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Introduction: To improve maize yield in China, multiple herbicides have been 
simultaneously applied to control more weeds. However, this combined 
application raises concerns about potential residues and their subsequent risks to 
human health. Therefore, evaluating the residues and dietary risk of new herbicide 
formulations is critical for the sustainability of maize production.

Methods: Using UHPLC-MS/MS, we developed quick methods for the determination 
of residues of mesotrione, nicosulfuron, atrazine and its four metabolites with 
acceptable accuracy and precision. The limits of quantification (LOQs) were 0.01 
mg/kg for mesotrione and atrazine-desethyl-desopropyl, and 0.005 mg/kg for 
nicosulfuron, atrazine, 6-deisopropyl atrazine, 2 hydroxyatrazine, and deethylatrazine. 
Field trials were conducted at 12 different locations in China. And the risk quotient 
(RQ) model was used to evaluate the chronic risk of residues of these herbicides.

Results: The residues of straw samples were in the ranges of <0.01 mg/kg for 
mesotrione, <0.005–0.010 mg/kg for nicosulfuron, and <0.037–0.254 mg/kg for 
accumulated atrazine. In green straw, the observed ranges were <0.01 mg/kg 
for mesotrione, <0.005–0.007 mg/kg for nicosulfuron, and <0.037–0.211 mg/
kg for accumulated atrazine. Meanwhile, for both green and fully-grown maize, 
residues were <0.01 mg/kg for mesotrione, <0.005 mg/kg for nicosulfuron, and 
<0.037 mg/kg for accumulated atrazine. And all RQ values of green and fully-
grown maize were below 100%.

Conclusion: Based on the RQ model, the dietary risk of exposure to three 
herbicides through maize was acceptable by consumers. This study helps guide 
the rational use of mesotrione, nicosulfuron and atrazine to ensure the safe 
production of maize and our human health.
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1. Introduction

Maize (Zea mays L.) is one of the most important cereal crops globally and holds particular 
significance in China. In 2022, China’s maize sown area was 43.07 million hectares, producing 
277.20 million tons of maize annually (National Bureau of Statistics of China, 2022). As a staple 
food for a large proportion of the population, maize is an integral part of food security. Besides 
its role in human nutrition, maize is also a fundamental raw material for various industries like 
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starch production and biofuel (Ranum et al., 2014). Equally significant 
is maize straw, the agricultural waste from maize cultivation, which 
have diverse uses including fertilization, animal feed, fuel, base stock 
for edible fungi, and raw materials for biodegradable products 
(National Development and Reform Commission of the People’s 
Republic of China and Ministry of Agriculture of the People’s Republic 
of China, 2016; National Development and Reform Commission of 
the People’s Republic of China, 2021; Liu et al., 2022).

The yield of maize can be severely affected by the presence of 
weeds, with estimates of potential grain yield losses ranging from 37 
to 44% in maize due to such competition (Oerke, 2006). As an effective 
approach, herbicides have been widely utilized to control the effects 
of weeds and improve yields in China for over 40 years (Zhao et al., 
2017). Presently, a variety of herbicides, including mesotrione, 
nicosulfuron, and atrazine (Figure 1), have been individually utilized 
in maize fields. Mesotrione is a selective herbicide used primarily for 
pre- and post-emergence control of broadleaf weeds and some grasses 
in maize fields. It acts as a highly effective inhibitor of 
4-hydroxyphenylpyaunate dioxygenase (HPPD), quickly absorbed by 
weeds and distributed throughout the plant, while maize exhibits 
tolerance to it due to selective metabolism and slower uptake, making 
it a suitable selective herbicide in maize cultivation (Mitchell et al., 
2001). Nicosulfuron can control annual weeds, e.g., giant foxtail, 
increasing grain yield of maize through enhanced post-emergence 
weed control (Dobbels and Kapusta, 1993; Kapusta et al., 1994). As for 
atrazine, it has a longer history of use and shows efficacy against a 
broad spectrum of weeds, mainly annual broadleaf and grass species, 
which can be degraded to the metabolites including 6-deisopropyl 
atrazine (DIA), Deethylatrazine (DEA), 2-hydroxyatrazine (HA) and 
Atrazine-desethyl-desisopropyl (DACT) (Figure  1; Skrzypczak 
et al., 2011).

