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The rapid development of China’s fisheries sector has brought about significant 
environmental problems, which are detrimental to the sustainable development 
of the sector. Balancing environmental protection while promoting fisheries 
development has become an urgent issue in China. Based on data from 30 
provincial-level administrative regions in China from 2004 to 2019, this study 
utilizes the Epsilon-based Measure (EBM) model considering undesirable outputs 
and the global Malmquist-Luenberger (GML) index to measure the green total 
factor productivity (GTFP) growth in China’s fisheries sector. Furthermore, it 
explores the spatiotemporal evolution and driving forces of fisheries GTFP growth 
using spatial Durbin model (SDM). The results indicate that ignoring the resource 
and environmental costs in fisheries production would overestimate the growth 
of total factor productivity (TFP) by 1.3%. The growth of fishery output primarily 
comes from the increase in input factors, exhibiting extensive characteristics 
that have been gradually diminishing over time. During the sample period, the 
provinces with the fastest growth in GTFP shifted from being mainly concentrated 
in the central and western regions to the eastern region. The local driving forces 
behind the improvement of fisheries GTFP include internet penetration rate, 
transportation convenience, education level of rural residents. The driving forces 
from economically similar provinces include the positive spatial interplay between 
provinces, fishery disaster rate, fisherman training, fishery trade openness, and 
urbanization rate. Overall, these finds offer a novel approach to reexamine the 
growth of China’s fisheries and provide valuable insights for the future fisheries 
development.
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1. Introduction

TFP has received significant research attention in the literature on economic growth as a 
driving force for economic development beyond input factors (Solow, 1957; Pan et al., 2022). In 
the field of fisheries research, TFP has also been the subject of significant focus and is commonly 
used to measure the quality of fisheries development (Asche et al., 2013; Aponte, 2020; Zhong 
et al., 2022). Therefore, improving the TFP of the fisheries sector has become one of the key 
issues for achieving high-quality development. However, in the face of resource and 
environmental challenges in fisheries development, it is not enough to focus solely on improving 
TFP. Prolonged extensive development in the fisheries sector has led to severe resource and 
environmental problems. In response, the Chinese government has introduced a series of laws 
and regulations to promote sustainable fisheries development. In 2013, the State Council issued 
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“Several Opinions on Promoting the Sustainable and Healthy 
Development of Marine Fisheries,” which emphasized the protection 
of marine fishery resources and the ecological environment. With a 
focus on aquaculture, the Ministry of Agriculture and Rural Affairs, 
the Ministry of Ecology and Environment, and other departments 
jointly issued “Several Opinions on Accelerating the Green 
Development of Aquaculture” in 2019, which outlined the direction 
for the green development of the aquaculture industry from various 
perspectives such as spatial layout, farming methods, and 
environmental considerations. Considering the current situation of 
fisheries development and policy directions, green development will 
be  the primary direction for the future of China’s fisheries. The 
measurement and analysis of GTFP in the fisheries sector take into 
account the costs of resources and environmental factors, thus 
reflecting the resource and environmental constraints faced in 
fisheries development. Therefore, assessing and analyzing fisheries 
GTFP is of significant importance in promoting sustainable 
development in the industry.

Currently, research on TFP in the fishing industry focuses on two 
main aspects. The first aspect is the measurement and analysis of 
fisheries TFP. The measurement can be broadly classified into two 
categories: parametric estimation and non-parametric estimation (Ye 
et al., 2023). Parametric estimation is primarily based on production 
functions and involve estimating residuals from the production 
function relationship to measure TFP (Van Beveren, 2012; Van 
Nguyen and See, 2023). In the fishing industry, it is more common to 
combine production functions with Törnqvist index to measure total 
factor productivity (Squires, 1992; Wang and Walden, 2021). 
Non-parametric estimation primarily refers to the combined use of 
data envelopment analysis (DEA) and the malmquist index (Asche 
et al., 2013; Zhang et al., 2023). When looking at specific sectors, the 
measurement of TFP in the fishing sector is mostly estimated using 
parametric methods. For example, Wang and Walden (2021) used a 
constructed production function to measure the TFP of the US 
commercial fishing industry. They found that improvements in 
biomass growth can lead to higher output growth or lower input 
growth. In the aquaculture sector, both parametric and non-parametric 
methods are commonly used in research for measuring TFP. Indeed, 
there is a temporal sequence in the application of these two 
measurement methods in the aquaculture sector (See et al., 2021). In 
the early stages of research, the focus was primarily on using stochastic 
frontier analysis, such as the stochastic logarithmic production 
function, to measure technical efficiency, an important component of 
TFP in aquaculture. It was only later that studies began to incorporate 
the use of DEA for TFP estimation. Both measurement methods have 
their respective advantages, and the choice of which method to use 
depends on factors such as research objectives, data, production 
process type, and numbers of output (Pascoe and Tingley, 2007; Van 
Nguyen et al., 2021). This study will utilize an evolved methodology 
based on DEA, known as EBM, in conjunction with the GML index, 
to measure the GTFP growth in China’s fisheries sector. Additionally, 
it is important to emphasize that the fisheries sector mentioned in this 
study refers to both aquaculture and fishing sectors.

Another type of research focuses on explaining the factors causing 
changes in fisheries TFP. These factors involve specific policies, fleet 
characteristics, environmental and farm characteristics, but they 
exhibit variations in the fishing and aquaculture sectors. In the fishing 
sector, fishery resource management policies are crucial (McClanahan 

et al., 2015). These fishery resource management policies primarily 
focus on the management of fisheries capture and vessels, such as 
individual fishing quotas (Sanchirico et al., 2006; Solís et al., 2014), 
transferable quotas (Newell et al., 2005; Pincinato et al., 2021), Vessel 
Capacity Reduction Programs (Holland et al., 1999, 2017). Among 
these, most studies have affirmed the positive effects of these policies 
on fishing vessel TFP (Pascoe et al., 2012; Solís et al., 2015; Nielsen 
et al., 2023), while a few studies have found that some policies have 
not achieved the intended outcomes (Walden et  al., 2012). 
Additionally, factors such as total kW, total fishing days per year, and 
the stock of physical capital also influence vessel TFP (Jin et al., 2002; 
Pipitone and Colloca, 2018). In comparison to the fishing sector, there 
are more factors that affect the TFP in the aquaculture sector. These 
factors include education level, experience, age and credit constraints 
of the farmer (Kareem et al., 2009; Iliyasu et al., 2016; Mitra et al., 
2019; See et al., 2021), adoption of new production technology or 
production process innovation (Dey et al., 2010), pond characteristics 
(Long et al., 2020; Mitra et al., 2020), family characteristics (Iliyasu 
et al., 2016), and government regulations (Shao et al., 2021).

