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Background: Lincomycin, a natural antibiotic, is widely used by animal and fishery 
husbandries to prevent infections and treat diseases. It endangers people’s health 
when they eat foods containing lincomycin residue, especially the frequent 
consumption of milk and chicken products containing lincomycin. Hence, it 
is extremely important to evaluate the content of lincomycin in food samples. 
However, a direct analysis of lincomycin in milk and chicken is quite difficult 
because of its very low concentration level and the presence of undesirable 
matrix effects. Therefore, selective and efficient extraction of lincomycin from 
complex food samples prior to its quantification is required.

Results: In this study, lincomycin-imprinted silica nanoparticles were prepared 
according to boronate affinity-based template-immobilized surface imprinting. 
Silica nanoparticles and boronic acid ligands 3-fluoro-4-formylphenylboronic 
acid were used as supporting materials and functional monomers, respectively. 
The prepared lincomycin-imprinted silica nanoparticles exhibited several 
significant results, such as good specificity, high binding capacity (19.45  mg/g), 
fast kinetics (6  min), and low binding pH (pH 5.0) toward lincomycin. The 
reproducibility of lincomycin-imprinted silica nanoparticles was satisfactory. 
The lincomycin-imprinted silica nanoparticles could still be  reused after seven 
adsorption–desorption cycles, which indicated high chemical stability. In addition, 
the recoveries of the proposed method for lincomycin at three spiked levels of 
analysis in milk and chicken were 93.3–103.3% and 90.0–100.0%, respectively.

Conclusion: The prepared lincomycin-imprinted silica nanoparticles are feasible 
for the recognition of target lincomycin with low concentrations in real food 
samples such as milk and chicken. Our approach makes sample pre-preparation 
simple, fast, selective, and efficient.
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1. Introduction

Antimicrobial agents are widely used to prevent and treat diseases 
and promote growth in animal husbandry (Ding et al., 2021; Khafi 
et al., 2023). However, food safety issue by veterinary drug residues 
has become a worldwide public health concern. As a lincosamide 
antibiotic, lincomycin (Lin) is widely used in human and veterinary 
medicine due to its excellent antibacterial effect (Dasenaki and 
Thomaidis, 2015; Koike et al., 2021). Meanwhile, Lin is also used in 
association with other antimicrobial drugs to treat livestock infections 
caused by Bacteroides fragilis, as well as diseases of the respiratory tract 
in different animal species (Maddaleno et al., 2019). However, it also 
has an adverse impact on human products and life because of the 
irrational use of Lin. Antibiotic residues may lead to disturbances in 
ecological functions and promote the development and distribution 
of resistant genes, which pose a potential risk to the environment 
(Bengtsson-Palme and Larsson, 2016; Andrade et al., 2020). Among 
the most important effects of Lin getting released into the environment 
are the transfer of Lin-resistant genes (LRGs) and the alteration of the 
microbial community, such as the impact on food safety and human 
health due to crop plant uptake (Mehrtens et  al., 2021). It affects 
people’s health when they eat foods containing Lin residue, especially 
the frequent consumption of milk and chicken products containing 
Lin. The acceptable maximum residual level (MRL) of Lin in milk and 
chicken was set at 150 and 200 μg kg−1 by the Codex Alimentarius 
Commission and the European Union, respectively (Du et al., 2019). 
Therefore, it is important to have in place an efficient way to evaluate 
the levels of Lin in animal-derived food samples such as milk 
and chicken.

Thus far, a variety of analytical methods have been used to 
evaluate Lin in different real samples including GC–MS (Tao et al., 
2011), LC–MS (Khadim et al., 2023), LC–MS/MS (Fernandes-Cunha 
et al., 2015; Maddaleno et al., 2019; Du et al., 2021; Li et al., 2021), and 
immunoassay (Zhou et al., 2014; Cao et al., 2015). Although these 
methods have many advantages, especially good sensitivity and 
accuracy, most of them suffer from several drawbacks, such as costly 
instruments, complicated sample preparation, long time consumption, 
and poor storage stability. This compels the need for a simple, fast, and 
sensitive quantitative method that absorbs Lin in food samples. 
However, the low content of Lin and high content of complex 
interfering substances add to the difficulty and challenges in the direct 
determination of Lin in food samples using UV detection. Therefore, 
an efficient sample pre-preparation prior to detection becomes very 
necessary, including separation and enrichment of Lin in food samples.

