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Introduction:Curcumin has highly antimicrobial and antioxidant activities but has

poor bioavailability and low solubility in water. The current study aimed to assess

curcumin nanoparticles (Curcumin-NPs) antibacterial and antioxidant e�cacy

against some pathogens in chicken fingers at 4 ◦C/27 days.

Methods: Curcumin-NPs with particle sizes of 80 ± 2nm were synthesized using

a planetary ball-mill and chitosan-gelatin nanoparticle (CS-G-NPs) solution and

then placed into chicken fingers at three concentrations, (2, 5, and 10µg g−1). The

physicochemical properties, antioxidant activity, and antibacterial capacity were

evaluated.

Results and discussion: Curcumin-NPs showed high phenolic content (67.48mg

GAE g−1) and antioxidant activity (22.47µg ml−1) at 10µg g−1 compared to other

concentrations and curcumin bulk. Curcumin-NPs showed noticeably greater

antibacterial ability (in vitro) against S. aureus (18mm), E. coli (15mm), and

B. cereus (13mm). In challenge studies, Curcumin-NPs e�ectively inhibited the

three inoculated pathogens ∼3–4 log CFU g−1; in vivo; in chicken fingers kept for

up to 27 days, compared to the control. In curcumin-NPs chicken samples, the

contents of thiobarbituric acid reactive substances (TBARS) and total volatile base

nitrogen (TVB-N) compared to the control were substantially lower (27 days). TEM

analysis provided an estimate of the antibacterial mechanism of Curcumin-NPs.

The findings demonstrated that Curcumin-NPs at 10µg g−1 were more
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successful in reducingmicrobial load in chicken fingers aswell as improving quality

parameters, enhancing shelf life, and reducing lipid oxidation in poultry meat

products.

KEYWORDS

curcumin, nanoparticles, chicken fingers, antimicrobial, antioxidant, foodborne

pathogens

1. Introduction

Unsafe food is a serious global problem affecting trade and

health (Garridogamarro et al., 2023). Food-borne pathogens are

a major threat to public health worldwide (Crotta et al., 2022).

An estimated 76 million food-borne infections occur annually in

the USA, along with 5,000 deaths and 325,000 hospitalizations

(Faizy et al., 2022). According to estimates from the WHO, 30%

of adults in affluent countries experience food-borne illnesses each

year, although food-borne diseases cause the deaths of 2 million

people annually in developing nations (Bajpai et al., 2022). Major

pathogens liable for more than 90% of food-linked deaths are L.

monocytogenes, E. coli O157:H7, Campylobacter, S. aureus, and

Salmonella spp. (Owusu-Apenten and Vieira, 2022). Although

Egyptian food products have been identified as the source of recent

outbreaks, Egypt’s annual foodborne illness rate and outbreak rate

are currently unknown (EFSA, 2013). Egypt has recently detected

a number of cases of foodborne illness involving raw meat and its

products (Farag et al., 2022).

Therefore, preventing foodborne illnesses requires controlling

the growth of pathogens in food. In this context, various chemical

preservatives and antimicrobials are typically used in the food

industry to prevent food spoilage and pathogens (Tropea, 2022).

However, these synthetic preservatives, such as sodium nitrite and

sodium benzoate (Bensid et al., 2022), are harmful to human

health. Currently, natural and safe biochemicals, including isolated

bioactive compounds and plant extracts, effectively stop foodborne

pathogens and food spoilage (Zang et al., 2022; Alqahtani et al.,

2023).

Curcumin [(E, E)-1,7-bis(4-hydroxy-3-methoxy-phenyl)-1,6-

heptadiene-3,5-ione] is a well-known bioactive compound with

an orange-yellow color that was isolated from turmeric (Curcuma

longa L.) and is approved (E-100) used in food processing as a

color, spice, flavor, and preservative (Jyotirmayee and Mahalik,

2022; Singh et al., 2023). It exhibits excellent antibacterial and

antioxidant properties and is non-toxic. Curcumin has long

been a staple in daily diets, primarily in Asian countries and

occasionally in African nations. It has been extensively used

for anti-inflammatory, antioxidant, anticancer, and antimicrobial

properties in pharmaceuticals (Urošević et al., 2022). The

mechanism of curcumin’s antimicrobial activity includes (1) the

disruption of the membrane walls of specific bacteria, (2) the

damaging effect on bacterial DNA, and (3) membrane leakage of

the bacterium, producing a lot of reactive oxygen species, either as

singlet oxygen or as hydroxyl radicals (Hewlings and Kalman, 2017;

Zheng et al., 2020). Additionally, the structure-based polyphenolic

group of curcumin gives it its antioxidant properties (Tylewicz

et al., 2018). Curcumin has a hydrophobic phenol group that is

rapidly metabolized but has little to no solubility in water (He et al.,

2015).