In this study, the GTFP of the fisheries sector was measured, and 
subsequently, its driving forces were explored. This study contributes 
to existing research in three aspects. Firstly, previous studies have 
mainly focused on either the fishing or aquaculture sector, and often 
explored the total factor productivity (TFP) of specific fish species 
production, which fails to provide a comprehensive view of the TFP 
of the entire fisheries sector. This study combines the fishing and 
aquaculture sectors to investigate the overall TFP of the fisheries 
sector. Secondly, it departs from the traditional understanding of 
fisheries growth, shifting from a focus on productivity growth to a 
balance between productivity growth and sustainable resource-
environment considerations. Previous studies on fisheries productivity 
often neglected the environmental externalities associated with fishing 
activities. This study takes into account the environmental costs 
associated with fisheries production in calculating the 
TFP. Additionally, considering the carbon sequestration function of 
fisheries, the study incorporates the economic value of carbon 
sequestration in desirable outputs. Thirdly, this study analyzes the 
driving forces of fisheries GTFP based on five dimensions: natural 
environment, infrastructure, human capital, market size, and 
government governance. It also explores the spatial spillover effects of 
these dimensions on fisheries GTFP.

The rest of the paper is organized as follows. Section 2 provides 
theoretical analysis and proposes relevant hypotheses. Section 3 
introduces the methodology, indicator selection and data sources. 
Results are presented in Section 4. Section 5 summarizes the 
conclusions and provides policy implications.

2. Methods and materials

2.1. Measuring GTFP growth for the fishery 
sector

By utilizing input and output data, DEA can be used to evaluate 
the efficiency of decision-making units. DEA primarily consists of two 
types: radial measurement-based models and non-radial 
measurement-based models. Radial measurement-based models do 
not consider slack variables and assume that all factors change 
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proportionally. However, this assumption does not align with reality. 
Non-radial measurement-based models incorporate slack variables 
and avoid the strict assumptions of radial measurement by identifying 
points that are far from the frontier to maximize input and output 
inefficiency. This means that the original ratio information of the 
efficiency frontier projection is lost. To address the issues faced in 
non-radial measurement, Tone and Tsutsui (2010) proposed the EBM 
in 2010. Based on this model, and following the approach of Wu et al. 
(2019), we have developed an EBM that incorporates undesirable 
outputs. The formula is as follows:
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Where s− represents the slack variable. s g+  and s b−  are both 
redundant variables. Wi− represents the weight of the i-th input, with 
∑ =−Wi 1 (∀ ≥−

i iW 0). Wi+ represents the weight of the s-th output, 
with ∑ + ∑ =+ −W Wi

S
i
S1 2

1 (∀ ≥+
i iW 0).

Relying solely on the EBM model is insufficient for measuring 
fisheries GTFP growth; the use of index methods is also necessary. The 
Malmquist-Luenberger (ML) index has long been used to measure 
productivity growth incorporating undesirable outputs. However, this 
index can encounter cases where linear programming has no solution 
and suffer from non-transitivity issues. To overcome the limitations of 
the ML index, Oh (2010) proposed the GML index. This study 
considers the combination of the EBM model with the GML index, 
incorporating undesirable outputs, to measure China’s fisheries GTFP 
growth. Existing studies decomposes the GML index into two 
dimensions: efficiency change and technological change. The formula 
for the GML index is as follows:
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Where D x y bt t t t, ,( ) and D x y bG t t t, ,( ) represent the current and 
global EBM directional distance function, respectively. bt  represents 
the undesirable output of the decision-making unit in period t. 
GMLt t, +1 represents the growth in fisheries GTFP from period t to 
t + 1. ECt t, +1 represents the change in efficiency from period t to t + 1, 
and TCt t, +1 represents the change in technology from period t to t + 1. 
When GMLt t, +1, ECt t, +1, and TCt t, +1 are greater than 1, it indicates 
growth from period t to t + 1. If they are equal to 1, it means no change, 
and if they are less than 1, it indicates a decline.

2.2. Methods for testing the drivers of 
fisheries GTFP growth

This study will employ spatial econometric model to examine the 
drivers of fisheries GTFP growth. Spatial econometric model is 
advantageous as it can effectively handle the spatial correlation among 
spatial units and test the spatial spillover effects. Prior to estimating 
the spatial econometric model, it is necessary to test the spatial 
autocorrelation of the dependent variable to determine the need for 
employing spatial econometric model. In this study, the Global 
Moran’s I  index will be  used to test the spatial autocorrelation of 
fisheries GTFP growth. The expression for the Global Moran’s I index 
is as follows:
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Where Yi and Yj  represent the fisheries GTFP growth of province 
i and province j, respectively. Wij is the spatial weight matrix based on 
inverse economic distance, which captures the interconnections 
between provinces. The value of the Moran’s I index is between 0 and 
1. A positive Moran’s I  index indicate the presence of spatial 
autocorrelation in fisheries GTFP, implying that high values tend to 
cluster with high values and low values tend to cluster with low values. 
Conversely, a negative Moran’s I index suggests the existence of spatial 
heterogeneity, where high values (low values) tend to cluster with low 
values (high values). When Moran’s I index equal to zero, it signifies 
the absence of spatial correlation, indicating a random distribution of 
fisheries GTFP growth among provinces. Spatial correlation represents 
a form of spatial dependence, reflecting the first law of geography, 
which states that geographically proximate entities are more likely to 
be related.

If the estimation of the Global Moran’s I  index suggests the 
presence of spatial correlation in fisheries GTFP growth, it is essential 
to employ spatial econometric models to examine the driving factors 
of this productivity. The three classical specifications of spatial 
econometric models are the SDM, spatial autoregressive model (SAR), 
and spatial error model (SEM). To determine the appropriate model 
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specification among these, it is common practice to conduct tests 
using the SDM as the baseline model and employing the WALD, LR, 
and LM tests. In this study, the SDM specification is as follows:

 
FGTFP FGTFP Xit jt it jt i t it= ∗ + + ∗ + + +ρ α βW X W γ ϕ µ

 (4)

Where FGTFPit  denotes the fisheries GTFP growth of province 
i in year t. W FGTFPjt∗  represents the spatial lag term of fisheries 
GTFP growth, and the corresponding coefficient ρ  captures the 
strength of spatial interaction among provinces regarding GTFP 
growth. Xit represents the vector of independent variables, 
encompassing five categories of variables, namely, natural 
environment, infrastructure, human capital, market size, and 
government governance. W represents the spatial weight matrix based 
on inverse economic distance. W X jt∗  is the spatial lag term of Xit. 
The parameters α and β are the coefficients to be  estimated. The 
subscripts γ i and ϕt represent province and year fixed effects, 
respectively. The term ∝it  represents the random disturbance.

2.3. Variable and data

2.3.1. Indicators used to measure fisheries GTFP
For input, this study extends the traditional framework of capital, 

land, and labor by incorporating resource, taking into account the 
specific characteristics of the fisheries sector. For the measurement of 
capital, land, and labor, we employ indicators such as fishery capital 
stock, aquaculture area, and the number of individuals employed in 
the fisheries sector. As for resource inputs, we consider the unique 
aspects of both the aquaculture and fishing. In the case of aquaculture, 
we measure resource inputs using the quantity of fish fry. However, in 
the context of the fishing, where data on fishery resource stocks across 
Chinese provinces are unavailable, the common approach of 
measuring resource pressure using fishery resource stocks is not 
feasible. Instead, we utilize the tonnage of fishing vessels as a proxy, as 
it provides insights into the pressure exerted by the fishing on 
fishery resources.