Molecularly imprinted polymers (MIPs) have been used as 
efficient solid phase extraction (SPE) adsorbents on account of their 
high specificity, easy preparation, low cost, and good physicochemical 
stability (Vlatakis et al., 1993; Li et al., 2015; Hao et al., 2016). To the 
best of our knowledge, although there are several reports on the 
preparation of MIPs for Lin to date (Li et al., 2017; Zhang et al., 2019; 
Dong et al., 2020), the molecular imprinting used in these studies was 
performed through a one-pot process. In fact, such an imprinting 
methodology is bulk imprinting in essence because the thickness of 
the imprinted coating cannot be calibrated to the size of the template, 
which thereby greatly affects the imprinting effect. To address these 
issues, the template-immobilized surface imprinting approach (Li 
et al., 2015; Hao et al., 2016; Zhang et al., 2022) should be used to 
prepare imprinting coating on the surface of silica because it can 

be adjusted to the size of the template effectively. This method of 
surface imprinting offers several advantages, including easy template 
removal, high binding capacity, and fast mass transfer. Recently, 
we  used boronate affinity-based oriented surface imprinting to 
prepare chlorogenic acid-imprinted magnetic nanomaterials and 
catecholamine-imprinted magnetic nanomaterials, which were 
applied, respectively, for the selective recognition of chlorogenic acid 
in fruit juices and for trace analysis of catecholamine in human urine 
(Li et al., 2020; Li P. et al., 2022). However, the binding capacity of the 
above imprinted magnetic nanomaterials was relatively low. In 
addition, this kind of template-immobilized surface imprinting has 
not been used to develop MIPs for Lin for food safety in previous 
reports. The pesticide residue of Lin is one of the most important food 
safety concerns. In this study, a novel boronic acid ligand, FFPBA, has 
been used for the first time as a functional monomer, and its pKa value 
has also been measured for the first time. Although boronic acid 
functionalized magnetic nanoparticles (MNP) were developed for 
highly efficient capture of lincomycin (Zhang et al., 2023), the selective 
ability of the boronic acid functionalized magnetic nanoparticles for 
Lin was weak due to the absence of an imprinting site. To improve its 
selectivity and binding, boronate affinity-based imprinted 
nanoparticles specific to Lin were prepared.

In the template-immobilized surface imprinting strategy, template 
immobilization and removal are the key steps. Fortunately, Lin has a 
cis-diols structure; boronate affinity materials can covalently bind 
compounds with cis-diol at high pH values, and boronate esters can 
dissociate at relatively low pH values under mild ambient conditions 
(Liu et  al., 2012; Qu et  al., 2012; Li D. et  al., 2022). In addition, 
3-fluoro-4-formylphenylboronic acid (FFPBA) has been used for the 
first time as boronic acid ligands to immobilize and imprint Lin. Silica 
nanoparticles (SiO2), due to their good biocompatibility, low toxicity, 
easy post-modification, high yield synthesis, and easy preparation, can 
be used successfully as solid substrates (He et al., 2010; Lin et al., 2012; 
Arabi et al., 2016). Therefore, high-density boronic acid ligands can 
be  formed on the surface of SiO2 by post-modification reactions. 
Furthermore, the imprinted coating is important for the binding 
properties of the imprinted materials. The poly (2-anilinoethanol) 
with a more hydrophilic domain can be  used as a good 
imprinting coating.

In this study, we attempted to prepare novel Lin-imprinted silica 
nanoparticles (Lin-imprinted SiO2@APTES@FFPBA) using a 
boronate affinity-based template-immobilized surface imprinting 
approach. As depicted in Figure 1, the imprinting process included 
three steps. First, Lin was immobilized onto FFPBA-functionalized 
SiO2 (SiO2@APTES@FFPBA) through boronate affinity interaction. 
Then, the 2-anilinoethanol was self-polymerized on the surface of 
SiO2@APTES@FFPBA to form an imprinting coating with appropriate 
thickness. Generally, the thickness of the imprinting coating should 
be adjusted to 1/3 to 2/3 of the molecular size of the template in one 
of the three dimensions. Finally, the Lin template was removed by an 
acidic solution with SDS to form the MIPs with an imprinting cavity 
containing FFPBA. Because the obtained imprinting coating could 
cover excessive binding sites, non-specific adsorption could 
be effectively eliminated. The prepared Lin-imprinted SiO2@APTES@
FFPBA exhibited several significant advantages, such as good 
specificity, high binding capacity, fast kinetics, and low binding pH 
toward Lin. In addition, the recoveries of the proposed method for Lin 
at three spiked levels of analysis in milk and chicken were 95.3–102.7% 
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and 96.8–104.5%, respectively, which indicated the successful 
detection of Lin in real samples.