Although curcumin serves several useful purposes, its

applications are limited due to its low water solubility, rapid

intestine metabolism, slow dissolution rate, and low bioavailability

(Maleki Dizaj et al., 2022). Therefore, the bioavailability and

antioxidant concentration of curcumin in foods will determine

their potency. Consequently, an alternative processing technology

that is capable of producing new ingredients with optimized

techno-functional and nutritional attributes is required (Wu

et al., 2022). Numerous studies have reported a variety of

approaches for overcoming this challenge of the low water

solubility of curcumin and increasing its bioavailability,

particularly nanotechnology (Chen et al., 2022). In this regard,

curcumin is a prospective candidate for creating novel natural

materials, such as microparticles and nanoparticles to increase

their durability against the aforementioned conditions and

to take advantage of biological features (Maleki Dizaj et al.,

2022).

Nanotechnology is an important cutting-edge technology that

has the potential to improve food quality (Malik et al., 2023).

There is a wide variety of nanotechniques, such as nanoparticles

or nanoemulsions, that have been used to enhance food safety via

their strong antioxidant and antibacterial activities (Morsy et al.,

2014; Awan et al., 2022), especially in minced beef (Morsy et al.,

2018), beef patties (Zhao et al., 2022), and chicken fillets (Niaz

et al., 2022). Nanoparticles are perceived to kill bacteria through

disruption of DNA replication and essential cellular processes by

binding to sulfhydryl or disulfide functional groups on the surfaces

of membrane proteins and inducing oxidative stress through the

catalysis of reactive oxygen species (Duncan, 2011). Numerous

studies have reported that nanomaterials were used as antioxidants,

such as garlic nanoparticles (Abdelli et al., 2022) and date seed

nanoparticles (Mostafa et al., 2022). There are few reports on

chicken finger processing (BarutçuMazi, 2009; Bozzato et al., 2021),

and there is almost no information on chicken fingers containing

nano-curcumin. Previous research has shown that, using natural

preservatives, such as essential oil (Morsy et al., 2014) and oleaster

leaf extract (Yaghoubi et al., 2023), in meat and chicken products

improves microbial quality and shelf life. Curcumin nanoparticles

are more effective against pathogens, i.e., S. aureus, B. subtilis, E.

coli, Pseudomonas aeruginosa, and Penicillium notatum (Bhawana

et al., 2011; Chopra et al., 2021). Thus, this study aimed to (i)

assess the antimicrobial and antioxidant abilities of Curcumin-NPs
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against foodborne pathogens and (ii) enhance the quality attributes

and safety markers of the chicken finger model stored at 4◦C.

2. Materials and methods

2.1. Materials

Curcumin powder (Cod No. C7727), polyethylene glycol,

chitosan (Cod No. 448877), gelatin, 2,2-diphenyl-1-picrylhydrazyl

(DPPH), Folin–Ciocalteu, 95% ethanol, casein, sodium carbonate,

sodium nitrite, sodium hydroxide, acetic acid, gallic acid,

methanol, and acetonitrile were bought from Sigma–Aldrich (St.

Louis, MO, USA). The raw chicken filet was supplied from a

supermarket in Cairo, Egypt and then moved to the laboratory

within 15min, minced, and kept in the refrigerator. Wheat

flour, oat flour, and fat were obtained from a local market in

Cairo, Egypt.

2.2. Microorganism

Three bacterial strains, E. coli (ATCC 25922), S. aureus

(ATCC 6538), and B. cereus (ATCC 6633), were supplied

from the Animal Health Research Institute, Dokki, Giza, Egypt.

The bacteria were activated in tryptic soy broth (TSB; Biolife,

Italy) and cultivated in the same media at 37 ± 1◦C for

24 h. The bacterial population of ∼6 log10 CFU ml−1 (colony-

forming unit) confirmed the count by enumeration on tryptic

soy agar.