It is important to note that the currently available public data does 
not include information on fishery capital stock. While some studies 
have used the year-end quantity of fishing vessels as a proxy for fishery 
capital stock (Sun et al., 2017), it should be acknowledged that the 
number of vessels alone does not fully capture the comprehensive 
capital inputs in the fisheries sector. Firstly, fisheries production 
involves not only fishing vessels but also fixed assets such as 
aquaculture or fishing equipment. Secondly, fishing vessels vary 
significantly in size and power, and relying solely on vessel counts to 
measure capital stock can introduce significant measurement errors. 
Lastly, the approach of using vessel counts often overlooks the issue of 
capital depreciation.

To address these limitations, this study follows the approach 
proposed by Li et al. (2018). We calculate the capital stock for the 
fisheries sector in each province. Then, we estimate the provincial 
fishery capital stock using the following formula:

 

Fishery Capital Stock Provincial capital stock

Provincial 

=

∗
ffishery gross output

Provincial gross domestic product  
(5)

For output, existing research has predominantly focused on 
economic outputs (Álvarez et al., 2020; Mitra et al., 2020). However, 
production not only generates economic outputs but also entails the 
generation of pollutants. While these pollutants are not desired 
outcomes, they impose a burden on society. Therefore, fisheries output 
indicators should encompass both desirable outputs, such as economic 
production, and undesirable outputs, such as pollution. Economic 
output represents the desirable outputs and can be understood as 
fishery value-added. On the other hand, the emission of pollutants 
constitutes the undesirable outputs. The primary challenge lies in 
quantifying the undesirable outputs. In this study, fisheries are defined 
to include both aquaculture and fishing. In practice, pollution 
emissions predominantly arise from aquaculture, while fishing 
activities have a more significant impact on fishery resources. This 
distinction is evident in the regulatory policies implemented by China, 
where regulations for aquaculture primarily focus on pollution 
prevention and control, while fishing regulations mainly aim to 
prevent overfishing and preserve fishery resources (Chang et  al., 
2022). Therefore, this study primarily focuses on the undesirable 
outputs related to pollution generated by aquaculture activities. 
However, currently, direct data on provincial-level aquaculture 
pollution emissions is unavailable. Consequently, an indirect 
estimation approach is employed to obtain this information.

For the undesirable outputs, we draw on the methods used by Li 
(2014), Guo and Liu (2021), and Ren and Zeng (2021). We estimate 
the emissions of total nitrogen, total phosphorus, and chemical 
oxygen demand (COD) from aquaculture in each province from 2004 
to 2019 based on the pollutant emission coefficients provided in the 
“Manual of Pollutant Source Emission Coefficients for Aquaculture in 
the First National Pollution Source Census” and the production data 
from the “China Fishery Statistical Yearbook.” The specific steps are as 
follows: Firstly, we obtain the pollutant emission coefficients for over 
20 freshwater fish species (including sturgeon, eel, carp, and tilapia) 
in four different freshwater aquaculture modes, as well as for over 20 
marine fish species in five different marine aquaculture modes from 
the “Manual of Pollutant Source Emission Coefficients for Aquaculture 
in the First National Pollution Source Census.” Additionally, we gather 
production data for different fish species in freshwater and marine 
aquaculture from the “China Fishery Statistical Yearbook.” Secondly, 
we calculate the mean emission coefficients for freshwater fish species 
in the four freshwater aquaculture modes and for marine fish species 
in the five marine aquaculture modes. Thirdly, we  combine the 
emission coefficients for freshwater aquaculture with the production 
data for freshwater fish farming. For each freshwater fish species, 
we multiply its production by the corresponding emission coefficients 
for total nitrogen, total phosphorus, and COD. By summing up these 
calculations, we obtain the total nitrogen, total phosphorus, and COD 
emissions from freshwater aquaculture. The same approach is applied 
to estimate the emissions from marine aquaculture. Finally, 
we aggregate the total nitrogen, total phosphorus, and COD emissions 
from both freshwater and marine aquaculture to obtain the overall 
emissions of from the total nitrogen, total phosphorus, and COD 
in aquaculture.

The desirable outputs consist of two main components. Firstly, 
following the practice of existing research (Zhang et al., 2020; Lee and 
Lee, 2022; Yu et al., 2022) and select fishery output value as one of the 
desirable outputs. Secondly, we consider the economic value of carbon 
sequestration in marine aquaculture. Considering the unique 
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characteristics of fisheries, bivalve and seaweed aquaculture exhibit 
significant carbon sequestration capabilities, as they can utilize their 
carbon-fixing capacity to remove or absorb carbon dioxide from water 
bodies (Sea et al., 2022). Specifically, seaweed aquaculture in marine 
environments can absorb carbon dioxide through photosynthesis, 
reducing the carbon dioxide partial pressure in seawater and 
promoting its absorption, thus facilitating carbon sequestration. 
Bivalves contribute to carbon sequestration through carbon fixation 
during shell growth and the conversion of organic carbon during soft 
tissue growth. Drawing on the methods proposed by Shao et al. (2019) 
and Le et al. (2023), we estimate the carbon sequestration in fisheries 
at the provincial level in China. Subsequently, we apply the calculation 
methodology introduced by Sun et  al. (2020) to determine the 
economic value of carbon sequestration in marine aquaculture. 
Table 1 provides an overview of the indicators used in the calculation 
of fisheries GTFP growth.

2.3.2. Indicators used in the analysis of driving 
forces

In the analysis of driving forces, the dependent variable is the 
fishery GTFP growth. It is important to note that the fishery GTFP, 
derived from the EBM model of non-desired outputs and the GML 
index, represents the concept of year-on-year growth rate and cannot 
be directly used as the dependent variable. Following previous studies, 
the cumulative growth of fishery GTFP is calculated using the initial 
year of the research sample as the base year, which is used as the 
dependent variable (Yan et al., 2020; Lee and Lee, 2022). To examine 
the spatial correlation of fishery GTFP growth and its decomposition 
components, the corresponding Moran’s I index is calculated, and the 
results are presented in Table 2. It indicates that most years show a 
positive Moran’s I index, but only in 2013, 2014, 2015, and 2016 are 
the results statistically significant. For the fishery efficiency growth, 
the Moran’s I  index is positive and statistically significant in most 
years, while for the fishery technology growth, the Moran’s I index is 
positive in most years, but statistically significant only in 2007, 2009, 

and 2019. These results suggest that fishery efficiency growth exhibits 
a more significant spatial correlation compared to fishery technology 
growth. Fisheries efficiency typically involves issues related to fisheries 
production management, and the diffusion of management knowledge 
can occur more rapidly through collaboration and exchange among 
fisheries producers in different provinces. In contrast, fisheries 
technological advancements involve technical aspects and may involve 
patent-related issues, resulting in relatively weaker spillover effects. 
The findings in Table 2 indicate the existence of spatial correlation. 
Therefore, it is necessary to employ spatial econometric models in the 
analysis of driving forces.

The independent variables are selected based on five dimensions: 
natural environment, infrastructure, human capital, market size, and 
government governance. The natural environment is measured by 
variables such as temperature (temp) and the incidence of fisheries 
disasters (natdis). Infrastructure is assessed using indicators such as 
internet penetration rate (internet) and transportation convenience 
(trans). Human capital is captured through indicators such as the 
education level of fishermen (aedu) and the provision of fisheries 
technical training (lnpeop). Market size is represented by trade 
openness (fishopen) and urbanization rate (urban. Government 
governance is evaluated by the proportion of environmental 
governance investment to gross domestic product (envir).