Despite their effectiveness in weed control, the presence of 
herbicide residues and their metabolites in maize raises considerable 
concern about potential health hazards to consumers, like the 

association between exposure to specific herbicides and the 
development of human diseases (Morrison et al., 1992). In particular, 
mesotrione has been found to potentially stimulate the growth of 
breast cancer cells (Jabłońska-Trypuć et al., 2020). Nicosulfuron is 
known for its environmental persistence. Studies indicated that it may 
induce hypoglycemia in humans, increase the risk of cardiovascular 
disease, and exert toxic effects on human serum albumin, which can 
lead to peptide chain alterations and protein denaturation (Olayinka 
et al., 2022; Zhong et al., 2023). As for atrazine, a positive association 
was found between its exposure and preterm birth (Rinsky et al., 
2012). And dermal and ingestion exposures to atrazine-contaminated 
soil may pose cancer risks to humans when the residues exceed the US 
EPA limit (US EPA, 2018; Dehghani et al., 2022). In addition, studies 
have shown that atrazine and their metabolites may have endocrine 
disrupting properties and may have clastogenic potential at high 
concentrations (MacLennan et al., 2003; Jowa and Howd, 2011). In 
general, health risks associated with herbicides depend on the extent 
of exposure, including direct contact and bioaccumulation through 
the food chain. Therefore, understanding and evaluating herbicide 
residues in maize is critical since it provides the basis for assessing the 
potential health risks associated with herbicide exposure and facilitates 
informed decision-making regarding safe agricultural practices.

Some studies have investigated residue levels after the application 
of mentioned herbicides in maize (Sun et al., 2013; Tandon and Singh, 
2015; Ahmadi et  al., 2017). However, they have predominantly 
focused on the analysis of individual herbicides, neglecting the 
intricate complexities that arise from the simultaneous application of 
multiple herbicides. As a result, the residue patterns from mixed 
herbicide applications may differ significantly from those observed 
with single herbicide applications. Besides, only a few studies have 
addressed the potential risks posed by the metabolites of these 
herbicides, which raise additional concerns for human health 
(Alferness and Wiebe, 2002; Du et al., 2017). In addition, the influence 
of different climatic conditions, including precipitation, temperature, 
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and soil characteristics, on the variation of residue levels in different 
regions within China must be considered (Tong et al., 2018). Although 
several geographically specific studies have been conducted (Wu et al., 
2012; Du et  al., 2017; Tong et  al., 2018; Liu et  al., 2021), a 
comprehensive assessment, considering diverse diets of a larger 
population in the country, is still needed to evaluate the safety level of 
rational herbicide applications. Thus, there is an urgent need to 
evaluate the determination of residues and associated dietary risks 
associated with the new formulation of mesotrione, nicosulfuron, and 
atrazine in different geographical locations. Such an evaluation will 
provide invaluable insights that will enable growers to make informed 
decisions about the appropriate use and production of maize products 
while maintaining acceptable risk.

However, the polarity of herbicides and metabolites are quite 
different (Martín-Pozo et  al., 2023). More importantly, the 
components in the straw and maize are diverse (Wang D. et al., 2022; 
Mattoo et  al., 2023). These can produce various matrix effects 
influencing analytical efficiency. To quickly determine the residues in 
four matrices with high precision and accuracy, in this study, 
methods (including two extraction procedures and three elution 
programs) were developed for the determination of mesotrione, 
nicosulfuron, atrazine and its four metabolites. And the field trials 
were conducted in 12 locations in China, followed by the residue 
determination of seven chemicals in green maize, fully-grown maize, 
green straw and straw. Based on the dietary composition of different 
age groups in urban and rural areas, we  finally conducted a 
comprehensive dietary risk assessment of mesotrione, nicosulfuron 

and atrazine. This study can not only provide evidence for the safe 
application of these three herbicides, but also promote the sustainable 
production of maize in China.