2.3. Preparation of curcumin NPs

Then, 200 g of curcumin was minimized, according to the

study of Khataee et al. (2017). Briefly, the curcumin powder was

crushed by a grinder (Model MC300, Moulinex, France) and

then milled by a planetary ball mill (PM 2400, Iran) at 310

rpm/2 h. Under ambient conditions, the ball-milling procedure was

used with the following ball mass-to-powder ratio of 10:1. After

that, the curcumin was transformed into nanoparticles through

a solid dispersion technique. Then, 100mg of curcumin was

dissolved in 5mL of a polyethylene glycol (PEG) solution (80%

w/v). Under constant magnetic stirring (∼2 h), the curcumin-

PEG complex was added drop-wise into chitosan (3%)-gelatin

(1%) nanoparticle (CS-G-NPs; 1:1; v/v) solutions (polysaccharide

mixture was 50ml). The chitosan-gelatin nanoparticle (CS-

GNPs) was used as a carrier and improved the solubility of

curcumin. Subsequently, NPs were centrifuged at 10,000 rpm for

10min (Farnia et al., 2016). The size of curcumin nanoparticles

(Curcumin-NPs) was measured by a Zetasizer (NS300, UK).

The sample was placed in a glass cuvette (1ml) to avoid

bubbles and then placed in a Zetasizer at a temperature of

10–90◦C. Curcumin-NPs were kept at −80◦C and applied in

the experiments.

2.4. Phenolic, flavonoid, and antioxidant
abilities

Total phenolic (TP) was measured based on the study of

Hajimahmoodi et al. (2010). TP was expressed as mg of gallic

acid equivalent (GAE) per g of curcumin. The total flavonoid

(TF) content of curcumin was measured colorimetrically at 510 nm

(Formagio et al., 2014). TF was computed as mg rutin equivalents

(RE) per gram of curcumin. The analysis was performed in

triplicate. The antioxidant ability of curcumin was estimated

using DPPH radical scavenging at 517 nm (Liu et al., 2007). The

results were expressed as IC50 (µg ml−1) (Ebrahimzadeh et al.,

2010).

2.5. HPLC-DAD of curcumin

HPLC-Agilent Technologies (Santa Clara, CA, USA) was

used to analyze the phenolic and flavonoid fractions (Ruslay

et al., 2007). One gram of curcumin-NPs was added to 50ml

of methanol (70%), sonicated for 30min, and then cooled. The

curcumin extract was filtrated (Whatman paper No. 1) and

concentrated to dryness by a rotary evaporator (IKA-WERKE;

Germany) at the following conditions (speed 250 rpm, temperature

40◦C, under vacuum). The sample was reconstituted with 100ml

of the mobile phase and filtered through an acrodisc syringe

filter (0.45µm; Gelman Laboratory, Ann Arbor, MI, USA), and

then, 10 µl injected into the HPLC system. A detector (DAD)

with a C18 guard column, the HPLC column was an Agilent

Eclipse XDB-C18 with an ID of 4.6mm, a length of 150mm,

and a particle size of 5µm (4.6m × 5µm). Two solvents

formed the mobile phase: the first solvent was acetonitrile, and

the second was acetic acid in acetonitrile (0.5%: 99.5%; v/v).

Gradient elution was used to elute the solution, beginning with

100% solvent (1) and ending with 100% solvent (2). A DAD

detector frequency of 425 nm was utilized. The flow rate was

set at 0.8 mL/min−1, and the run time was ∼65min. Consistent

retention times and UV spectra were used to identify peaks and

compare standards.

2.6. Antimicrobial ability assay (in vitro)

The antimicrobial ability of curcumin-NPs was

determined by the disc diffusion method (Khezerlou

et al., 2018). Briefly, tryptic soy agar plates were poured

with 10ml of semi-soft tryptic agar seeded with 100ml

of E. coli O157:H7 or S. aureus and/or B. cereus (∼6

log10 CFU ml−1). The CFU was confirmed using the

following equation:

Concentration (start) × Volume (start) = Concentration (final) ×

Volume (final)

The discs, which were placed over the plates, included

curcumin-NPs at 2, 5, and 10 µg ml-1 (equivalent to 2, 5, and 10

ppm). The plates were examined for inhibition zones after 48 h at

37± 1◦C. The inhibition zones were expressed as mm.
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2.7. TEM screening and characterization of
curcumin-NPs

The morphology of curcumin-NPs and their mode of action

against E. coli, S. aureus, and B. cereus were estimated. Briefly, 2ml

of sterilized TSB, 1ml of bacterial, and 1ml of curcumin-NPs were

added in a falcon tube. The tubes were placed at 37± 1◦C for 24 h.

