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Although Enhancing green total factor productivity (GTFP) within the agricultural 
sector is crucial for fostering sustainable development. In this paper, the GTFP of 
China’s maize industry is analyzed using the SBM-GML index method, considering 
data from the primary maize-producing provinces from 2004 to 2020. This analysis 
incorporates carbon emissions as undesirable outputs. The spatial Durbin model aids 
in investigating the factors influencing maize GTFP. Our findings reveal a positive 
trajectory for China’s maize GTFP over the designated period, featuring an average 
yearly increase of 0.8%. This ascension is primarily attributed to advancements in 
green maize technology. In the key cultivation regions of the Yellow and Huaihai areas, 
the Northern region, and the Southwest region, the average annual growth rates were 
1.5%, 0.87%, and 0.09%, respectively. Among the direct influences, variables such as 
regional human capital, the extent of maize cultivation area, financial assistance towards 
agriculture, and the degree of agricultural mechanization considerably bolster the 
optimization of maize GTFP. Conversely, urbanization and the prevalence of natural 
disasters in the agricultural sector pose substantial challenges to enhancing maize 
GTFP. Furthermore, the spatial spillover effects reveal that natural agricultural disasters 
in a particular region inadvertently contribute to the improvement of maize GTFP 
in adjacent regions. Additionally, the regional human capital levels can significantly 
impede the progress of maize GTFP in neighboring regions. Therefore, to ensure food 
security, it is imperative to actively advocate for green development within the maize 
industry to Enhancing green total factor productivity (GTFP) in agriculture is crucial for 
agriculture to promote sustainable development. In this paper, using data from 2004-
2020 from China’s main maize-producing provinces, the SBM-GML index method 
is used to measure China’s maize GTFP, and the spatial Durbin model is applied to 
examine the influencing factors and spatial spillover effects of China’s maize GTFP 
growth. The results of the study revealed a positive trajectory of Chinese maize GTFP 
over the specified period, with an average annual growth of 0.8%. This enhancement 
is mainly attributed to the progress of green maize technology. The average annual 
growth rates were 1.5%, 0.87%, and 0.09% in the major cultivation areas of the Yellow 
and Huaihai regions, the northern and southwestern regions, respectively. The analysis 
of influencing factors showed that among the direct influencing factors, variables 
such as regional human capital, extent of maize cultivation area, financial assistance 
to agriculture and degree of agricultural mechanisation contributed significantly 
to the optimization of maize GTFP. Conversely, urbanisation and the prevalence of 
natural disasters in the agricultural sector pose significant challenges to improving 
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maize GTFP. Furthermore, spatial spillovers reveal that natural agricultural disasters 
in a given region unintentionally contribute to the improvement of maize GTFP in 
neighbouring regions. Furthermore, regional human capital levels can significantly 
hinder progress in maize GTFP in neighbouring regions. Therefore, in order to ensure 
food security, the greening of maize production must be actively promoted.

KEYWORDS

maize GTFP, spatial and temporal differences, food security, carbon emissions, spatial 
measurement

1. Introduction

As global climate change and resource shortages intensify, food 
production is slowing down, and the world’s food supply is getting 
tighter. Maize is the world’s most widely planted and most productive 
cereal crop, topping the list of the three major grains (maize, wheat, 
and rice). China is the world’s second-largest producer and consumer 
of maize, with the second-largest sown area, total production, and 
consumption behind the USA (Kong et al., 2002; Olubunmi et al., 
2022). In the last few years of the new century, China’s maize 
production and consumption have grown quickly. In 2021, 43.32 
million ha were planted, which is 44.75% of the total area of the three 
major staple foods and makes maize the largest grain crop currently 
planted in China at the moment.But, the negative externalities 
associated with the rapid growth of maize production have caused 
serious damage to the ecological environment.GTFP of maize refers 
to the inclusion of undesirable output such as carbon emission and 
non-point source pollution in the measurement of TFP of maize.The 
improvement of maize’s GTFP has become an important tool to 
overcome the dilemma of “resource-environment-sustainable growth” 
in agriculture (Fu et al., 2022; Ye et al., 2023).