2. Experimental materials and 
methods

2.1. Materials

Adenosine (A), deoxyadenosine (DA), guanosine (G), 
2’-O-methylguanosine (Gm), dopamine (Dop), rutin (Rut), quercertin 
(Que), Baicalein (Bai), Vitamin b12, genistein (Gen), kaempferol 
(Kae), Lin, desonide (Des), 2-anilinoethanol, tetraethoxysilane 
(TEOS), (3-amino-propyl) triethoxysilane (APTES), ammonium 
persulfate (APS), FFPBA, Sodium cyanoborohydride, and anhydrous 
methanol were purchased from J&K Scientific Ltd. (Shanghai, China). 
All other reagents were of analytical grade or above and used without 
further treatment.

2.2. Instruments

Transmission electron microscopy (TEM) characterization was 
performed on a JEM-1010 system (JEOL, Tokyo, Japan). UV 
absorbance and the adsorption isotherm measurements were carried 
out using a U-3010 UV spectrophotometer equipped with a 1-cm 
cuvette (Kyoto, Japan). The X-ray photoelectron spectroscopy (XPS) 
was performed with an ESCALAB 250Xi X-ray photoelectron 
spectrometer (Thermo, USA) with Al Kα radiation (hv = 1486.6 eV). 
The instrument was calibrated against the C1s band at 284.8 eV. Powder 

X-ray diffraction (XRD) analyses were carried out using a Bruker D8 
Advance diffractometer with Cu Kα radiation, and the scanning angle 
ranged from 10° to 80° of 2θ.

2.3. Preparation of FFPBA-functionalized 
silica nanoparticles (SiO2@APTES@FFPBA)

FFPBA-functionalized MNPs were prepared by the following 
three-step reaction (Figure 1): (1) synthesis of silica nanoparticles 
(SiO2), (2) functionalization with APTES (SiO2@APTES), and (3) 
functionalization of SiO2@APTES using FFPBA by the Schiff base 
reaction (SiO2@APTES@FFPBA). The bare SiO2 was synthesized 
according to a modified previously reported method (Lin et al., 
2014). Briefly, 6 mL of TEOS was gradually added to a mixture of 
100 mL ethanol, 4 mL deionized water, and 3.2 mL aqueous solution 
of 25–28% ammonium. The mixture solutions were vigorously 
stirred at 30°C for 24 h. The resulting SiO2 was rinsed with water 
and ethanol three times in sequence and then vacuum-dried at 
40°C overnight. Then, 1.0 mL of APTES was added dropwise to 
20 mL anhydrous methanol containing 120 mg SiO2, and the SiO2@
APTES was obtained by stirring the mixture for 24 h. The resultant 
SiO2@APTES was purified by three cycles of centrifugation, 
separation, and resuspension in ethanol by ultrasonication and 
dried at room temperature under vacuum for further use. The third 
step was to functionalize SiO2@APTES with FFPBA. 100 mg of 
SiO2@APTES was added to 150 mL anhydrous methanol containing 
2.0 g FFPBA, and the obtained mixture was stirred for 12 h at 
30°C. After that, sodium cyanoborohydride was added into the 
above solution (400 mg every 6 h) and kept for 24 h at 30°C. The 

FIGURE 1

The formation mechanism of Lin-imprinted silica nanoparticles by boronate affinity-based template-immobilized surface imprinting.
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SiO2@APTES@FFPBA was separated from the mixtures by a 
magnet and washed with water and ethanol in turn. The dried 
SiO2@APTES@FFPBA was obtained using vacuum drying (40°C) 
and needed cold preservation.

2.4. Selectivity of SiO2@APTES@FFPBA

The selectivity of SiO2@APTES@FFPBA was evaluated using A, 
G, and Lin as cis-diol compounds with DA and Gm as non-cis-diol 
analogs. The cis-diol or non-cis-diol solution (1 mg/mL) was obtained 
after they were dissolved in 50 mM PBS (pH 7.0), respectively. SiO2@
APTES@FFPBA of 3 mg were dispersed into 1 mL above solution 
respectively, and the mixture was shaken at room temperature for 
30 min. Then, the obtained targets-treated SiO2@APTES@FFPBA 
were collected by magnetic force and rinsed with 500 μL PBS (pH 7.0) 
three times. After that, the target-treated SiO2@APTES@FFPBA were 
eluted with an acetic acid solution for 1 h, and the obtained eluates 
containing targets were collected.