2.3.3. Data source
China’s fisheries GTFP growth is calculated using data from 30 

provincial-level administrative region for the period of 2004–2019. 
The chosen time frame is based on the availability of data, as data prior 
to 2004 and after 2019 have significant gaps. Provincial-level 
administrative region such as Tibet, Hong Kong, Macau, and Taiwan 
were not included in the analysis due to limited data availability.

Data on aquaculture area, fisheries employment, fry quantity, and 
fishing vessel tonnage are sourced from the “China Fishery Statistical 
Yearbook” for input indicators. Fisheries capital input calculation 
utilizes fixed capital formation, fixed asset investment price index, and 
regional GDP data from the “China Statistical Yearbook.” undesirable 
output, including total nitrogen, total phosphorus, and COD 
emissions, are calculated using production data for different fishery 
species from the “China Fishery Statistical Yearbook,” combined with 
pollutant emission coefficients from the “Handbook of Pollutant 
Generation and Discharge Coefficients for Aquaculture in the First 
National Pollution Source Census.” Desirable output, represented by 
fishery value-added, is obtained from the “China Fishery Statistical 
Yearbook,” while the economic value of carbon sequestration is 
estimated using production data for shellfish and algae from the 
“China Fishery Statistical Yearbook.”

In the section on driving force analysis, data for calculating 
provincial average temperature is obtained from the “China 
Meteorological Science Data Sharing Service Platform.” To derive 
provincial average temperature, spatial interpolation is applied to 
convert daily observations from various weather stations into grid-
point data, which is then regionally averaged. Fishery disaster area, 
aquaculture area, fishery technical training attendance, fishery trade, 
and total fishery output are sourced from the “China Fishery Statistical 
Yearbook.” Internet penetration rate is obtained from the “Statistical 
Report on Internet Development in China.” Grade highway is sourced 
from the “China Transport Statistics Yearbook.” Rural labor force 
education level is derived from the “China Population and 

TABLE 1 The indicators used in the measurement of fisheries GTFP 
growth.

Category Primary 
indicator

Secondary 
indicator

Unit

Input

Capital Fishery capital stock Billion yuan

Land Aquaculture area Hectares

Labor Fishery employment 10,000 people

Resource Fingerling quantity 100 million

Fishing Vessel 

Tonnage Gross

Tons

Output

Undesirable Total nitrogen 

emissions
Tons

Total phosphorus 

emissions

Tons

COD emissions Tons

Desirable Real fishery 

production value

100 million 

yuan

Economic value of 

carbon sequestration

100 million 

yuan
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Employment Statistics Yearbook.” Exchange rate from the “China 
Statistical Yearbook” is used to convert fishery trade volume reported 
in USD to CNY. Urbanization rate data is sourced from the “China 
Statistical Yearbook.” Environmental governance investment is 
obtained from the “China Environmental Statistics Yearbook.”

3. Results

3.1. Measurement of TFP and GTFP growth 
in China’s fisheries sector

Based on the EBM model and the GML index, this study estimated 
China’s fishery GTFP growth and its decomposition from 2004 to 
2019. The estimation results are presented in Table 3. The results show 
that the annual average fishery GTFP experienced positive growth in 
11 provincial-level administrative regions, including Qinghai, Hubei, 
Ningxia, Chongqing, Gansu, Fujian, Guizhou, Shaanxi, Beijing, 
Shanxi, and Jiangsu. Among them, Qinghai had the highest growth 
rate, reaching 4.7%. Compared to most provinces, Qinghai has a lower 
level of fishery development, which allows it to have greater growth 
potential than some other provinces. By learning from more developed 
provinces in the field of fisheries, Qinghai can access opportunities for 
rapid growth. Meanwhile, 19 provincial-level administrative regions, 
including Shanghai, Yunnan, Inner Mongolia, Jilin, Sichuan, Tianjin, 
Anhui, Shandong, Guangdong, Guangxi, Xinjiang, Jiangxi, Hebei, 
Henan, Zhejiang, Hainan, Hunan, Liaoning, and Heilongjiang, 
experienced a decline in annual average fishery GTFP. Among them, 
Henan had the fastest decline rate, with an average annual decrease of 
−4.2%. Looking at the decomposition components, efficiency showed 
positive growth in 10 provincial-level administrative regions, while 

technology exhibited positive growth in 27 regions. Moreover, in 23 
regions, the rate of technological progress was faster than the rate of 
efficiency improvement. Overall, the growth of fishery GTFP was 
mainly driven by technological progress.

In addition, an interesting finding from Table 3 is that coastal 
provinces such as Shandong, Guangdong, and Zhejiang, known for 
their developed coastal areas, exhibit negative growth rates in fishery 
GTFP. These rates are significantly lower than those observed in some 
less-developed inland provinces. This finding may seem 
counterintuitive, as coastal provinces typically possess better 
technological conditions and institutional foundations. Several factors 
could account for this divergence. The decline in fishery GTFP in 
coastal provinces can be partially attributed to the substantial scale of 
fishing and aquaculture operations in these regions. The heightened 
strain on fishery resources and the environment might impede the 
overall fishery TFP level, particularly considering the environmental 
challenges specific to coastal areas. Another contributing factor could 
be the structural issues in resource allocation. Given their natural 
advantages as coastal regions, these provinces tend to prioritize 
marine aquaculture in resource allocation decisions. Consequently, 
the proliferation of marine ranches or blue grain storages, which 
require significant financial support, may inadvertently lead to a 
crowding-out effect on the development of freshwater aquaculture in 
coastal provinces. This phenomenon, in turn, might result in a 
relatively slower growth rate of freshwater aquaculture and ultimately 
impede the overall growth of fishery GTFP in these regions.

To further support this analysis, Table  4 provides additional 
insights by presenting the average annual growth rates of freshwater 
aquaculture and marine aquaculture GTFP for the 11 coastal 
provincial-level administrative regions. Averagely, the growth rate of 
marine aquaculture GTFP in coastal provinces from 2004 to 2019 was 
9%, surpassing the average growth rate of 1.6% observed in freshwater 
aquaculture. These findings underscore the substantial divergence 
between the growth rates of marine and freshwater aquaculture GTFP.

Examining the provinces individually, except for Fujian and 
Liaoning, the growth rate of marine aquaculture TFP is higher than 
that of freshwater aquaculture TFP in all provinces. Combining the 
information from Tables 3, 4, it can be  concluded that the lower 
growth rate of fishery TFP in coastal provinces is primarily due to the 
relatively lower growth rate of freshwater aquaculture TFP. This may 
reflect the crowding out effect of the rapid development of marine 
aquaculture on the development of freshwater aquaculture in coastal 
provinces, highlighting the contradiction in resource allocation 
between marine and freshwater aquaculture.

To compare the differences between fishery GTFP growth and 
TFP growth, Table 5 presents the estimation results of fishery TFP 
growth. By comparing these results with those in Table 3, it is evident 
that, on average, fishery GTFP has a growth rate of −0.5%, while TFP 
has a growth rate of 0.8%, indicating a difference of 1.3 percentage 
points. Therefore, disregarding the negative environmental 
externalities associated with fishery production can lead to an 
overestimation of fishery TFP growth. Similar conclusions have been 
drawn in studies from the agricultural sector (Pan and Ying, 2013), 
highlighting the tendency to overestimate TFP when environmental 
factors are not considered. Furthermore, substantial variations in 
efficiency are observed. When considering the negative environmental 
externalities, the growth rate stands at −0.6%, in contrast to the 
growth rate of 1.3% without such considerations, signifying a 

TABLE 2 Spatial correlation test of fisheries GTFP growth and its 
decomposed components.