Currently, research on GTFP in agriculture has focused on these 
three areas (Song et al., 2022; Wang X. et al., 2022; Wang Y. et al., 2022). 
First is the definition of the concept of GTFP and the construction of 
the indicator system. GTFP refers to the inclusion of undesirable 
output indicators based on the traditional total factor productivity 
calculation that treats environmental pollution in the production 
process as a factor input or as a by-product of economic development 
and generally measures undesirable outputs around agricultural 
fertilizers, pesticides, surface pollution, and carbon emissions to make 
the study more scientific (Reinhard et al., 1999; Hailu and Veeman, 
2001; Sun, 2022; Yu D. et al., 2022; Yu et al., 2022a,b).

The second aspect is about the methodology for measuring 
agricultural GTFP. There are two primary methods for calculating 
agricultural GTFP, namely the parametric method and the 
non-parametric method. The parametric method generally uses 
parametric stochastic frontier analysis (SFA), the SFA model beyond 
logarithmic functions, and the SFA-Malmquist method to measure and 
decompose agricultural total factor productivity (Hong et al., 2022; 
Wang F. et al., 2022; Wang L. et al., 2022). The DEA non-parametric 
method is the most commonly used method to measure AGTFP (Fang 
et al., 2021; Yang et al., 2022). The DEA method was first used to 
measure efficiency based on the traditional distance function (DF), but 
Faere et al. (1989) incorporated undesirable output into the efficiency 
measurement system and proposed a directional distance function 
(DDF) based on the output perspective. Chung et al. (1997) further 

developed the Malmquist-Luenberger (ML) indicator based on the 
DDF to measure total factor productivity with undesired output. Based 
on Chung et al. (1997)’s research, Oh (2010) further proposed the 
Global-Malmquist-Luenberger (GML) index to address the problem 
that the ML index is not circularly transferable and cannot be solved 
by linear programming. Tone (2001) proposed a slack-based efficiency 
measure, the SBM method, for the “slack” problem.

The third aspect is about the search for factors influencing the 
optimization or deterioration of GTFP. In the relevant studies analyzing 
the factors influencing GTFP in agriculture, the influencing factors that 
are more recognized by most scholars include agricultural disaster rate, 
crop sowing area, mechanization level, production labor, irrigation 
facility level, economic development level, industrial structure, 
urbanization level, environmental regulation, and other aspects. The 
study showed that economic level, financial investment, wheat disaster 
area, and wheat sown area per capita all had a negative impact on the 
GTFP of wheat (Dai and Xu, 2022); five factors, such as grain 
production machinery and labor, had a significant positive or negative 
impact on the GTFP of grain in Henan Province; three factors, such as 
diesel used in grain production, had a significant negative impact on 
technological progress; and four factors, including financial input, had 
a significant positive or negative effect on technical efficiency (Deng, 
2019). Furthermore, Sang et  al. (2023) found that agricultural 
mechanization services help to narrow the income gap between rural 
households and alleviate income inequality in rural areas.

The above review reveals that previous studies have rarely included 
carbon emissions in the GTPF measurement system and have neglected 
the spatial effects of agricultural GTFP, resulting in biased conclusions. 
Given this, this paper attempts to make a marginal contribution to the 
research in this area through the following three aspects: First, the 
SBM-GML index method is used to measure maize GTFP from the 
perspective of carbon emissions and reveal its spatial and temporal 
evolution patterns. Secondly, in terms of research methodology, the 
spatial Durbin model is applied to explore the significant influencing 
factors of maize GTFP. Finally, spatial decomposition effects are applied 
to analyze the direct and indirect effects on maize GTFP.

The overall objective of this study is to determine the GTFP of 
maize in China based on a carbon emissions perspective and to identify 
its influencing factors for the sustainable development of the maize 
industry. Improving the green total factor productivity of corn is one 
of the ways to realize the sustainable development of corn production. 
More specifically, this study will: (1) establish a maize GTFP 
measurement system, SBM-GML, for measuring GTFP in China’s 
major maize production areas and analyze its causes in both temporal 
and spatial dimensions; (2) identify the key causes affecting maize 
GTFP and spatial spillover effects; explore new pathways for achieving 
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green and high-quality maize development in China; help identify the 
main drivers of maize development and explore its intrinsic influence 
mechanism; and help the connotation and extension of maize green 
development; and (3) at the same time, using maize as the research 
object makes up for the lack of GTFP measurement research objects, 
and aims to explore a new way to achieve green and high-quality 
development of maize in China, reduce carbon emissions from maize 
production through agricultural technology progress and agricultural 
technology efficiency improvement, and explore its intrinsic influence 
mechanism by identifying the main driving forces of maize 
development, which has certain theoretical and practical significance.