The pellets were recovered by centrifuging at 2,500 rpm min−1 for

10min. The pellets were placed on a carbon-coated copper grid,

spread, and then dried under a lamp before being examined using

transmission electron microscopy (TEM; JEOL JEM 1400, USA) at

a voltage of 200 Kv with negative staining of phosphor tungstic acid

(PTA 1%) (He et al., 2016). A Malvern Zetasizer (ZS90, Malvern

Instruments, Worcester, UK) was used to measure the size and

distribution of the nanoparticles.

2.8. Challenge study (chicken finger)

The chicken finger was made using the technique described

by Sharma et al. (2015) with slight modifications. Briefly, chicken

filet (72%; w/w), wheat flour (7%; w/w), oat flour (8%; w/w),

casein (2.5%; w/w), and fat (7.5%; w/w) were mixed and shaped.

The chicken fingers were treated with UV-C (254 nm) for 15min

(Mcleod et al., 2018) to reduce background bacteria (Morsy et al.,

2018). The bacterial cultures (∼6 log CFU cm−2) were spread on

the surface of the chicken finger.

After inoculation, samples were placed at room temperature

for 10min to allow cell attachment. The best concentration of

antimicrobials in the challenge study was chosen according to

Section 2.6, Antimicrobial Activity Assay (2, 5, and 10 µg g−1).

Curcumin-NPs at a level of 10 µg g−1 were placed on the chicken

finger surface and spread consistently. The control sample was

chicken fingers without curcumin addition. Every sample was put

into a sterile bag separately and tightly closed. For 27 days, the

packed samples were placed at 4 ± 1◦C. On days 0, 3, 6, 9,

12, 15, 18, 21, 24, and 27, the samples were assessed for any

remaining microbes.

2.9. Microbiological assay

After being opened aseptically, we placed 10 g of each chicken

sample in 90ml of purified peptone water (PPW; Biolife; 0.1%) and

shaken for 1min. After preparing 10-fold serial dilutions, 1ml of

the supernatant was spread on Eosin methylene blue (EMB; Biolife)

for E. coli and Paired Parker agar (Biolife) for S. aureus, and B.

cereus agar base (Biolife). After 24 h of incubation at 37 ± 1◦C, the

colonies were counted (log10 CFU g−1) (Mangalassary et al., 2007).

2.10. Physicochemical evaluation

A digital pHmeter (Consort, Belgium) was used to measure the

pH value. Total volatile base nitrogen (TVB-N; N 100 g−1 of the

sample) was estimated according to the approach of AOAC (2005).

Thiobarbituric acid-reactive substances (TBARS; MDA kg−1) were

determined using spectrophotometry (AOAC, 2005). The results

were expressed in terms of optical density at a wavelength of

538 nm, measured using a digital spectrophotometer (CE 599

Universal, USA).

2.11. Data analysis

Statistical evaluation was conducted using a one-way ANOVA

to assess physicochemical properties and bacterial populations in

the experiments (P ≤ 0.05) using SPSS 22 (IBM’s SPSS Statistics

Software). The data were analyzed using a completely random

design (Armonk, New York, USA). For each treatment, each

challenge experiment was conducted in triplicate. The LSD and

Tukey’s tests were utilized for multiple mean comparisons (Steel

and Torrie, 1980).

3. Results and discussion

3.1. Characterization of curcumin-NPs

The characteristics of curcumin NPs were assessed. TEM

was used to confirm the curcumin’s morphology and droplet

size (Figure 1). The results showed that curcumin-NPs were

spherical, smooth, and had a particle size of 80 ± 2 nm. The

polydispersity index (PDI) was 0.14, and the zeta potential was

4.5mV. In addition, it was observed that curcumin-NPs had a

higher size distribution compared with nanoparticles produced

by Bhawana et al. (2011). The curcumin-NP powder had high

physical stability and chemical reliability and was easily dispersible

in water. No curcumin residues remained after dissolution and

uniform dispersion. The larger surface area of nano-sized curcumin

particles, which encourages dissolution, may be the reason for

their improved aqueous solubility (Stefan and Monchaud, 2019).