2.5. Preparation of Lin-imprinted SiO2@
APTES@FFPBA

The Lin-imprinted SiO2@APTES@FFPBA were prepared 
according to the boronate affinity-based template-immobilized 
surface imprinting approach. As depicted in Figure 1, Lin templates 
were first immobilized onto SiO2@APTES@FFPBA. Specifically, 
100 mg of SiO2@APTES@FFPBA were dispersed into 20 mL phosphate 
buffer solution (pH 7.0) containing 20 mg Lin, and the obtained 
suspension was shaken at 25°C for 1 h. The obtained Lin-immobilized 
SiO2@APTES@FFPBA were collected and washed with 50 mM 
phosphate buffer solution (pH 7.0). Then, 80 mg Lin-immobilized 
SiO2@APTES@FFPBA were dispersed into 10 mL 2-anilinoethanol 
solution (100 mM in pH 7.0 PBS) and shaken at 25°C for 5 min. 
Subsequently, 10 mL APS solution of 50 mM was added into the 
above-obtained suspension. The mixture was rapidly sealed and 
shaken at 25°C for 30 min. The imprinted polymer layer was formed 
by the self-polymerization of 2-anilinoethanol. Finally, the Lin 
templates were removed using 100 mM acetic acid and then washed 
with water and ethanol. The same process was followed for the 
preparation of non-imprinted SiO2@APTES@FFPBA, except it did 
not involve Lin templates.

2.6. Optimization of imprinting conditions

As key imprinting conditions, the concentration of 
2-anilinoethanol and polymerization time were investigated by 
measuring the imprinting effect. The Lin solution of 1 mg/mL in 
50 mM phosphate (pH 7.0) was applied as a template solution. An 
equivalent Lin-imprinted SiO2@APTES@FFPBA was added to each 
centrifuge tube. Then, 500 μL of Lin template solution was added to a 
centrifuge tube with Lin-imprinted SiO2@APTES@FFPBA and shaken 
for 1 h at 25°C. After the Lin-immobilized SiO2@APTES@FFPBA was 
washed with phosphate buffer of pH 7.0 two to three times, an 
equivalent 10 mL of 2-anilinoethanol and APS solutions at different 
concentrations was added in sequence to obtain the concentration of 

2-anilinoethanol at 20, 40, 60, 80, and 100 mM. Additionally, the 
process of polymerization was carried out for a duration of 5–60 min.

The imprinting factor (IF) was calculated by the ratio of QMIPs to 
QNIPs, which was used to evaluate the imprinting effect of 
Lin-immobilized SiO2@APTES@FFPBA toward Lin. QMIPs and QNIPs 
(mg/g) represent the adsorption capacities of Lin-immobilized SiO2@
APTES@FFPBA and non-imprinted SiO2@APTES@FFPBA for Lin.

2.7. Specificity of Lin-imprinted SiO2@
APTES@FFPBA

The specificity of the Lin-immobilized SiO2@APTES@FFPBA for 
Lin was evaluated using nine samples, including Lin, Dop, Rut, Que., 
Bai, VB12, Gen, Des, and Kae. First, an equivalent amount of 
Lin-imprinted SiO2@APTES@FFPBA was added to each centrifugal 
tube of 1.5 mL. Each sample solution (1 mg/mL) of 500 μL was added 
to each centrifuge tube and shaken at 25°C for 1 h. After being washed 
with phosphate buffer three times, the Lin-immobilized SiO2@
APTES@FFPBA were eluted using 100 μL of acetic acid solution (pH 
2.7) for 2 h. The eluent was measured with UV absorbance at 
maximum absorption wavelength. The measurement was repeated 
three times.

2.8. Determination of the pKa value of 
FFPBA

The pKa value of FFPBA was measured according to the previously 
reported method. UV absorption changes were measured by the 
titration of 0.1 mM solution of FFPBA in 100 mM phosphate buffer 
with 1 M sodium hydroxide. The wavelength of the spectrophotometer 
was set at 268 nm, and a pH meter was fixed in the solution to 
continuously record the pH of the solution.

2.9. Binding isotherm and Scatchard 
analysis

The dissociation constant (Kd) and maximum binding capacity 
(Qmax) were determined according to a previously reported method (Li 
et  al., 2015). An equivalent quantity of Lin-immobilized SiO2@
APTES@FFPBA (3 mg each) was mixed with 500 μL of Lin solutions 
at different concentrations (0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.10, 
and 0.12 mg/mL) in centrifuge tubes. Then, the obtained mixture 
solutions were shaken on a rotator for 1 h at room temperature. The 
Lin-imprinted SiO2@APTES@FFPBA were collected, rinsed, and 
eluted with PBS (pH 7.0) and acetic acid solution, respectively. The 
obtained eluates were used to measure the Lin in the eluates. The Kd 
and Qmax were calculated based on the following Scatchard equation 
(Li et al., 2015):

 

Q
C

Q
K

Q
K

e

s d

e

d
= −max

Qe and Cs are the binding capacity and the free concentration of 
the Lin-imprinted SiO2@APTES@FFPBA for Lin at equilibrium, 
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respectively. Kd and Qmax can be calculated from the slope and the 
intercept of the plots of Qe/Cs versus Qe.