Fisheries GTFP 
growth

Fisheries 
efficiency 

growth

Fishery 
technology 

growth

Year Moran P-
value

Moran P-
value

Moran P-
value

2005 −0.195 0.133 −0.242 0.036 −0.120 0.316

2006 −0.093 0.371 −0.227 0.120 −0.143 0.269

2007 0.116 0.194 0.246 0.033 0.317 0.024

2008 0.096 0.234 −0.018 0.463 0.170 0.128

2009 0.056 0.308 0.318 0.022 0.260 0.053

2010 0.111 0.210 0.273 0.039 −0.084 0.391

2011 0.145 0.162 0.368 0.011 −0.095 0.368

2012 0.030 0.361 0.356 0.012 0.182 0.111

2013 0.232 0.065 0.473 0.002 0.050 0.305

2014 0.360 0.012 0.443 0.003 0.015 0.391

2015 0.229 0.064 0.443 0.003 −0.094 0.369

2016 0.230 0.064 0.349 0.014 0.019 0.381

2017 0.134 0.169 0.362 0.011 0.105 0.216

2018 0.055 0.306 0.389 0.007 −0.121 0.313

2019 −0.048 0.469 0.342 0.015 −0.286 0.078

https://doi.org/10.3389/fsufs.2023.1281366
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Shen et al. 10.3389/fsufs.2023.1281366

Frontiers in Sustainable Food Systems 07 frontiersin.org

significant discrepancy of 1.9 percentage points. A noteworthy 
distinction arises from the fact that the fishery technological progress 
displays negative growth when environmental externalities are 
overlooked, while it exhibits positive growth when accounting for 
these factors. This phenomenon may be attributed to the increasing 
emphasis on environmentally friendly-oriented technological 
advancements within China’s marine aquaculture sector during the 
examined time frame (Ren and Zeng, 2021).

3.2. Comparison of TFP and GTFP growth 
trend in China’s fisheries sector

Figure 1 presents the trends in fisheries TFP and GTFP. It also 
depicts the growth trend of fisheries output in constant prices (using 
2004 as the base year). It is worth noting that the TFP (GTFP) 
calculated based on the GML index represents the relative change 
from the previous period and does not directly reflect the absolute 
change. To address this limitation, this study follows the approach 
suggested by previous studies (Li and Tao, 2012; Liu et al., 2022), 
where the TFP (GTFP) in 2004 is set as the reference point (equal to 
1), and subsequent TFP (GTFP) values are computed by multiplying 

the TFP (GTFP) growth rate in each year by the corresponding GML 
index. This methodology is also applied to measure the growth of 
fisheries output to ensure comparability.

It can be found that the fisheries sector’s output exhibits an overall 
upward trend. However, both TFP and GTFP show a slight decline, 
indicating that the growth in fisheries is driven by intensive factor 
inputs rather than contributions from TFP. In China’s aquaculture 
industry, the majority of fish farmers operate on a small scale, resulting 
in a limited degree of scale efficiency. Their strategy for achieving 
higher output often involves increasing input factors such as feed and 
fingerlings per unit area, while investments in technology and 
management practices remain inadequate. In the fishing industry, 
increased inputs such as fishing vessels and labor are often utilized to 
enhance catch volumes, ultimately depleting fishery resources. The 
East China Sea has even experienced a situation where there are “no 
fish to catch,” reflecting the extensive nature of fishing practices.

Additionally, an interesting phenomenon is observed. Before 
2007, fisheries output growth was similar to TFP growth. However, a 
significant divergence occurred after 2007, with fisheries output 
continuing to increase while TFP experienced a slight decline. This 
phenomenon suggests that the contribution of input factors to 
fisheries growth is expanding, while the contribution of TFP is 

TABLE 3 Average annual growth rates of fishery GTFP by province, 2004–2019.

Province GTFP EC TC Province GTFP EC TC

Shanghai −0.300 0.000 −0.300 Jiangxi −0.900 −0.900 2.700

Yunnan −0.900 −2.400 3.300 Hebei −3.100 −2.900 0.300

Inner Mongolia −1.100 −0.300 4.800 Henan −4.200 −4.500 1.900

Beijing 0.500 0.000 0.500 Zhejiang −0.400 −2.000 2.400

Jilin −0.200 0.200 4.400 Hainan −1.900 −2.300 1.200

Sichuan −0.900 0.000 −0.900 Hubei 3.700 0.000 3.700

Tianjin −3.900 −4.100 1.100 Hunan −1.500 0.700 −0.700

Ningxia 2.100 2.400 0.600 Gansu 1.100 2.300 1.000

Anhui −1.400 0.200 1.300 Fujian 1.300 0.000 1.300

Shandong −1.400 −2.700 1.800 Guizhou 0.100 0.600 0.400

Shanxi 0.200 0.000 0.200 Liaoning −2.800 −3.200 0.700

Guangdong −0.600 −1.700 1.600 Chongqin 1.500 0.700 3.200

Guangxi −3.100 −3.000 0.800 Shaanxi 1.200 2.700 4.400

Xinjiang −1.700 1.300 4.600 Qinghai 4.700 3.500 1.100

Jiangsu 0.500 0.000 0.500 Heilongjiang −2.100 −3.000 2.300

Mean −0.500 −0.600 1.500

TABLE 4 Average growth rate of fishery GTFP in coastal provinces from 2004 to 2019.

Province Mariculture TFP Freshwater 
aquaculture TFP

Province Mariculture TFP Freshwater 
aquaculture TFP

Shanghai 6.100 2.500 Hebei 8.600 −2.400

Tianjin 7.600 −4.200 Zhejiang 12.400 −9.600

Shandong 10.500 1.300 Hainan 5.300 −3.200

Guangdong 11.500 −3.700 Fujian 7.300 12.600

Guangxi 6.400 −2.900 Liaoning 13.200 28.100

Jiangsu 10.200 −1.400 Mean 9.000 1.600
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diminishing. This may be  related to China’s previous extensive 
economic development pattern. Following the global financial crisis 
in 2008, the Chinese government initiated large-scale investments to 
mitigate the crisis, contributing to the extensive nature of China’s 
economic development to some extent. Additionally, the economic 
growth pressure resulting from financial crises may lead to a relaxation 
of environmental regulatory.