Similar outcomes have been noted in previous studies, where active

ingredients’ efficacy, solubility, and bioavailability were enhanced

by reducing their particle size to nanoparticles (Nishimoto-Sauceda

et al., 2022).

3.2. Antimicrobial activity

The antagonistic effects of curcumin-NPs at concentrations of

2, 5, and 10 µg g−1 were evaluated against E. coli, S. aureus, and

B. cereus, as reported in Table 1. It has been shown that curcumin-

NPs inhibit all foodborne pathogens. The inhibition zone diameters

gradually increased when the concentration of curcumin-NPs

increased. Curcumin-NPs at 10 µg g−1 were found to be more

active against S. aureus than E. coli and B. cereus. Additionally,

the antimicrobial ability of Curcumin-NPs was examined in the

literature (Zorofchian Moghadamtousi et al., 2014). It has been

established that free curcumin has antimicrobial properties against

a variety of bacteria, including the Gram-positive bacteria, i.e.,

B. cereus, B. subtilis, and S. aureus, as well as the Gram-negative

bacteria, i.e., E. coli, P. aeruginosa, and Yersinia entero (Mukhtar

and Ghori, 2012; Rai et al., 2020; Dai et al., 2022). One study

by Sankhwar et al. (2021) demonstrated that nano-curcumin is
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FIGURE 1

Characterization of curcumin-NPs using an SEM image (a), curcumin-NPs solution (b), and size distribution (c) (n = 3).

more effective against Gram-positive bacteria than Gram-negative

bacteria. Pandit et al. (2015) found nano-curcumin (in vitro)

antibacterial activity against E. coli and S. aureus with diameters of

12 and 15mm, respectively.

3.3. Polyphenols, flavonoids, and
antioxidant ability of curcumin-NPs

Polyphenols and flavonoids exhibit functional properties such

as antimicrobial and/or antioxidant activities. Table 2 presents the

phenolic profiles of curcumin and curcumin-NPs. A total of 19

phenolics were discovered, and the main compounds were salicylic

acid, e-vanillic, ellagic, rutin, caffeine, benzoic acid, p-coumaric,

and pyrogallol. However, eight flavonoid compounds were

identified: apigenin, hispertin, luteolin, rosmarinic, kaempferol,

rutin, quercetin, and quercetrin. It was observed that the curcumin-

NPs contain higher levels of phenolic and flavonoid compounds

compared to bulk curcumin. The results demonstrated that

curcumin-NPs contain higher levels of salicylic acid (305.58mg

100 g−1), e-vanillic acid (244.76mg 100 g−1), and ellagic acid

(107.35mg 100 g−1) compared to bulk curcumin. The phenolic

compounds are of considerable interest in dietary antioxidant

supplementation. In contrast, the major flavonoid compound

is apegnin (239.03 mg/100 g−1). These results are consistent

with those mentioned by Shalaby et al. (2016), who reported

that curcumin-NPs are rich in phenolic compounds, especially

salicylic acid, e-vanillic acid, ellagic, rutin, caffeine, benzoic acid,

p-coumaric, and pyrogallol.

In Table 3, the curcumin-NPs had a higher total phenolic

content (67.48mg g−1 as gallic acid equivalent) than curcumin

(58.33mg g−1 as gallic acid equivalent). Curcumin-NPs also had

a higher total flavonoid content than curcumin. Faid (2021)

found phenolic and flavonoid contents of 55.35 and 40.12mg

g−1gallic acid in the ethanol extract of curcumin. However, Shalaby

et al. (2016) reported that phenolic contents ranged from 18.4 to

TABLE 1 The antimicrobial capacity of curcumin-NPs against food-borne

pathogens using the disc di�usion method (in vitro) (mean ± SD, n = 3).

Pathogenic bacteria Zone inhibition (in mm)

Curcumin-NPs (µg g−1)

2 5 10

Escherichia coli 4± 0.13cA 12± 0.10bB 15± 0.14aB

Staphylococcus aureus 5± 0.11cA 13± 0.10bA 18± 0.15aA

Bacillus cereus ND 10± 0.23bC 13± 0.11aC

ND, not detected.
a−cThere is no significant variation between any two means in the same row with the same

superscript letter (P ≥ 0.05).
A−CThere is no significant variation between any two means in the same column with the

same superscript letter (P ≥ 0.05).