2.10. Analysis of Lin in real milk and 
chicken samples

70 mL of milk was placed in a 100 mL centrifugal tube and shaken 
with ultrasound for 10 min to achieve a uniform milk sample (Li and 
Bie, 2017). To determine Lin in milk, 30 mg of Lin-imprinted SiO2@
APTES@FFPBA was added to 15 mL of the milk sample and shaken 
for 10 min at room temperature. The Lin-imprinted SiO2@APTES@
FFPBA, which absorbed the Lin, was eluted with acetic acid, and the 
eluent was collected and measured. To evaluate the recoveries of Lin 
in the milk sample, different amounts of Lin were mixed into milk to 
obtain milk solutions containing Lin at different concentrations (0.05, 
0.15, and 0.30 μg/g). Then, an equivalent quantity of Lin-imprinted 
SiO2@APTES@FFPBA was placed in the above-prepared 15 mL milk 
solution. After washing, Lin-imprinted SiO2@APTES@FFPBA were 
eluted with 2 mL acetic acid solution (pH 2.7) each time for three 
times, and 6 mL of eluent was collected. The feasibility of pretreatment 
of Lin in milk by Lin-imprinted SiO2@APTES@FFPBA was analyzed 
by HPLC-UV.

Chicken samples (20 g) were added to 80 mL acetonitrile and 
extracted by ultrasonics for 40 min (Li et al., 2017). Then, the extracted 
solutions were transferred into a 100 mL flask for evaporation and 
drying on a rotary evaporator. The final residue was dissolved in 20 mL 
PBS (100 mM in pH 7.0) to form chicken sample solutions containing 
Lin. Then, 20 mg of Lin-imprinted SiO2@APTES@FFPBA was added 
to 5 mL of the chicken sample solutions and shaken for 10 min at room 
temperature. The Lin-imprinted SiO2@APTES@FFPBA, which 
absorbed the Lin, was eluted with acetic acid, and the eluent was 
collected and measured by absorbance. To evaluate the recoveries of 
Lin in chicken samples, equivalent amounts of Lin-imprinted SiO2@
APTES@FFPBA were placed in the chicken sample solutions 
containing Lin at different concentrations (0.10, 0.20, and 0.40 μg/g). 
Lin-imprinted SiO2@APTES@FFPBA after adsorption were collected 
and washed with pH 7.0 PBS. Next, Lin-imprinted SiO2@APTES@
FFPBA were eluted with 2 mL acetic acid solution (pH 2.7) each time 
for three times, and 6 mL of eluent was collected and analyzed by 
HPLC-UV.

3. Results and discussion

3.1. Characterization of Lin-imprinted 
SiO2@APTES@FFPBA

Figure 2A represents the TEM images of Lin-imprinted SiO2@
APTES@FFPBA. It can be observed clearly that Lin-imprinted SiO2@
APTES@FFPBA exhibits approximately spherical morphologies and 
relatively narrow size distributions with a diameter of about 100 nm. 
This result indicated that the Lin-imprinted SiO2@APTES@FFPBA 
had satisfactory dispersibility, which is highly advantageous for the 
selective recognition of Lin.

To verify the successful preparation of Lin-imprinted SiO2@
APTES@FFPBA, X-ray photoelectron survey spectrometry (XPS) of 
bare SiO2 and Lin-imprinted SiO2@APTES@FFPBA was investigated. 

As shown in Figure 2B, the XPS spectrum exhibited an O 1 s peak at 
531 eV and a Si 2p peak at 105 eV in bare SiO2. While the XPS 
spectrum exhibited a C 1 s peak at 286 eV, O 1 s peak at 531 eV, Si 2p 
peak at 105 eV, N 1 s peak at 399 eV, and B 1 s peak at 191 eV in 
Lin-imprinted SiO2@APTES@FFPBA. The peak at a binding energy 
of 191 eV could be assigned to B atoms in the form of Lin-imprinted 
SiO2@APTES@FFPBA, which proved successful preparation of 
Lin-imprinted SiO2@APTES@FFPBA. In addition, the crystalline 
nature of bare SiO2 and Lin-imprinted SiO2@APTES@FFPBA could 
be confirmed by XRD analysis. As depicted in Figure 2C, the relatively 
discernible strong diffraction peaks corresponding to SiO2 (2θ = 
24.2°) were observed in the curves of two samples, which highly 
corresponded to the crystalline planes of cubic spinel nanostructure 
of the silica nanoparticles. This result indicated that the structure of 
the carrier SiO2 was not changed during the coating process of the 
imprinted layer.