3.3. Spatial evolution of GTFP growth in 
China’s fisheries sector

Figure 2 presents the spatial distribution of the GTFP growth in 
the Chinese fisheries sector for the years 2004–2005 and 2018–2019. 
According to Figure  2A, during the period of 2004–2005, the 
provincial-level administrative region with positive growth in fisheries 

GTFP are Xinjiang, Qinghai, Inner Mongolia, Jilin, Yunnan, Hunan, 
Anhui, Liaoning, Shandong, Shaanxi, Chongqing, Guizhou, Hubei, 
Jiangxi, Shanghai, Zhejiang, and Guangdong, totaling 17 provincial-
level administrative regions. Among them, Xinjiang, Qinghai, 
Shaanxi, Chongqing, Guizhou, Hubei, Liaoning, Jilin, Shandong, 
Jiangxi, Guangdong, Zhejiang, and Shanghai exhibited the fastest 
growth, belonging to the first tier. However, 13 provinces and cities 
including Heilongjiang, Gansu, Sichuan, Ningxia, Shanxi, Henan, 
Hebei, Beijing, Tianjin, Jiangsu, Guangxi, Hainan, and Fujian 
experienced a negative growth in GTFP in their fisheries sector.

According to Figure  2B, by 2019, there have been significant 
changes in the spatial distribution pattern of GTFP in China’s fisheries 
sector. In terms of quantity, compared to the period of 2004–2005, the 
number of provincial-level administrative regions with positive 
growth rates in GTFP increased significantly during 2018–2019, with 
a total of 24 regions experiencing positive growth. However, the 

TABLE 5 Average annual growth rates of fishery TFP by province, 2004–2019.

Province TFP EC TC Jiangxi TFP EC TC

Shanghai −1.300 0.000 −1.300 Hebei 1.000 0.000 1.000

Yunnan −0.300 1.200 −1.500 Henan −2.100 0.100 −2.200

Inner Mongolia 0.700 3.000 −2.200 Zhejiang −5.100 −2.000 −3.200

Beijing −0.500 0.000 −0.500 Hainan 1.800 0.000 1.800

Jilin 7.200 6.500 0.700 Hubei 1.100 −0.500 1.600

Sichuan −1.200 0.000 −1.200 Hunan 1.500 0.000 1.500

Tianjin −0.600 0.000 −0.600 Gansu −2.300 0.000 −2.300

Ningxia 0.000 0.000 0.000 Fujian 1.900 0.000 1.900

Anhui −0.500 −0.200 −0.300 Guizhou 1.100 0.000 1.100

Shandong 5.100 0.000 5.100 Liaoning 2.500 5.200 −2.600

Shanxi −1.500 0.000 −1.500 Chongqin 7.100 3.600 3.400

Guangdong −1.000 0.000 −1.000 Shaanxi 1.100 2.800 −1.700

Guangxi −1.900 −1.000 −0.900 Qinghai 1.100 7.300 −5.800

Xinjiang 1.200 0.000 1.200 Heilongjiang 2.600 −0.200 2.800

Jiangsu 5.400 13.600 −7.200 Mean 0.000 0.000 0.000

Jiangxi 0.800 1.300 −0.500
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The trends of fishery TFP and GTFP growth.
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number of regions belonging to the first tier in terms of growth 
decreased from 13 to 10.

Furthermore, examining the evolution of spatial distribution, it 
can be found that during the 2004–2005 period, the provincial-level 
administrative regions with the fastest growth rates were mainly 
located in the central and western regions. However, by 2018–2019, 
the provincial-level administrative regions with the fastest growth 
rates were primarily concentrated in the eastern coastal areas, with 8 
out of the top 10 fastest-growing situated in the eastern region. Since 
China’s accession to the WTO in 2001, the pace of opening up to the 

outside world has accelerated. As a forefront of openness, the eastern 
region has gained unprecedented development opportunities. The 
export volume of aquatic products has also increased significantly. 
However, the development of the fisheries sector has been relatively 
extensive, and the increase in export volume may have further 
solidified this development mode. Consequently, the growth of GTFP 
in certain provinces in the eastern region were relatively lower during 
the 2004–2005 period. However, since the new government took office 
in 2013, there has been a shift toward advocating high-quality 
development in the fisheries sector at the policy level. On the practical 
front, there have been continuous efforts to promote technological 
innovation and management practices. Leveraging better 
technological and industrial foundations, the eastern region has been 
at the forefront among all provinces and cities, leading to a rapid 
growth in GTFP in the fisheries sector.

3.4. Drivers of GTFP growth in China’s 
fisheries sector

3.4.1. Estimation results of spatial econometric 
models

In this section, the initial model used is the SDM. The Hausman 
test is employed to determine whether the fixed effects should 
be included. The p-value based on the Hausman test, as shown in 
Table 6, is 0.000, rejecting the use of the Random Effects (RE) model. 
The Likelihood Ratio test is conducted to choose between individual 
fixed effects, time fixed effects, and the combination of both. The LR 
test results indicate that the p-values for all the options are 0.000, 
rejecting the use of only individual fixed effects or time fixed effects. 
Thus, the appropriate choice is the two-way fixed effects that includes 
both individual and time fixed effects. The three traditional spatial 
econometric model specifications are SDM, SAR, and SEM. For the 
same research question, these models may yield different estimation 
results. Therefore, before conducting model estimation, it is necessary 
to determine the specific model form. This study follows the testing 

2004-2005

A B

2018-2019

FIGURE 2

Spatial distribution and evolution of GTFP growth in China’s fisheries industry. China’s administrative system, Beijing, Shanghai, Tianjin, and Chongqing 
are considered municipalities directly under the central government and are at the same administrative level as provincial-level regions. Therefore, 
when referring to “cities” in the text, we are specifically talking about these four direct-administered municipalities.

TABLE 6 Model test results.

Null 
hypothesis

Test type Statistics P-value

Supporting random 

effects

Hausman 62.38 0.000

Supporting 

individual fixed 

effects

LR 61.33 0.000

Supporting time 

fixed effects

LR 348.35 0.000

SDM model can 

degenerate into the 

SEM

Wald 95.92 0.000

SDM model can 

degenerate into the 

SAR

Wald 92.39 0.000

SDM model can 

degenerate into the 

SEM

LR 41.65 0.000

SDM model can 

degenerate into the 

SAR

LR 43.30 0.000
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strategy proposed by LeSage (2008) as well as Elhorst (2010). The 
SDM model is initially tested to examine whether it can degenerate 
into the SAR and SEM models. According to the results of the Wald 
test and LR test presented in Table 3, it is concluded that the SDM 
model cannot degenerate into the SEM and SAR models. Hence, the 
appropriate model choice is the SDM model. Considering all the 
testing results, this study adopts the SDM with two-way fixed effects. 
All subsequent empirical analyzes in this study will be  based on 
this model.

Table 7 presents the estimation results of the model, columns (1) 
show that the spatial autoregressive coefficients ρ are all significantly 
positive. This suggests that provinces with similar levels of economic 
development in terms of their fisheries sector tend to mutually 
enhance their TFP, demonstrating a beneficial spatial 
interactive pattern.

Columns (1) to (2), present the estimated results of the effects of 
natural environment, infrastructure, human capital, macroeconomic 
conditions, and government governance factors, as well as their spatial 
lag terms, on fisheries GTFP. Considering that the effect of rising 
temperature on fisheries GTFP may not be linear, the quadratic term 
of temperature is included in the model. The results show that the 
coefficient of the quadratic term of temperature is negative and 
statistically significant, indicating a “inverted U-shaped” relationship 
between temperature and fisheries GTFP. This suggests that excessively 
high temperatures are detrimental to the improvement of 
GTFP. Internet penetration rate and transportation convenience both 
show significant positive correlations with fisheries GTFP. On one 
hand, internet usage helps fisheries producers access market 
information, management information, innovative knowledge, and 
fisheries technology, thereby improving the productivity of fisheries 
units. On the other hand, the widespread use of the internet enables 
fisheries producers to reduce financing costs, influencing fisheries 
production. Additionally, Ankrah Twumasi et al. (2021) mentioned 
another positive mechanism of internet usage influencing fisheries 
GTFP, which is the income effect brought by non-agricultural work 
that can improve productivity. The increase in non-agricultural 
income promotes agricultural household income growth, allowing 
agricultural producers to have more funds to invest in better 
machinery, equipment, higher-quality feed, or fertilizers, thereby 
stimulating productivity improvement (Ma et al., 2018).