20mg g−1gallic acid, and flavonoid content ranged from 36.07 to

40.48mg g−1 rutin in water and ethanol extracts of turmeric. These

results are consistent with those reported by Hettiarachchi et al.

(2022). The presence of polyphenols and flavonoids illustrates the

antimicrobial and antioxidant activities of curcumin nanoparticles.

When in nanoform, curcumin dissolves in water and is just

as effective as regular curcumin (with increased phenolic and

flavonoid levels). Circumin-NPs’s greater efficacy compared to

curcumin is attributed to its smaller particle size. It is worth

remembering that, as curcumin becomes nanoparticles, its size

decreases to 80 nm, which is significantly smaller than the size

of curcumin particles, which allows for improved cell penetration

and uptake.

Furthermore, Table 3 shows the antioxidant activity of

curcumin-NPs (scavenging DPPH free radicals). The curcumin-

NPs had a powerful ability to eliminate free radicals (IC50; 22.47

µg ml−1) compared to α-tocopherol and BHT (IC50; 15.58 and

5.16 µg ml−1, respectively), considering that the antioxidant

capacity and the IC50 amount have a negative correlation. IC50

denotes the concentration of the sample required to scavenge
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TABLE 2 Polyphenolic and flavonoid profiles of curcumin (5µm) and curcumin-NPs (80nm) extracts (at 10 µg g−1).

Compound Rt (min) Curcumin (mg 100 g−1) Curcumin-NPs (mg

100 g−1)

Phenolics Pyrogallol 2.86 36.38 48.11

Gallic 3.11 7.34 13.36

Catechein 4.1 11.19 16.89

Caffeine 4.50 55.23 69.35

Caffeic 4.81 5.45 9.43

Epi-cateechein 6.60 23.88 36.30

P-coumaric 7.39 37.27 47.24

Protocatechuic acid 8.74 2.57 4.15

Ferulic 8.83 26.45 40.63

E-vanillic 12.97 171.53 244.76

Benzoic acid 13.14 40.27 68.03

Ellagic 13.19 79.66 107.35

α -coumaric 13.25 29.46 35.75

Cinnamic acid 13.73 36.70 49.85

Coumarin 13.83 2.56 4.78

3,4,5 methoxy cinnamic 13.94 9.38 14.57

Salicylic acid 14.10 270.74 305.58

Chlorogenic acid 18.85 29.13 38.64

Vanillic acid 20.29 9.48 14.71

Flavonoids Apegnin 2.47 226.44 239.03

Hispertin 4.39 247.38 265.46

Rutin 5.38 14.33 79.69

Kampferol 8.40 78.82 107.39

Quercetrin 9.12 18.18 28.70

Quercetin 10.06 8.56 16.65

Rosmarinic acid 15.01 113.17 145.13

Luteolin 22.34 148.32 188.21

Rt, retention time.

50% of DPPH radicals. Curcumin nanoparticles showed better

IC50 than curcumin, possibly due to particle size, speed solubility,

and distribution. The study by Ak and Gülçin (2008) reported

that curcumin extract has a high free radical-scavenging capacity

compared to trolox, and the EC50 for curcumin was 34.86 g ml−1.

Faid (2021) found that 50 µg ml−1 of nano-curcumin extract had

the highest scavenging capacity in ethanol extract compared to its

chloroform and aqueous counterparts. Moreover, the IC50 value

was 22.35 µg ml−1.

3.4. Mode of action of curcumin-NPs
against pathogens

The mechanism of curcumin-NPs against food-borne

pathogens appears necessary. Figure 2 depicts the TEM images of

cells of E.coli, S. aureus, and B.cereus. It was observed that, during

the growth of the pathogens in the presence of curcumin-NPs, these

compounds appeared as dark, electron-dense spheres anchored

to the bacterial cell wall. They disrupted the peptidoglycan layer

and penetrated the cell, leading to cell lysis and resulting in cell

death and the disruption of organelles.Curcumin-NPs were highly

effective against both Gram-positive (G+) and Gram-positive (G–)

bacteria. This is illustrated in Figure 3. The NPs alter the shape

of the bacteria’s cells and interact with their membrane, such as

(a) the disruption of the membrane walls of specific bacteria, (b)

the damaging effect on bacterial DNA, and (c) membrane leakage

of the bacterium, producing a lot of reactive oxygen species,

either as singlet oxygen or hydroxyl radicals. Our findings are in

line with earlier research that demonstrated the mobilization of

nanoparticles made of various materials within the bacterial cell.