The plan for the research is as follows: first, to measure China’s 
maize GTFP and explain its endogenous sources of growth in both 
time and space; second, to analyze the important factors affecting 
China’s maize GTFP and spatial spillover effects; and finally, to draw 
conclusions and make corresponding policy recommendations.

2. Materials and methods

2.1. Study area

China’s major maize producing regions are divided into three 
agricultural zones due to their geographical location and resource 
endowments (Figure 1): the Northern Region, comprising six provinces 
(Heilongjiang, Jilin, Liaoning, Inner Mongolia, Gansu, and Xinjiang); 

the Huaihai Region, comprising six provinces (Henan, Shandong, Hebei, 
Shanxi, Shaanxi, and Anhui); and the Southwest Region, comprising five 
provinces (Sichuan, Yunnan, Guizhou, Guangxi, and Hubei).

All seventeen of China’s major maize-producing provinces were 
selected for this study. These provinces are leading the nation in maize 
sown area and total maize production (Figure 2), while the total maize 
production of the 17 provinces studied accounts for 95.08% of China’s 
total maize production in 2022. They were chosen to be  more 
representative of the study and reflect the changes in maize production 
in China (Kuo et al., 2022; Liu S. et al., 2022; Shuo et al., 2022).

Figure 3 shows that China’s total maize production increased from 
130,287,100 tons in 2004 to 27,255,06 tons in 2021, an increase of 1.09 
times in production during the period; the sown area of maize 
expanded from 254,456,700 hectares to 433,242,400 hectares during the 
same period, an increase of 70.26%, and maize has become the largest 
sown area and most productive crop in China (Chen et al., 2022).
China’s maize production has been growing consistently since 2004, but 
the study period was set at 2004–2020 based on data availability.

2.2. Research methodology

2.2.1. Calculation of carbon emissions
In this study, carbon emissions are considered undesirable 

outputs. Based on the findings of previous scholars (Li et al., 2011; 
Xu T. et  al., 2022), carbon emissions are calculated to include 

FIGURE 1

Three major maize-producing regions and 17 major producing provinces in China.
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emission factors for five sources of carbon emissions, namely, 
pesticide use, converted fertilizer use, agricultural film, 
agricultural diesel use, and maize sown area (Table  1), 
calculated as:

 E E Ti i= ∑ = ∑ ⋅δ  (1)

Where, E represents the total carbon emissions in maize 
production, Ei represents the emissions of various carbon emission 

FIGURE 2

Total sown area and total production in China’s 17 major maize-producing provinces, 2021.

FIGURE 3

The change of maize sown area and production in China, 2004–2020.
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sources, Ti is the number of each carbon source, and δ is the carbon 
emission coefficient of each carbon emission source. The carbon 
emissions coefficient is derived from the existing literature. Based on 
the existing literature, this paper gives a summary of the carbon 
emission coefficient for growing (Table 1).

2.2.2. Measurement of green total factor 
productivity (GTFP) in maize

In this study, MATLAB software combined with SBM-GML index 
was used to measure. The SBM model solves the slackness problem 
and productivity evaluation problem (Kumar et al., 2021; Shi et al., 
2022). The basic form of the model is as follows:
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variables for inputs, desired outputs, and undesirable outputs (carbon 

emissions), respectively; λk is the weighting percentage.; k

∑=1 
denotes constant returns to scale, or variable returns to scale if this 
constraint is removed. The objective function of SBM represents the 
ratio of input–output efficiency, and the SBM model measures only 
static productivity. This study uses the GML to measure the change in 
GTFP in Chinese maize agriculture by referring to Tone and Oh’s 
research findings. The GML index can be expressed as:
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GTFP in agriculture rises when GML > 1 and falls when GML < 1. 
The GML index is decomposed into technical efficiency and technical 
progress, with GEC denoting the technical efficiency index and GTC 
representing the technical progress index.