Regarding human capital, the average education level of rural 
labor and fisheries technical training are positively correlated with 
fisheries GTFP, but only the average education level shows statistical 
significance based on significance tests. According to Wang et  al. 
(2020), there are issues such as insufficient funds, outdated personnel 
structure, and inefficient management system in the promotion of 
aquaculture technology in China. This could be an important reason 
why fisheries technical training has not fully realized its potential. The 
level of trade openness has a negative correlation with fisheries GTFP, 
which is contrary to expectations. The potential reason for this is that 
the increase in trade openness not only expands the market size faced 
by fisheries producers but also increases the risks and uncertainties 
they face. The increase in uncertainty associated with trade openness 
outweighs the benefits it brings to GTFP, resulting in an inhibitory 
effect. Additionally, the negative impact may be  related to the 
disproportionate increase in input costs such as aquaculture feed, 
labor, and land, and the price increase of exported fisheries products. 
The rise in input costs exceeds the increase in output prices, resulting 

in decreased output per unit of input and lowered fisheries 
GTFP. Another unexpected result is the estimated effect of 
environmental governance investment intensity. The result shows that 
the increase in environmental pollution control investment intensity 
has an inhibitory effect on fisheries TFP. This may be  because 
environmental pollution control investment partly reflects 
government environmental regulations. According to existing studies 
(Ryan, 2012; He et  al., 2020), in the short term, environmental 
regulations force producers to reduce pollution emissions, but they 
also increase the cost expenditure for producers, which hinder the 
improvement of GTFP.

The spatial lag coefficients for fisheries disaster rate, fisheries 
technical training person-times, fisheries trade openness, and 
urbanization rate are all positive and statistically significant. This 
indicates that an increase in these variables in one province has a 
positive spatial spillover effect on the fisheries GTFP of its 
economically similar provinces. The spatial lag coefficient for 
transportation convenience is negative and statistically significant, 

TABLE 7 Estimated results of the SDM.

(1) (2)

FGTFP FGTFP

Temp 0.056 W*temp −0.020

(0.057) (0.059)

Temp2 −0.004** W*temp2 0.002

(0.002) (0.002)

Natdis −0.000 W*natdis 0.001*

(0.000) (0.000)

Internet 0.004*** W*internet 0.002

(0.002) (0.002)

Trans 0.042** W*trans −0.059**

(0.020) (0.024)

Aedu 0.064** W*aedu 0.054

(0.030) (0.043)

Lnpeop 0.008 W*lnpeop 0.022*

(0.009) (0.011)

Fishopen −0.048* W*fishopen 0.115***

(0.026) (0.033)

Urban −0.000 W*urban 0.008*

(0.003) (0.004)

Envir −0.032*** W*envir −0.026

(0.011) (0.017)

ρ 0.117***

(0.040)

Province fixed 

effects

YES

Year fixed effects YES

Observations 480

Within R2 0.161

Standard errors are shown in parentheses; ***, **, and * indicate significance at the 1, 5, and 
10% levels, respectively.
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suggesting an improvement in transportation convenience in one 
province has a negative spatial spillover effect on the fisheries GTFP 
of its economically similar provinces.

3.4.2. Decomposition of spatial effects
Despite the estimation results of the SDM provided in Table 7, 

which reflect the directions of the effects of natural environment, 
infrastructure, human capital, market size, and government 
governance on fishery GTFP, the point estimates of the coefficients do 
not capture the magnitude of the marginal effects of each factor on 
fishery GTFP. Therefore, following the approach presented by Lesage 
and Pace (2010), the effect of the five categories of factors on fishery 
GTFP is decomposed into direct effect, indirect effect, and total effect. 
The direct effect refers to the changes in fishery GTFP within a 
province caused by itself independent variables, including the spatial 
feedback effect on fishery GTFP. The indirect effect refers to the effect 
of the independent variables of a province on fishery GTFP in 
provinces with similar levels of economic development. The total 
effect is the sum of the direct and indirect effect. The decomposition 
is presented in Table 8.

The results of the direct effect in column (1) indicate that the 
estimated coefficients and significance of the quadratic term for 
temperature do not exhibit significant changes compared to Table 7. 
The estimated coefficient and statistical significance of internet 
penetration rate also remain unchanged. This result suggests that for 
every one-percentage-point increase in internet penetration rate, 
fishery GTFP will increase by 0.4%. The estimated coefficient for 
transportation convenience is 0.040, and it is statistically significant. 
This implies that for every one-percentage-point increase in the ratio 
of paved road mileage to land area, fishery GTFP will increase by 
approximately 0.04%. An increase of 1 year in the average years of 
education for rural residents will lead to a 6.8% increase in fishery 
GTFP. For every one-percentage-point increase in the ratio of fishery 
import and export trade to the total value of fishery production, 
fishery GTFP will decrease by approximately 0.04%. An increase of 
one percentage point in the proportion of environmental pollution 
control investment to GDP will result in a 3.4% decrease in 
fishery GTFP.

For indirect effect, for every one-percentage-point increase in 
the average fishery disaster rate of provinces with similar levels of 
economic development to the province being analyzed, the fishery 
GTFP of the province being analyzed will increase by 
approximately 0.1%. For every one-percentage-point increase in 
the ratio of paved road mileage to land area in provinces with 
similar levels of economic development to the province being 
analyzed, the fishery GTFP of the province being analyzed will 
decrease by approximately 0.06%. For every one-percentage-point 
increase in the number of technical training sessions for fishermen 
in provinces with similar levels of economic development to the 
province being analyzed, the fishery TFP of the province being 
analyzed will increase by approximately 0.03%. For every 
one-percentage-point increase in the ratio of import and export 
trade to the total value of fishery production in provinces with 
similar levels of economic development to the province being 
analyzed, the fishery GTFP of the province being analyzed will 
increase by approximately 0.12%. For every one-percentage-point 
increase in the urbanization rate in provinces with similar levels 
of economic development to the province being analyzed, the 

fishery GTFP of the province being analyzed will increase by 
approximately 0.8%.