2. Materials and methods

2.1. Chemicals and reagents

Mesotrione (C14H13NO7S, CAS No. 104206–82-8, 98.7% purity) 
was purchased from the National Quality Inspection and Testing 
Center for Pesticide Products (Nanjing, China). Nicosulfuron 
(C15H18N6O6S, CAS No. 111991–09-4, 99.1% purity) was purchased 
from Alta Scientific Co., Ltd. (Tianjing, China). 6-deisopropyl atrazine 
(DIA, C5H8ClN5, CAS No. 1007-28-9, 98.9% purity) was bought from 
CATO Research Chemicals Inc. (Guangzhou, China). Atrazine 
(C8H14ClN5, CAS No. 1912-24-9, 98.0% purity), Deethylatrazine 
(DEA, C6H10ClN5, CAS No. 6190-65-4, 98.0% purity), 
2-hydroxyatrazine (HA, C8H15N5O, CAS No. 2163-68-0, 98.0% purity) 
and Atrazine-desethyl-desisopropyl (DACT, C3H4ClN5, CAS No. 
3397-62-4, 97.2% purity) were purchased from A Chemtek Inc. 
(Worcester, USA). A 30% concentrated oil-based suspension (4% 
mesotrione, 6% nicosulfuron, 20% atrazine) was obtained from 
Shanghai Shennong Pesticide Co., Ltd. (Shanghai, China).

HPLC-grade acetonitrile (ACN), formic acid, aqueous ammonia 
and methanol and MS-grade ammonium acetate were bought from 
Beijing Mairuida Technology Co., Ltd. (Beijing, China). Two milliliter 

FIGURE 1

The chemical structures of mestrione, nicosulfuron, atrazine and its four metabolites.
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syringes and 0.22 μm nylon syringe filters were purchased from 
Jiangsu Zhiyu Medical Equipment Co., Ltd. (Jiangsu, China) and 
Tianjin Jinteng Experimental Equipment Co., Ltd. (Tianjin, China), 
respectively.

2.2. Field trials

All field experiments were carried out between April 2021 and 
October 2021 at the following 12 sites in China: Shaoxing city, 
Zhejiang province; Changsha city, Hunan province; Nanning city, 
Guangxi province; Daxing district, Beijing; Shenyang city, Liaoning 
province; Lanzhou city, Gansu province; Zhengzhou city, Henan 
province; Hohhot, Inner Mongolia; Changchun city, Jilin province; 
Qingdao city, Shandong province; Guiyang city, Guizhou province and 
Danzhou city, Hainan province. All treatments were conducted based 
on the Guidelines on Pesticide Residue Trials in China (NY/T 
788–2018). Each site was divided into two 100 m2 areas, which were 
separated from each other by a buffer zone and protective signs.

After mixing 18 ml of the concentrated oil-based suspension with 
6 L of water, the 100 m2 experimental area was treated by stem-leaf 
spraying when the crop was at the three-leaf stage. Green maize (at 
least 2 kg) and fully-grown maize (at least 1 kg) were collected from at 
least 12 plants randomly. Green straw and straw samples were 
harvested from not less than 12 plants randomly. Each plant should 
be  cut into three equidistant segments (including leaves). The 
composite sample consisting of four top, four middle and four bottom 
segments with a total weight of at least 2 kg should then be assembled. 
All samples were transported to the laboratory stored at the 
−18°C chamber.

2.3. Extraction of samples

Green maize was cut into 1–2 cm pieces, and fully-grown maize 
was threshed. Green straw and straw were cut into small pieces smaller 
than 1 cm, completely mixed in stainless steel pots, labeled, and stored 
at −18°C.

A weight of 2.5 ± 0.1 g of each homogenized tissue was placed into 
the 50 mL centrifuge tube. Two extraction procedures were used. For 
the determination of mesotrione, acetonitrile/water (7:3, v/v, 25 ml) 
was added to the tube and vortexed for 15 min. The mixture was 
centrifuged for 5 min at 4000 rpm in a model CL5 centrifuge. The 
supernatant was then injected through a 0.22 μm nylon syringe filter 
and transferred to a glass vial for subsequent analysis. For the 
determination of nicosulfuron, atrazine and its four metabolites, 
acetonitrile/water/formic acid (7:2.9:0.1, v/v/v, 25 ml) was injected. 
After that, the mixture was vortexed for 15 min and centrifuged for 
5 min at 4000 rpm in the same centrifuge. The supernatant was filtered 
through a 0.22 μm nylon syringe filter and then transferred to a glass 
vial for subsequent UHPLC–MS/MS analysis.

