topology of the BP neural network was selected, and the initial weights and thresholds of the BP neural network were optimized using a genetic algorithm. The coefficient of determination (