2.2.3. Spatial empirical methods

2.2.3.1. Estimation of Moran’s I index
The global spatial correlation reflects the overall characteristics of 

the spatial association of variables and is often measured by the global 
Moran’s I index (Chen and Shen, 2020; Pinto et al., 2021), which can 
be written as Equation 4.
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where, S2 is the variance of the sample and ωij is the (i, j) element 
of the spatial weight matrix. Moran’s I index ranges from −1 to 1, 
where a value greater than 0 indicates a positive correlation between 
regions, and the closer the value is to 1, the greater the correlation; 
similarly, a value less than 0 indicates a negative correlation between 
regions. When I = 0, the variable is not spatially correlated, and the 
variables are not spatially correlated when I = 0. In the selection of the 
spatial weight matrix ωij, the geographical distance weight matrix is 
chosen in this study. The geographical distance between the capital 
cities of the two provinces is calculated by latitude and longitude, and 
the reciprocal of the distance is used as the weight setting, i.e., 
wij = 1/dij, if i ≠ j; and wij = 0, if i = j.

2.2.3.2. Spatial Durbin model
It has been shown that agricultural GTFP exhibits a strong 

spatial correlation. Therefore, to examine the spatial autocorrelation 
of maize GTFP, traditional econometric regression models are no 
longer applicable, and this paper chooses to use spatial econometric 
models to analyze the intrinsic relationships. The more commonly 
used spatial econometric models include the spatial lag model 
(SLM), also known as the spatial autoregressive model (SAR), the 
spatial error model (SEM), and the spatial Durbin model (SDM), 
which under certain conditions can be  formed into a spatial lag 
model and a spatial error model (Pan et al., 2021; Gu et al., 2022). In 
this paper, we construct a spatial econometric model to investigate 
the factors influencing GTFP in the main maize-producing areas of 
China. This will be  followed by an LR test to verify whether the 
spatial Durbin model (SDM) degenerates into a spatial lag model 
and a spatial error model.

 GTFP WGTFP V WVit it i it i it i t it= + + + + + +α ρ α θ µ δ ε0  (5)

Where, i denotes the ith maize-growing province and city, t 
denotes the year of observation, ρ is the spatial autoregressive 
coefficient of the explanatory variable (maize GTFP), αi is the 

TABLE 1 Carbon emissions’ influencing factors and coefficients.

Carbon emissions 
source

Carbon emissions 
coefficient

Source of coefficient

Chemical fertilizer 0.8956 kg·kg–1 Oak Ridge National Laboratory, ORNL

Pesticides 4.9341 kg·kg–1 Oak Ridge National Laboratory, ORNL

Agricultural film 5.18 kg·kg–1 Institute of Resources, Ecosystems, and Environment of Agriculture, IREEA

Diesel oil 0.5927 kg·kg–1 IPCC

Plowing 312.6 kg·km-2 Institute of Agriculture and Biotechnology of China Agricultural University, IABCAU
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coefficient of the influencing factor variable, μi is a regional fixed 
effect, δt is a time fixed effect, and εit is the residual term.

2.3. Description of variables

2.3.1. Input–output indicator selection
The accounting system for maize GTFP includes both input and 

output components. Choosing the right input and output variables is 
the key to measuring maize GTFP (Xu Q. et al., 2022). The three main 
types of input indicators are labor, agricultural materials, and land 
resources (Hlahla, 2022). Output indicators are divided into two main 
categories (Liu et al., 2023): desired output and undesired output. 
Drawing on the existing literature (Ma et al., 2022) combined with the 
characteristics of maize production, the input–output variables in this 
study were selected as shown in Table 2.

2.3.2. Selection of indicators for influencing 
factors

When carbon emissions are taken into account, the GTFP of maize 
mostly reflects how much the existing inputs of production materials 
contribute to the output. Based on the current maize production situation 
in China and the research results of other scholars (Zhang et al., 2021; Xing 
et al., 2023; Yao et al., 2023), the following indicators were chosen as the 
factors that affect maize’s GTFP.

2.3.2.1. Explanatory variables
In this paper, maize GTFP is used as the explanatory variable, 

while maize GTFP is calculated from the SBM-GML index, which 
includes non-desired outputs. However, maize GTFP, as measured 
directly by the SBM-GML index, is a dynamic indicator. Therefore, it 
must be transformed by it. The year 2004 is set as the base period, and 
the GTFP for that year is specified as 1. The GTFP for other years is 
obtained by multiplying it cumulatively.