Previous research on B. subtilis 168 has shown that curcumin’s
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TABLE 3 Total phenolic, flavonoid compounds, and IC50 of curcumin-NPs extract (mean ± SD, n = 3).

Sample TP (mg g−1GAE dw) TF (mg g−1 RE dw) IC50 (µg ml−1 dw)

Curcumin (10 µg g−1) 58.33± 2.2b 42.52± 2.44b 30.56± 1.11a

Curcumin-NPs (10 µg g−1) 67.48± 2.5a 50.38± 2.25a 22.47± 1.42b

α-tocopherol (200 µg g−1) ND ND 15.58± 1.08c

BHT (200 µg g−1) ND ND 5.16± 1.15d

a−cNo significant variations between any two means in the same “column” that have the same superscript letter (P ≥ 0.05).

BHT, butylated hydroxytoluene; ND, not detected; GAE, gallic acid equivalent; RE, rutin equivalent.

FIGURE 2

TEM images of curcumin-NPs against foodborne pathogens, curcumin-NPs against E. coli (a), curcumin-NPs against S. aureus (b), and

curcumin-NPs against B. cereus (c).

FIGURE 3

The proposed mechanisms underlie the antibacterial e�cacy of Curcumin-NPs against bacteria.
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FIGURE 4

Impact of curcumin-NPs against foodborne pathogens, i.e., E. coli (A), S. aureus (B), and B. cereus (C) of the refrigerated chicken fingers during

storage.

ability to inhibit microbes involves interfering with the GTPase

activity of FtsZ protofilaments, which are essential for bacterial

cytokinesis (Jain et al., 2009). This dysfunction kills bacteria

and prevents bacterial cell division by inhibiting the cluster

dynamics of FtsZ in the Z ring. In another study by Bhawana

et al. (2011), it was found that curcumin extract prevents cell

adhesion to fibronectin and positively inhibits the bacterial surface

protein sortase A, thereby demonstrating its antibacterial activity

against S. aureus.

Another study reported that the antimicrobial ability of

curcumin-NPs could be due to (i) the formation of transmembrane

cell pores, which results in the leakage of essential metabolites, and

(ii) the disruption of the structure of the bacterial cell wall, such as

ergosterol, which is responsible for the synthesis and maintenance

of cell wall rigidity (Rai et al., 2020). In the current study, curcumin-

NPs are believed to exhibit an antibacterial effect by adhering to

the bacterial cell wall, rupturing it, entering the cell, and interfering

with the organization of cell organelles.

3.5. Challenge study

As is known, the most important bacteria related to chicken

are Salmonella and Campylobacter. However, in recent years, the

literature in Egypt and around the world has isolated E. coli, S.
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FIGURE 5

Changes in pH value (A), TVB-N (mg N2 g−1) (B), and TBARS (mg MDA Kg −1) (C) in chicken fingers incorporating curcumin-NPs (10 µg g−1) during

storage at (4◦C).

aureus, and B. cereus from chickens. Our study also aimed to

evaluate the antibacterial effect of nano-curcumin against different

foodborne pathogens, a representative type of bacteria from each

of Gram +ve (S.aureus), Gram –ve (E. coli), and spore-forming

(B. cereus). The antimicrobial effectiveness and modes of action of

curcumin-NPs at a concentration of 10 µg g−1 against E. coli, S.

aureus, and B. cereus in chicken fingers stored under refrigeration

for up to 27 days. Figure 3 demonstrates the antimicrobial

effectiveness of curcumin-NPs against pathogens found on chicken

fingers. The bacterial community developed persistently during the

27 days of refrigerated storage in the control. Conversely, treated

samples with Curcumin-NPs revealed a decrease of nearly 2 log

units in populations of E. coli and S. aureus after 3 days, while a

1 log decrease in B. cereus after 6 days stayed fixed for the rest

of the challenge study. E. coli and S. aureus were sensitive to the

Curcumin-NPs, as evidenced by the decline in population (∼3 to

4 log10 CFU g−1). However, compared to control, B. cereus (∼2

to 3 log10 CFU g−1) was found on chicken fingers after 27 days

of storage (Figure 4). These findings demonstrate that curcumin

nanoparticles applied to processed chicken can restrain foodborne

microorganisms for up to 27 days of refrigerated stockpiling. The

outcomes concur with those detailed by Rai et al. (2020), who found
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that curcumin-stacked nanoparticles are more successful against

foodborne microbes such as E. coli and S. aureus.