3.2. Selectivity of SiO2@FFPBA

The post-modification of SiO2 with boronic acid is a key for 
boronate affinity-based template-immobilized surface imprinting. The 
post-modification of boronic acids can be confirmed by investigating 
the selectivity of the FFPBA-functionalized SiO2 for cis-diols. A and 
G were tested as cis-diol-containing compounds, while DA and Gm 
were tested as non-cis-diol analogs. As seen in Figure 3, the boronic 
acid-modified SiO2 (SiO2@FFPBA) exhibited a higher binding amount 
for A or G than DA or Gm under neutral pH conditions (pH 7.0). 
Obviously, this result indicated that the SiO2@FFPBA provided 
excellent selectivity. Because Lin contains one cis-diol, the SiO2@
FFPBA exhibited a relatively high binding capacity for Lin. Clearly, the 
boronic acid-functionalized SiO2 exhibited selective binding to 
cis-diol-containing compounds. These results also confirmed the 
successful immobilization of boronic acid FFPBA onto the SiO2.

3.3. Investigation of imprinting conditions

For the boronate affinity-based template-immobilized surface 
imprinting, the thickness of the imprinted coating on the surface of 
the SiO2@FFPBA substrate is key for the binding properties of the 
imprinted materials. Generally, the thickness of the imprinted coating 
must be calibrated to a smaller size than the template. As we know, the 
thickness of the imprinted coating is closely related to the 
concentration of 2-anilinoethanol and polymerization time, and the 
influence of these two factors on the imprinting effect was 
systematically evaluated by IF. The thickness of the imprinting coating 
on SiO2 is in direct proportion to the concentration of 2-anilinoethanol. 
The most appropriate 2-anilinoethanol concentration could 
be evaluated by the binding capacity of MIP and NIP prepared at 
different concentrations. As observed from Figure  4A, the most 
appropriate 2-anilinoethanol concentration was 60 mM, with an IF 
value reaching 7.11. In addition, the influence of polymerization time 
on the imprinting effect was also investigated. It can be observed from 
Figure 4B that the binding capacity of MIP for Lin gradually increased 
with time from 10 to 30 min, while the NIP gradually decreased. 
However, when the polymerization time was more than 30 min, the 
binding capacity of MIP for Lin decreased, and NIP remained nearly 
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constant over time. Clearly, the changing trends of the IF were in good 
accordance with that of the binding amount of MIP. Thus, the optimal 
imprinting conditions for Lin was the self-polymerization of 60 mM 
2-anilinoethanol for 30 min, which provided the best IF of 7.11. The 
high IF can be attributed to the fact that there were no boronic acid 
moieties outside of the imprinted cavities in the current imprinting 
method. For other antibiotic templates, the good choice is to employ 

a simple and effective method with the preferred optimized conditions 
reported here and only tune the polymerization time. If they do not 
work well, a de novo optimization should be carried out.

3.4. Specificity of Lin-imprinted SiO2@
APTES@FFPBA

To evaluate the specificity of Lin-imprinted SiO2@APTES@
FFPBA for Lin, several compounds, including Dop, Rut, Que., Bai, 
VB12, Gen, Des, and Kae, were selected as competitive compounds. 
As depicted in Figure 5, compared to the competitive compounds, 
Lin-imprinted SiO2@APTES@FFPBA exhibited a higher binding 
capacity for Lin. In other words, Lin-imprinted SiO2@APTES@FFPBA 
provided a higher affinity for Lin. Although Dop, Rut, Bai, and Que. 
contain cis-diols, Lin-imprinted SiO2@APTES@FFPBA exhibited a 
relatively low binding capacity for these compounds. Therefore, the 
obtained Lin-imprinted SiO2@APTES@FFPBA possessed excellent 
specificity toward Lin. This result implied that the boronate affinity-
template immobilized surface imprinting strategy gained great success 
due to the thickness-controllable imprinting coating generated by the 
in-water self-polymerization of 2-anilinoethanol. Comparatively, the 
non-imprinted SiO2@APTES@FFPBA (NIP) only exhibited a very 
slight affinity toward Lin and other competitive compounds, 
indicating that the imprinting coating contained only limited 
non-specific binding sites.

FIGURE 2

TEM images of Lin-imprinted SiO2@APTES@FFPBA (A), XPS spectra (B), and XRD spectra (C) of bare SiO2 (A) and Lin-imprinted SiO2@APTES@FFPBA (B).