2.4. UHPLC–MS/MS analysis

All samples were analyzed by an UHPLC–MS/MS system with an 
electrospray ionization (ESI) source (1290–6,470, Agilent, CA, USA). 
The analytical column (ZORBAX Eclipse C18; 3.0 × 50 mm, 1.8 μm; 

Agilent) maintaining 40°C was applied for the separation. For the 
analysis of mesotrione, the injection volume was 2 μl. The mobile 
phases consisted of 5 mmol ammonium acetate (solvent A) and 
methane (solvent B). And the elution program was set as follows: 
0–0.5 min, 90% A; 0.5–1 min, 90–5% A; 1–3 min, 5% A; 3–3.1 min, 
5–90% A; 3.1–4.5 min, 90% A. As for the analysis of DACT, the 
injection volume was 1 μl. The mobile phases consisted of methane 
(solvent B) and 0.02% aqueous ammonia (v/v, solvent C). The elution 
program was set as follows: 0–1.5 min, 15–60% B; 1.5–2 min, 60–95% 
B; 2–2.1 min, 95–15% B; 2.1–3.5 min, 15% B. For the analysis of other 
five analytes, the volume of injection was 1 μl. 0.1% formic acid (v:v, 
solvent D) and acetonitrile (solvent E) were consisted of the mobile 
phases. The elution program was as follows: 0–3 min, 5–60% E; 
3–4 min, 60–95% E; 4–4.1 min, 95–5% E; 4.1–5.5 min, 5% E.

Every substance was determined with the corresponding 
commercial standards by multiple reaction monitoring (MRM) mode 
using an ESI mass spectrometer. The common MS operating 
conditions were as follows: gas temperature 300°C; gas flow 7.0 L/min 
and sheath gas flow 11.0 L/min. Other detection parameters and 
fragmentation transitions for qualification and quantification were 
listed in Supplementary Table S1.

As for quality control, two concentrations were used for each 
batch. The concentrations of mesotrione and DACT were set as 
0.01 mg/kg and 0.05 mg/kg. 0.005 mg/kg and 0.1 mg/kg were chosen 
as the set concentrations. The added concentrations of atrazine, DIA, 
DEA and HA were 0.005 mg/kg and 0.05 mg/kg. Two parallels were 
provided for each concentration as quality control samples. And 
quantification was performed by the external standard single-point 
comparison method. Results of their recoveries were presented in 
Supplementary Table S2.

2.5. Method validation

According to SANTE/11312/2021 and NY/T 788–2018, the 
method was validated from the determination of sensitivity, linearity, 
accuracy and precision (Ministry of Agriculture and Rural Affairs of 
the People’s Republic of China, 2018; European Commission, 2021). 
For the evaluation of linearity, the standard of each herbicide were 
analyzed at five concentrations with three replicates (0.0005 mg/L, 
0.001 mg/L, 0.005 mg/L, 0.01 mg/L, and 0.02 mg/L for mesotrione; 
0.0005 mg/L, 0.001 mg/L, 0.005 mg/L, 0.02 mg/L, and 0.05 mg/L for 
DACT; 0.00025 mg/L, 0.0005 mg/L, 0.005 mg/L, 0.01 mg/L, and 
0.05 mg/L for nicosulfuron, atrazine, DIA, DEA and HA). The slope, 
coefficient of determination (R2), intercept of every fitted curve was 
determined. And the matrix effect (ME) was determined by the 
equation (1), where k1 and k2 represents the slopes in matrix and in 
solvent, respectively.