3.6. Physicochemical evaluation

The pH, TVB-N, and TBARS contents are important freshness

indices of meat quality. Figure 5A shows the progression of the

pH value of chicken fingers during refrigerated storage. There

were no huge contrasts (P ≥ 0.05) in pH values between the

treated chicken samples and the control at time zero. However, a

significant difference (P ≤ 0.05) was observed during storage at

4◦C. After 9 days, the control sample’s pH value quickly increased

between 6.6 and 6.7. However, samples treated with curcumin-NPs

at 10 µg g−1 demonstrated only a slight increase in pH during

storage. The pH score of chicken samples incorporating curcumin-

NPs ranged from 6.33 to 6.44 after 21 days. The findings reveal

that nitrogenous compounds are broken down by endogenous

or microbial enzymes, thereby increasing the pH (Fijałkowska

et al., 2015). Untreated chicken fingers began to deteriorate and

were rejected on day 12 of cold storage as a result of this

pH increase.

Figure 5B shows the changes in the TVB-N content of

chicken fingers, including curcumin-NPs, during storage at

4◦C for 27 days. Curcumin-NP addition and storage period

significantly affected protein quality (P ≤ 0.05). In the control

sample, the TVB-N level rapidly increased from 2.86 to

21.59mg N2100 g−1 on the 9 day of storage due to the

presence of various bacteria. The chicken fingers that included

curcumin-NPs had the lowest TVB-N score, indicating that

curcumin-NPs inhibit microbial growth, particularly proteolytic

bacteria, which break down proteins into volatile nitrogen

compounds. The increase in TVB-N during the storage of

chicken fingers (control) might be attributed to a breakdown

of nitrogenous mixtures by microbial action (El-Nashi et al.,

2015).

Figure 5C, at time zero, the TBARS scores in various chicken

finger samples ranged from 0.08 to 0.11mg MDA kg−1. However,

during storage time, a rapid increase in theMDA level was recorded

in the control samples (with different bacteria), ranging from

0.88 to 1.09mg MDA kg−1, after 9 days. These outcomes are

consistent with previous data on chicken meat (Khajeh Bami et al.,

2020; Panahi et al., 2022). In general, the storage of the chicken

finger samples prompted a remarkable increase in the TBARS

scores in most treatments, but it could be observed that there

was a higher increase in TBARS in the control samples than in

the treated samples. The samples included Curcumin-NPs with

the lowest TBARS value due to their antioxidant activity. The

antioxidant effect of the addition of curcumin to meat products

was studied, such as rabbit burgers (Mancini et al., 2015), beef

meatballs (Milon et al., 2016), lamb sausage (De Carvalho et al.,

2020), and chicken mince (Sharma et al., 2012). Mughal (2019)

has shown that turmeric’s antioxidant properties prevent peroxide

formation in food. Curcumin, which is found in turmeric, has

a unique structure that enables it to act as an antioxidant and

break the chains by trapping oxygen-free radicals (Urošević et al.,

2022).

4. Conclusions

In conclusion, curcumin-NPs have higher phenolic content and

antioxidant activity at 10 µg g−1 than curcumin bulk. Curcumin-

NPs exhibited a higher antimicrobial capacity (in vitro) against

S. aureus than E. coli and B. cereus. In the challenge studies,

curcumin-NPs effectively inhibited pathogens in chicken fingers

during storage for up to 27 days. In curcumin-NPs-treated chicken

samples, the contents of TBARS and TVB-N were lower than

the control (over 27 days of storage). The experimental findings

from the bioactive compound, antimicrobial activity, antioxidant

capacity, and chemical markers confirm the efficacy of nano-

curcumin at a level of 10 µg g−1. Generally, nanotechnology

enhances the efficacy of materials and overcomes the challenges

of using natural additives in the meat industry, which may

otherwise alter the sensory attributes of meat products. Therefore,

curcumin-NPs have shown a promising improvement in microbial

quality, enhancing shelf life and reducing lipid oxidation in poultry

meat products.
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