FIGURE 3

The binding amount of different analytes captured by boronic-acid 
modified SiO2 (SiO2@FFPBA). Binding buffer: 50  mM sodium 
phosphate buffer (pH 7.0); elution solution: 100  mM HAc (pH 2.7); 
samples: A, DA, Gm, G, and Lin dissolved in binding buffer (1  mg/mL).
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3.5. Binding pH

The binding pH is an important binding property that is positively 
related to the binding affinity of boronic acids toward cis-diols. The 
binding affinity and binding pH are determined by the structures of 
the boronic acid ligands and supporting materials (Lin-imprinted 
SiO2@APTES@FFPBA). As shown in Figure  6A, the pKa value of 

FFPBA was measured to be approximately 5.8 due to the presence of 
electron-withdrawing groups in FFPBA. Clearly, these specific boronic 
acid ligands could work under low pH conditions of 6.0 (Figure 6B). 
In addition, the imprinted cavities in the Lin-imprinted SiO2@
APTES@FFPBA could lead to higher binding affinity, thereby 
providing lower binding pH. To confirm this, the effect of pH on the 
binding capacity of Lin-imprinted SiO2@APTES@FFPBA and 
non-imprinted SiO2@APTES@FFPBA was investigated. As depicted 
in Figure 6B, Lin-imprinted SiO2@APTES@FFPBA exhibited a lower 
binding pH value (pH 5.0) as compared with SiO2@APTES@FFPBA 
(pH 6.0), while non-imprinted MNPs provided very limited binding 
capacity for Lin. The binding pH shift was due to the imprinted 
cavities in the structure of Lin-imprinted SiO2@APTES@FFPBA. Such 
a pH shift is beneficial because a lower binding pH value generally 
results from increased affinity toward cis-diol compounds. These 
results indicated that Lin-imprinted SiO2@APTES@FFPBA can 
enlarge the range of pH when directly applied to real samples without 
requiring pH adjustment.

3.6. Binding equilibrium

In order to evaluate the binding equilibrium time of Lin-imprinted 
SiO2@APTES@FFPBA toward Lin, the effect of the response time on 
binding capacity (Q) was investigated (Figure 7). As seen in Figure 7, 
Lin-imprinted SiO2@APTES@FFPBA had a faster adsorption rate 
than non-imprinted MNPs within the first 6 min. When the response 
time exceeded 6 min, the adsorption rate quickly slowed down, and 
the binding reaction reached equilibrium at 6 min. This result implied 
that most of the binding sites had been occupied by Lin in such a 
situation. Clearly, such an equilibrium time of Lin-imprinted SiO2@
APTES@FFPBA for Lin was lower than that of other imprinted 
polymers (8–90 min) (Gu et al., 2010; Li et al., 2012, 2017, 2018a; He 
et  al., 2014; Hao et  al., 2016). This result indicated that the 
Lin-imprinted SiO2@APTES@FFPBA for Lin showed good 
binding kinetics.

3.7. Determination of Kd and Qmax

As we know, the binding affinity of Lin-imprinted SiO2@APTES@
FFPBA can determine how low concentrations of Lin can be extracted 
by Lin-imprinted SiO2@APTES@FFPBA. Therefore, the binding 
isotherm of the Lin-imprinted SiO2@APTES@FFPBA toward Lin was 
investigated to evaluate its binding affinity. As shown in Figure 8A, the 
Lin-imprinted SiO2@APTES@FFPBA exhibited much higher binding 
capacity toward Lin as compared with the non-imprinted SiO2@
APTES@FFPBA. According to the binding isotherm, a Scatchard plot 
was drawn (Figure 8B), which could provide Qmax and Kd values of 
Lin-imprinted SiO2@APTES@FFPBA. These were (19.45 ± 1.44) mg/g 
and (3.65 ± 0.38) × 10−5 M, respectively. Clearly, Lin-imprinted SiO2 
exhibited much higher binding capacity than other imprinted 
nanomaterials (Gu et al., 2010; Li et al., 2018a,b,c,d). Such a high-
binding capacity could result from the combination of SiO2 with easy 
post-modification and FFPBA with low pKa. Conversely, it also 
benefited from the high imprinting efficiency. The strong binding 
strength of the prepared Lin-imprinted SiO2@APTES@FFPBA for Lin 
favors the extraction of Lin of trace concentrations.

FIGURE 4

Effects of imprinting conditions of the target amount captured by the 
Lin-imprinted SiO2@APTES@FFPBA and the imprinting factor (IF). 
(A) concentration of 2-anilinoethanol; (B) polymerization time.

FIGURE 5

Comparison of the amount of different compounds captured by the 
Lin-imprinted SiO2@APTES@FFPBA (MIP) and non-imprinted SiO2@
APTES@FFPBA (NIP). Binding buffer: 50  mM phosphate buffer (pH 
7.0); eluate: 100  mM HAc (pH 2.7); samples: 1  mg/mL Lin, Dop, Rut, 
Que., Bai, VB12, Gen, Des, and Kae dissolved in binding buffer.
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3.8. Reproducibility and reusability

The reproducibility of the obtained Lin-imprinted SiO2@APTES@
FFPBA was evaluated by using six batches of Lin-imprinted SiO2@
APTES@FFPBA prepared on different days, and the measurements 

replicated three times in parallel. It can be observed from Figure 9A 
that each individually prepared Lin-imprinted SiO2@APTES@FFPBA 
exhibited similar binding capacities for Lin (21.30, 18.89, 17.43, 18.16, 
17.85, and 17.46) mg/g, respectively. These results indicated that the 
reproducibility of Lin-imprinted SiO2@APTES@FFPBA was 
satisfactory because the boronate affinity-based template immobilized 
surface imprinting was beneficial.