 ME k k k= −( ) ÷  ×1 2 2 100% (1)

To calculate the average recovery, three concentrations of seven 
analytes (0.01 mg/kg, 0.05 mg/kg and 0.1 mg/kg for mesotrione; 
0.005 mg/kg, 0.1 mg/kg and 0.2 mg/kg for nicosulfuron; 0.01 mg/kg, 
0.05 mg/kg and 0.2 mg/kg for DACT; 0.005 mg/kg, 0.05 mg/kg and 
0.2 mg/kg for atrazine, DIA, DEA and HA) were spiked to different 
blank samples with five replicates per level. The lowest validated 
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concentration with an acceptable recovery of ≥70% and a relative 
standard deviation (RSD) of less than 20% was defined as the limit of 
quantitation (LOQ) (Wang et al., 2023).

2.6. Dietary risk assessment

To keep the safe use of mesotrione, nicosulfuron and atrazine, the 
risk quotient (RQ) model was applied for the evaluation (Wang 
D. et al., 2022; Wang W. et al., 2022). It can determine the chronic risk 
of these three herbicides evaluated as RQ that can be calculated using 
formula (2) and (3):

 NEDI STMRi Fi bw= ∑ ×( )  ÷  (2)

 RQ NEDI ADI= ÷ ×100% (3)

NEDI (mg/kg bw) is the national estimated daily intake, ADI (mg/
kg bw) represents the acceptable daily intake (0.5 mg/kg for mesotione, 
2 mg/kg for nicosulfuron and 0.02 mg/kg for atrazine) obtained from 
official information of The Joint FAO/WHO Meeting on Pesticide 
Residues (2007, 2014a,b), STMRi (mg/kg) refers to the supervised 
median residue in the field trials, and Fi is the dietary intake (g/d). The 
risk is correlated with the value of the RQ. RQ ≤100% means that the 
chronic risk to humans is acceptable, whereas RQ >100% means that 
the risk is unacceptable.

Considering that atrazine can be transformed to four metabolites, 
the residue of accumulated atrazine (C) for the evaluation of dietary 
risk was expressed as follows.

 

C C C C
C C

Atrazine DIA DEA
HA DACT

= + × + × +
× + ×

1 242 1 149

1 093 1 482

. .

. .  (4)

In the equation (4), CAtrazine, CDIA, CDEA, CHA, and CDACT indicate 
the residue level of atrazine, DIA, DEA, HA and DACT, respectively. 
And values of 1.242, 1.149, 1.093 and 1.482 represents the 
corresponding ratio of the molecule weight of DIA, DEA, HA and 
DACT to it of atrazine.

3. Results and discussion

3.1. Method validation

During the development of the methods, the detector response of 
each standard solution of seven substances was compared with that of 
four matrices added with different concentrations of the analytes, 
which also determined the matrix effects. According to the results, the 
values of respective peak area were obtained from the measurement 
of the analyte concentration in the different standard working 
solutions. At last, a linear regression equation was established. As 
shown in the Supplementary Table S3, over the range of five 
concentrations, the linearity between each concentration and the 
corresponding peak area was acceptable since all correlation 
coefficients (R2) were all higher than 0.99. And the representative 
chromatograms were presented in Figure 2.

Matrix effect (ME) can be triggered by the interaction between the 
co-ionization of the ESI source and the components in different 
matrices influencing the quantitative accuracy of these methods. The 
absolute values of ME of three metabolites of atrazine (DIA, DEA, and 
HA) in green maize, fully-grown maize, green straw and straw were 
all below than 20%, which may represent the effects could be moderate. 
For atrazine, only the ME value in green maize was higher than the 
parameter (20%) showing matrix suppression, which was similar in 
previous studies (Cunha and Fernandes, 2011; Daniel and Lucio, 
2019). In addition, strong MEs of mesotrione and DACT in four 
matrices could not be ignored. For mesotrione, higher ME values were 
also determined in maize grain (64%) and maize straw (41%) by Pang 
et al. (2016). Du et al. (2017) also found that the MEs of the herbicide 
in rice, rice hull and rice plant were significant. As for DACT, 
considerable MEs could be also found in some products like Astragali 
radix, Glehniae radix, Cuscutae semen, and mussels from Adriatic Sea 
(Liu et al., 2018; Interino et al., 2023). However, it was interesting that 
a slight matrix inhibition could be observed in other sea products like 
crayfish, carp and Chinese mitten crab collected from Hubei and 
Hunan Provinces in China (Peng et al., 2023).