2.3.2.2. Explanatory variables
The key factors affecting GTFP include infrastructure, business 

conditions, and natural climate change. With reference to studies on 
the factors impacting GTFP in agriculture (Li et  al., 2022), the 
following explanatory variables are selected in this paper: (1) The 
level of economic development (GDP), expressed using regional GDP 
per capita. (2) The level of urbanization (URB), expressed using the 
share of the non-farm population in the total population. (3) The level 
of agricultural natural disasters (ADR), as measured by the ratio of 
the area affected to the total area sown by crops in the region. (4) 
Regional human capital (HC), expressed using the average number 

of years of schooling of the regional labor force. (5) Maize cultivation 
structure level (CPS), expressed as a share of the maize-sown area in 
the crop-sown area. (6) The level of financial support to agriculture 
(FSA), as measured by the expenditure on agriculture, forestry, and 
water in each province in a calendar year. (7) The level of agricultural 
mechanization (MACH), is measured by the ratio of total regional 
agricultural machinery power to total crop sown area.

2.4. Data sources and descriptive statistics

This paper uses 17 major maize-producing provinces in China as 
the study area, and the study spans the period 2004–2020. Data on 
inputs and outputs in the maize GTFP accounting were obtained from 
the 2005–2021 National Compilation of Agricultural Costs and 
Returns and the China Rural Statistical Yearbook. The National 
Compilation of Agricultural Costs and Returns, the China Agricultural 
Statistical Yearbook, regional yearbooks, and the EPS database were 
used to get information about other variables. Table  3 shows the 
results of the descriptive statistical analysis of the research data. In 
addition, the measurement results of this paper were mainly realized 
through Stata 17 software.

3. Results

3.1. Measurement of GTFP in maize in 
China

3.1.1. Chinese maize GTFP in a time-series 
perspective

The dynamic maize green total factor productivity (GTFP), maize 
green technical efficiency (GEC), and maize green technical progress 
(GTC) in the main maize-producing areas of China from 2004 to 2020 
were measured using Matlab software based on the SBM-GML 
method, as shown in Figure 4. As can be seen in Figure 4, China’s 
maize GTFP showed an overall “M”-shaped fluctuation during the 
study period, with sustained growth over a longer period from 2013 
to 2018. From 2004 to 2014, China’s maize GEC was higher than 
China’s maize GTC for many years; from 2015 to 2020, China’s maize 
GTC outpaced maize GEC, with an overall upward trend in maize 
GTFP driven by technological progress; and from 2013 to 2020, maize 
GTC was basically the same as maize GTC. In 2013–2020, maize GTC 
largely kept pace with maize GTFP, suggesting that the source of 
growth in maize GTFP was mainly maize green technological progress 
(Gao et al., 2022; Liu S. et al., 2022).The possible reason is that maize, 

TABLE 2 Selection of input–output variables.

Indicators Quantitative indicators unit

Land input Corn sown area Ten thousand hectares

Labor input Corn practitioners Thousands of people

Mechanical input Total power of corn production machinery Ten thousand kilowatts

Pesticide input Pesticide amount used in corn production Ten thousand tons

Fertilizer input Corn production of chemical fertilizer discount purity volume Ten thousand tons

Expect output Total corn production Ten thousand tons

Non-expected outputs Total carbon emissions from corn Ten thousand tons
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as one of the three main grains in China, is easy to popularize 
agricultural technology in the process of maize production, which is 
conducive to the growth of GTFP of maize.

Table 4 shows the change in GTFP and its decomposition index 
for the main maize-producing areas from 2004 to 2020. There has 
been a long-standing and unavoidable pattern of unrefined 
agricultural growth that depletes resources and pollutes the 
environment, and the maize GTFP that reflects this reality is closer to 
the actual efficiency of maize production. Overall, the average value 
of GTFP in China’s major maize-producing areas from 2004 to 2020 

is 1.008. Even though there is a general trend toward more efficiency, 
the growth of maize GTFP is weak, mainly due to the large decline in 
maize GTFP in the early years, which slowed down the 
growth dynamics.

The dynamics of agricultural GTFP in the major grain-producing 
regions in 2002–2019 can be broadly discussed in the following three 
phases: (1) From 2004 through 2009, it can be seen that GEC drove 
GTFP, while GTC hindered its enhancement, and the impact of GTC on 
GTFP was more significant. Therefore, the drive of GEC failed to 
compensate for the negative effect of GTC, thus preventing GTFP from 

TABLE 3 Descriptive statistics for all variables.

Variables Abbrev. Unit Mean S.D. Min. Max.