Due to the different scales of the original variables, it is not 
possible to directly compare the estimated coefficients of the variables 
in columns (1) to (3) of Table 8. To determine which factor among the 
five factors of natural environment, infrastructure, human capital, 
market size, and government governance has the greatest promoting 
effect on fishery GTFP, all variables are standardized to unify the 
scales, and the model is re-estimated based on the standardized 
variables. The results are shown in columns (4) to (6) of Table 8. In 
column (4), the standardized coefficients of internet penetration rate 
and transportation convenience are the largest among all variables. 
Therefore, infrastructure has the largest positive direct effect on 
China’s fishery GTFP, followed by human capital. Specifically, for 
every one-standard-deviation increase in internet penetration rate and 
transportation convenience, the growth rate of fishery GTFP in a 
province will increase by approximately 0.46 standard deviations and 
0.29 standard deviations, respectively. In column (5), the standardized 
results show that the urbanization rate has the largest positive indirect 
effect on China’s fishery GTFP, followed by the number of technical 
training sessions for fishermen and the degree of fishery trade 
openness. Therefore, in combination, market size has the largest 
positive indirect effect on China’s fishery GTFP. For every 
one-standard-deviation increase in the urbanization rate, the number 
of technical training sessions for fishermen, and the degree of fishery 
trade openness in a province, the growth rate of fishery GTFP in 
provinces with similar levels of economic development to this 
province will increase by approximately 0.57, 0.22, and 0.21 standard 
deviations, respectively.

4. Conclusions and policy implications

Over the years, the inclusion of negative environmental 
externalities resulting from aquaculture pollution has posed a 
challenge in assessing fishery TFP growth at the provincial level in 
China. This study bridges this gap by estimating the negative 
environmental externalities associated with aquaculture, utilizing 
pollutant discharge coefficients from the “Handbook of Pollutant 
Generation and Discharge Coefficients for Aquaculture in the First 
National Pollution Source Census,” and aquaculture production data 
from the “China Fishery Statistical Yearbook.” By amalgamating the 
fishery capture and aquaculture sectors and integrating the estimations 
of aquaculture pollution emissions, this study endeavors to measure 
the GTFP growth of the entire fishery sector while meticulously 
examining the driving forces behind it.

Our study reveals that disregarding the environmental cost 
entailed by fishery production activities leads to an overestimation of 
fishery TFP growth. In comparison to GTFP growth that consider 
these costs, the growth rate of fishery TFP is inflated by 1.3% when 
such considerations are disregarded. In terms of its decomposition, 
the growth of fishery efficiency is overestimated by 0.7%, while fishery 
technological growth is underestimated by 1% in the absence of 
accounting for environmental costs. The expansion of fishery output 
primarily stems from augmented input factors rather than the TFP 
growth, indicative of an extensive pattern. Nonetheless, considering 
the progressively decelerating pace of fishery output growth, the 
contribution of increased input factors is gradually waning. Examining 

https://doi.org/10.3389/fsufs.2023.1281366
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Shen et al. 10.3389/fsufs.2023.1281366

Frontiers in Sustainable Food Systems 12 frontiersin.org

spatial distribution and evolution, we observe that in 2005, provinces 
and municipalities boasting the swiftest growth rates in GTFP were 
predominantly situated in China’s central and western regions. Among 
the 12 provinces with the highest growth rates, 7 were concentrated in 
these areas. By 2019, the provinces and municipalities leading in 
growth rates were predominantly found in the eastern region, with 8 
out of the top 10 provinces located there.

From the analysis of driving forces, provinces with similar levels 
of economic development in terms of their fisheries sector tend to 
mutually enhance their GTFP growth, demonstrating a beneficial 
spatial interactive pattern. The enhancement of fishery GTFP in a 
specific province can be facilitated by the improvement of factors such 
as internet penetration rate, transportation convenience, and rural 
residents’ education level. Moreover, the fishery disaster rate, 
fisherman training, fishery trade openness, and urbanization rate in a 
province exhibit positive spatial spillover effects on the fishery GTFP 
growth of provinces with similar levels of economic development. 
When comparing the direct and indirect effects of these driving 
factors, it becomes apparent that infrastructure factors, including 
internet penetration rate and transportation convenience, exert the 
most significant direct influence on fishery GTFP growth. Market size 
factors, including trade openness and urbanization rate, on the other 
hand, exhibit the largest indirect effects on fishery GTFP growth.

The enhancement of GTFP in the fishery sector holds significant 
implications for achieving high-quality economic development in 

fisheries. Our study offers valuable policy insights to guide the 
advancement of China’s fishery sector. Firstly, while prioritizing 
economic gains, it is imperative to ensure a balanced consideration of 
environmental benefits. This entails intensifying efforts to regulate 
pollution emissions arising from aquaculture activities and 
implementing stringent controls to prevent overfishing, thus 
safeguarding fishery resources. Secondly, the government should 
amplify its investments in foundational infrastructure, such as internet 
connectivity and road networks. This strategic approach aims to 
reduce information exchange costs and enhance logistical efficiency 
within the fishery sector. Thirdly, fostering regional market integration 
and bolstering inter-regional collaboration are pivotal. By promoting 
constructive interactions among different regions, we can stimulate 
the elevation of fishery GTFP and propel sustainable development.

There are still some areas that need further improvement in this 
study. Due to the difficulty in obtaining data on fishery resource 
stocks, this study directly uses the tonnage of fishing vessels as a 
measure of the pressure exerted by fishery production on fishery 
resources. However, this indicator may not be entirely accurate. For 
example, under different fishery resource stocks, the same tonnage of 
fishing vessels may exert different pressures on fishery resources. If 
we can collect data on fishery resource stocks in the future, it will 
enable us to estimate China’s fishery GTFP more accurately and 
providing stronger support for the formulation of more effective 
fishery management and policies.

TABLE 8 The decomposition of spatial effect.

Standardized Unstandardized

(1) (2) (3) (4) (5) (6)

Direct effect Indirect effect Total effect Direct effect Indirect effect Total effect

Temp 0.057 −0.017 0.040 1.3799 −0.4136 0.9663

(0.057) (0.056) (0.040) (1.3694) (1.3626) (0.9670)

Temp2 −0.004** 0.002 −0.001 −2.4929** 1.5193 −0.9736

(0.002) (0.002) (0.002) (1.2574) (1.4350) (1.1544)

Natdis −0.000 0.001* 0.001 −0.0111 0.0818* 0.0707

(0.000) (0.001) (0.001) (0.0279) (0.0468) (0.0562)

Internet 0.004*** 0.002 0.007*** 0.4639*** 0.2643 0.7282***

(0.001) (0.003) (0.002) (0.1579) (0.2760) (0.2697)

Trans 0.040** −0.060** −0.020 0.2880** −0.4345** −0.1466

(0.019) (0.025) (0.035) (0.1405) (0.1824) (0.2548)

Aedu 0.068** 0.067 0.136** 0.2504** 0.2466 0.4969**

(0.030) (0.048) (0.062) (0.1082) (0.1751) (0.2252)

Lnpeop 0.009 0.025** 0.034** 0.0752 0.2191** 0.2943**

(0.009) (0.012) (0.017) (0.0788) (0.1076) (0.1450)

Fishopen −0.043* 0.117*** 0.075 −0.0750* 0.2059*** 0.1309

(0.025) (0.037) (0.046) (0.0444) (0.0646) (0.0812)

Urban 0.000 0.008* 0.008* 0.0191 0.5679* 0.5870*

(0.003) (0.004) (0.004) (0.2254) (0.3235) (0.3071)

Envir −0.034*** −0.031 −0.065*** −0.1216*** −0.1133 −0.2349***

(0.012) (0.020) (0.024) (0.0422) (0.0713) (0.0881)

Standard errors are shown in parentheses; ***, **, and * indicate significance at the 1, 5, and 10% levels, respectively.
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