To guarantee the accuracy of these methods, matrix-matched 
standard curves were chosen for quantitative analysis. 0.01 mg/kg was 
regarded as the values of the limit of quantitation (LOQ) for 
mesotrione and DACT in these four matrices. And 0.005 mg/kg was 
defined as the LOQ values of nicosulfuron, atrazine, DIA, 
DEA, and HA.

When it comes to the accuracy and precision of these methods, 
based on the results (Supplementary Table S4), all recoveries and RSD 
values were in compliance with the demands of the Guidelines on 
Pesticide Residue Trials in China (NY/T 788–2018). Specifically, when 
the spiked levels of seven herbicides in four matrices were in the range 
(0.001 mg/kg < spiked levels ≤0.01 mg/kg), the values were in the 
ranges of 78–101% for recoveries and 1.8–15.4% for relative standard 
deviation (RSD). As for the range (0.01 mg/kg < spiked levels ≤0.1 mg/
kg), the recoveries and RSD values of seven substances in matrices 
were ranged from 79 to 101% and 0.3 to 6.1%, respectively. For the 
spiked level of 0.2 mg/kg, the range of recoveries was from 79 to 98% 
and it of RSD values was from 0.6 to 12.5%.

In conclusion, the methods can be applied for the residue analysis 
of mesotrione, nicosulfuron, atrazine, and its four metabolites in the 
samples of maize crops collected from different fields.

3.2. Terminal residues of seven substances 
in four matrices of maize

After the application of three herbicides, the residues of them and 
relative metabolites were determined (Supplementary Table S5). For 
green straw and straw samples, the residues of mesotrione were all 
lower than 0.01 mg/kg. In straw samples, the range of nicosulfuron 
residue was from <0.005–0.010 mg/kg. The residues of atrazine and its 
four metabolites were in the ranges of <0.005–0.140 mg/kg for 
atrazine, <0.005–0.009 mg/kg for DIA, <0.005–0.005 mg/kg for DEA, 
<0.005–0.029 mg/kg for HA and < 0.005–0.027 mg/kg for DACT. Thus, 
the accumulative atrazine residue was in the range of <0.037–
0.254 mg/kg. As for green straw samples, the range of nicosulfuron 
residues was in the range of <0.005–0.007 mg/kg. The HA residues 
were all less than 0.005 mg/kg. In addition, the residues of atrazine, 
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DIA, DEA and DACT were from <0.005–0.090 mg/kg, <0.005–
0.006 mg/kg, <0.005–0.063 mg/kg and < 0.005–0.024 mg/kg, 
respectively. And the accumulative atrazine levels were from <0.037–
0.211 mg/kg. All residues in straw samples were all less than maximum 
residue levels (MRLs) set by USA (0.01 mg/kg for mestrione, 0.1 mg/
kg for nicosulfuron and 0.5 mg/kg for atrazine).

However, compared with the residues among these locations 
(Figure 3), the levels in Gansu province were generally higher than 
those of other places in China. It may be influenced by the higher 
annual mean temperature and less annual mean precipitation, which 
may be correlated to relatively small vegetation and forest areas as well 
as the desertification problem (He et al., 2022; Zhao and He, 2022). 
Therefore, nature resources and climate conditions in the ecological 
environment could play an important role in the quality and safety of 
agricultural products, which are also quite crucial for the sustainable 
agriculture (Delcour et al., 2015; Seleiman and Hafez, 2021).