One of the main advantages of MIPs over native antibodies is their 
ability to be  reused. Thus, the reusability of Lin-imprinted SiO2@
APTES@FFPBA was investigated, and the adsorption–desorption 
cycle was repeated ten times using the same batch of Lin-imprinted 
SiO2@APTES@FFPBA (Figure  9B). Even after six adsorption–
desorption cycles, the adsorption capacity of Lin-imprinted SiO2@
APTES@FFPBA = changed very little. Clearly, Lin-imprinted SiO2@
APTES@FFPBA could still be  reused after seven adsorption–
desorption cycles. Thus, Lin-imprinted SiO2@APTES@FFPBA 
possesses high chemical stability.

3.9. Determination of Lin in food samples

In order to investigate the performance of the prepared 
Lin-imprinted SiO2@APTES@FFPBA in food samples, the selective 
separation and determination of Lin from milk and chicken samples 
by Lin-imprinted SiO2@APTES@FFPBA was carried out. The 
obtained results are given in Table 1. Clearly, the content of Lin in 
chicken was evaluated to be 0.025 μg/g, and no Lin was found in the 

FIGURE 6

(A) The pH-dependence of the absorbance at 268  nm of FFPBA and 
(B) Target binding capability Q of Lin-imprinted SiO2@APTES@FFPBA 
(MIP), non-imprinted SiO2@APTES@FFPBA (NIP), and SiO2@FFPBA at 
different pH values. Sample: 1  mg/mL Lin dissolved in 50  mM 
phosphate buffer (pH 4.0, 5.0, 6.0, and 7.0).

FIGURE 7

Binding equilibrium of Lin-imprinted SiO2@APTES@FFPBA and non-
imprinted SiO2@APTES@FFPBA. Sample: 1.0  mg/mL of Lin containing 
50  mM phosphate, pH 7.0.

FIGURE 8

(A) Binding isotherms for binding of the Lin-imprinted SiO2@APTES@
FFPBA and non-imprinted SiO2@APTES@FFPBA to Lin, and 
(B) Scatchard plots for the binding of the Lin-imprinted SiO2@
APTES@FFPBA to Lin.
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milk solution. In addition, to investigate the accuracy of the method 
by selective separation and determination of Lin in real food samples, 
the evaluation of Lin in milk and chicken was performed. The 
recoveries were investigated with three standard amounts of Lin added 
in milk and chicken solutions, and the spiked concentration was fixed 
at 0.05, 0.15, 0.30 μg/mL, and 0.10, 0.20, 0.40 μg/mL, respectively. By 
extraction and determination of Lin, the recoveries for milk and 
chicken solutions were shown in Table 1. The recoveries of Lin for 
milk and chicken solution were evaluated to be 93.3–103.3% and 

90.0–100.0%, respectively. In addition, the RSD for milk and chicken 
solution ranged from 2.5–5.3% and 3.0–4.5%. The results indicated 
that the proposed method is accurate, sensitive, and selective for the 
determination of Lin in animal-derived food samples.

4. Conclusion

In this study, we  used boronate affinity-based template-
immobilized surface imprinting to prepare the boronate affinity-based 
Lin-imprinted SiO2@APTES@FFPBA for the first time. The pKa value 
of FFPBA was first investigated. The use of boronic acid FFPBA in the 
MIPs provided several highly attractive features, including high 
specificity, high binding affinity, and low binding pH. Clearly, the 
prepared Lin-imprinted SiO2@APTES@FFPBA are feasible for the 
recognition of target Lin with low concentrations in real food samples. 
We  foresee rapid development and promising applications of this 
approach in the future.
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FIGURE 9

Batch-to-batch reproducibility (A) and reusability (B) of Lin-
imprinted SiO2@APTES@FFPBA. Sample: 1  mg/mL of Lin containing 
50  mM phosphate, pH 7.0.

TABLE 1 Results of sample assay and recoveries for the determination of 
Lin (n  =  3).

Samples Spiked 
levels 
(μg/g)

Found 
(μg/g)

Recoveries 
(%)

RSD 
(%)

Milk 0.00 Not 

detected

-- --

0.05 0.05 100.0 2.5

0.15 0.14 93.3 4.6

0.30 0.31 103.3 5.3

Chicken 0.00 0.03 -- 5.5

0.10 0.12 90.0 3.0

0.20 0.23 100.0 3.7

0.40 0.41 95.0 4.5
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