Because of the wide utilization of straws, the potential risk of them 
to human health must be highlighted. Based on the official reports for 
the comprehensive utilization of straw, it knew that the using amount 
of straw was nearly 720 million tons, whose comprehensive utilization 
rate reached 80.1% (National Development and Reform Commission 
of the People’s Republic of China and Ministry of Agriculture of the 
People’s Republic of China, 2016; People’s Government of Yunnan 
Province, 2022). Specifically, 43.2% maize straws can be applied in 
straw cover to amend soils. Nevertheless, the residues of straw can 
influence soil microorganism constructure as well as the soil 
properties. Then it could make undesirable effects on the agriculture 
products (Inamuddin Ahamed and Lichtfouse, 2020; Siedt et  al., 
2021). And 18.8% straws can be used for the animal feeds. However, 
after the digestion by animals, the residues could be enriched in their 
bodies. Through the food chain, higher residual level could 

be consumed by human (Inamuddin Ahamed and Lichtfouse, 2020; 
Fu et  al., 2022). Also, 2.7% maize straws can be  used to produce 
eco-friendly tableware such as straw chopsticks. And these materials 
can be  used by consumers. Therefore, the residues of straws can 
indirectly pose hazards to human health through these mentioned 
pathways, which deserve more attention in future work.

For the samples of fully-grown maize and green maize, the 
residues of mesotrione and DACT were lower than 0.01 mg/kg. And 
the residues of nicosulfuron, atrazine, DIA, DEA and HA were all 
lower than the corresponding LOQ value (0.005 mg/kg). As for the 
sum of atrazine residues, the values of two kinds of maize were all 
lower than 0.037 mg/kg. In summary, the residues of mesotrione, 
nicosulfuron and atrazine of maize were all below MRLs set by 
different regions (0.01 mg/kg in Japan, CAC, China, EU and US for 
mesotrione; 0.01 mg/kg in CAC and EU as well as 0.1 mg/kg in Japan, 
China and US for nicosulfuron; 0.05 mg/kg in CAC, China and EU as 
well as 0.2 mg/kg in Japan and US for atrazine). It also means that the 
rational use of these mixed herbicides will not influence the export of 
maize in these regions.

3.3. Dietary exposure risk of Mesotrione, 
Nicosulfuron and atrazine In maize

Chronic dietary risk assessment is a crucial approach to evaluate 
the safety of agricultural product after the application of chemicals in 
fields. For a more comprehensive risk assessment, gender, age and 
region should be considered (Lan et al., 2022). Based on the dietary 
structure and population characteristics of Chinese residents (Jin, 
2008), the body weights were ranged from 13.2–69.3 kg for urban 
residents and 12.1–64.7 kg for rural residents. Besides, the 

FIGURE 2

The representative UHPLC–MS/MS chromatograms. * Represents straw samples spiked with 0.01 mg/kg for mesotrione and DACT as well as 
0.005 mg/kg for nicosulfuron, atrazine, HA, DIA and DEA. HA, 2-hydroxyatrazine; DIA, 6-deisopropyl atrazine; DEA, Deethylatrazine; DACT, Atrazine-
desethyl-desisopropyl.

https://doi.org/10.3389/fsufs.2023.1263879
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Chen et al. 10.3389/fsufs.2023.1263879

Frontiers in Sustainable Food Systems 07 frontiersin.org

consumptions of maize in these two regions were also different. The 
fully-grown maize consumptions were in ranges of 7.0–21.5 g/d for 
urban regions and 10.3–33.0 g/d for rural regions. For the 
consumption of green maize, the ranges were from 73.1–173.6 g/d for 
urban people and 82.4–225.5 g/d for rural people. All calculation 

process of different groups in two regions was presented from 
Supplementary Tables S6–S8.

Due to the higher STMR and lower ADI of atrazine on two 
categories of maize, the risk of this chemical was higher than that of 
mesotrione or nicosulfuron (Supplementary Table S9). When it comes 

FIGURE 3

The residues of mesotrione, nicosulfuron, atrazine and its four metabolites in four matrices of different locations. HA, 2-hydroxyatrazine; DIA, 
6-deisopropyl atrazine; DEA, deethylatrazine; DACT, atrazine-desethyl-desisopropyl.
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to the risk of fully-grown maize in two regions, the RQ values were 
from 0.00027 to 0.00183% for mesotrione, 0.00003 to 0.00023% for 
nicosulfuron and 0.02467 to 0.16922% for atrazine. But the RQs of 
green maize were generally higher than fully-grown maize because of 
its higher consumption, whose values were in the ranges of 0.00402–
0.01424% for mesotrione, 0.00050–0.00178% for nicosulfuron and 
0.37226–1.31697% for atrazine. As for the risk between two different 
regions, rural residents have higher dietary risk than urban residents, 
which could be attributed to the low weight and high consumption of 
rural people as well as the different dietary culture in two regions (Cui 
et al., 2021; Zhang et al., 2023). For the risk of different ages, the 
highest exposure risk of three herbicides was found at rural male (age 
2–3 years old) on fully-grown maize. Similarly, the largest risk on 
green maize was found at the same group but aged from 4 to 6 years 
old, which could be attributed to the lighter body weight of children.

To further ensure the safe use of these herbicides, the total chronic 
dietary risk needs to be discussed. According to New Zealand Ministry 
for Primary Industries (2023), MRLs of the three herbicides set by 
different regions were summarized in Supplementary Table S10. Since 
mesotrione and nicosulfuron were only registered on maize in China, 
the risk of atrazine was further discussed. Considering the MRLs of 
atrazine on ginger (0.1 mg/kg), grape (0.05 mg/kg), sugarcane 
(0.05 mg/kg) and tea (0.1 mg/kg), the total chronic risk was from 0.76 
to 3.76% for urban male, 0.87 to 4.03% for urban female, 0.82 to 4.11% 
for rural male and 0.92 to 4.39% for rural female (Figure 4). And the 
order of the total risk from high to low was as follows: Rural 
Female>Rural Male>Urban Female>Urban Male. It may be caused by 
the differences of the intake of fruits, sugar and other foods (including 
spring onion, ginger, pear, apple, tea etc.). With the increasing of ages, 
although different groups have similar dietary patterns in both urban 
and rural regions, the total dietary risk gradually decreased, which 
may be explained by the differences of the body weight.

In summary, all RQ values were less than 100% representing the 
acceptable risk of mesotrione, nicosulfuron and atrazine for Chinese. 
After the application of mixed herbicides, however, the residues can 
be transferred to different sites of the ecological system like soil and 
underground water, which can amplify the exposure risk of human via 
the food chain (Li et al., 2021). Thus, more attention needs to be paid 
on the effects of these chemicals on the whole agricultural ecosystem 
to keep its sustainable development. In addition, rural female from 2 
to 6 years old had the highest dietary amount per unit body weight. 
Therefore, the dietary constructures of relevant groups are 
recommended to be  changed so that the risk of exposure to the 
chemicals should be reduced.

4. Conclusion

In this study, we developed reliable and rapid analytical methods 
for the accurate determination of mesotrione, nicosulfuron, atrazine 
and their four metabolites in maize. Results from field experiments 
showed that residues of these three herbicides in fully-grown and 
green maize were below 0.01 mg/kg for mesotrione, 0.005 mg/kg for 
nicosulfuron, and 0.037 mg/kg for accumulative atrazine. The residues 
of mesotrione were less than 0.01 mg/kg in straws and green straws. 
As for other two herbicides, the nicosulfuron and accumulative 
atrazine residues were ranged from <0.005–0.010 mg/kg and <0.037–
0.254 mg/kg in straw samples, respectively. In green straw samples, the 
residues were in the ranges of <0.005–0.007 mg/kg for nicosulfuron 
and <0.037–0.211 mg/kg for accumulative atrazine. However, given 
the wide application of straw in different fields, the residues of green 
straw and straw samples should receive more attention since they can 
pose potential hazards to human health through various pathways of 
the food chain.

FIGURE 4

The total chronic risk of atrazine of different urban and rural groups.

https://doi.org/10.3389/fsufs.2023.1263879
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Chen et al. 10.3389/fsufs.2023.1263879

Frontiers in Sustainable Food Systems 09 frontiersin.org

Through the RQ model, the dietary risk was evaluated considering 
different consumption, rural–urban and age differences. All calculated 
values were less than 100%, indicating that the dietary risks to 
consumers are acceptable. This study confirms the safety of maize 
produced under the mixed application of these three herbicides and 
contributes to a comprehensive evaluation of herbicide use in maize 
production, highlighting the potential of sustainable maize production 
in China.
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