Corn GTFP index GTFP – 1.008 0.158 0.532 1.577

Economic development level GDP RMB 10,000/person 3.121 1.673 0.424 7.671

Urbanization level URB % 0.481 0.098 0.263 0.721

Agricultural disaster area ADR – 0.217 0.141 0.016 0.689

Regional human capital HR Year 8.616 0.811 6.378 10.450

Plant structure level CPS – 0.271 0.160 0.050 0.697

Financial support for agriculture FSA – 43.079 30.947 3.381 133.936

Level of agricultural mechanization MACH – 0.544 0.229 0.170 1.270

Total corn production OUTPUT1 10,000 tons 1105.750 857.507 176.100 3982.156

Corn carbon emissions OUTPUT2 10,000 tons 6052.828 4072.977 1135.540 19914.860

Mechanical input INPUT1 10,000 kw 1130.951 1016.264 88.106 4126.257

Land input INPUT2 10,000 hectares 190.678 128.491 35.750 631.780

Labor input INPUT3 10,000 people 150.631 83.714 30.945 407.579

Fertilizer input INPUT4 10,000 tons 62.223 1.253 7.218 191.742

Pesticide input INPUT5 10,000 tons 1.575 44.569 0.077 5.066

Diesel input INPUT6 10,000 tons 82.478 71.511 4.8 487

FIGURE 4

GTFP and its decomposition for maize production in China, 2004–2020.
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improving. (2) Between 2010 and 2016, GEC remained dominant, 
showing significant fluctuating growth with a significant positive effect 
on the change of GTFP, and the improvement of GTC had a significant 
impact on GTFP when the two-way driving effect of GEC and GTC 
enabled GTFP to improve effectively. (3) Between 2016 and 2020, the 
development of green technology in China significantly improved, in 
which the change in GTC is the main one and has a significant positive 
effect on the change in GTFP, while the effect of GEC on GTFP is 
negative. The improvement in GTC can compensate for the negative 
effect caused by the decline in GEC, which in turn promotes the 
improvement in GTFP. During this period, the development of green 
technology was an important factor contributing to the increase in GTFP, 
which could be attributed to the introduction of government policies on 
non-point source pollution, which increased investment in new 
technologies, thus promoting the development of green technology and 
thus the increase in GTFP (Huang et al., 2022).

3.1.2. The spatial perspective of Chinese maize 
GTFP

The annual average GTFP change indices and decomposition 
indices for the 17 provinces in China’s major maize-producing regions 
and the northern region, the Yellow and Huaihai Sea region, and the 
southwest region from 2004 to 2020 are shown in Table 5. At the 
provincial level, from 2004 to 2020, 15 provinces (Heilongjiang, Jilin, 
Liaoning, Neimenggu, Xinjiang, Henan, Shandong, Hebei, Shanxi, 
Shaanxi, Anhui, Sichuan, Yunnan, Guizhou, and Guangxi) have an 
agricultural GTFP change index greater than 1, and only two provinces 
(Gansu and Hubei) have a maize GTFP change index less than 1.

The majority of provinces were able to keep making progress 
toward being green and efficient. Among them, Heilongjiang ranks 
first in the GTFP for maize with a GTFP change index of 1.050, 
while Hubei ranks last with a GTFP change index of 0.967, making 

the difference in maize GTFP between provinces more obvious. 
According to the indices of GTFP, GEC, and GTC in the major 
maize-producing provinces, they are divided into the following three 
types: (1) The high-efficiency zone of maize green production 
(Heilongjiang, Henan, Hebei, Shandong, Guizhou, and Liaoning). 
The difference between GEC and GTC in these provinces is small, 
suggesting that both GEC and GTC are driving maize GTFP growth. 
The balance between economic growth and environmental 
friendliness in maize production is well achieved. (2) The medium 
maize green production efficiency zones (Yunnan, Shaanxi, Sichuan, 
Guangxi, Neimenggu, and Xinjiang), where the degree of 
improvement in agricultural green production is relatively small. 
This can be  explained by the immaturity of early agricultural 
production systems, the relatively weak awareness of environmental 
protection and resource conservation among farmers, and the 
frequent occurrence of natural disasters, which eventually resulted 
in a slightly declining GTFP. (3) Maize green production efficiency 
zones (Jilin, Shanxi, Anhui, Gansu, and Hubei), which had an 
average annual maize GTFP index of less than 1 in these provinces 
from 2004 to 2020 and whose overall production efficiency was in 
retreat due to their primitive agricultural production practices.

At the regional level, the best result in green maize production is 
in the Yellow and Huaihai regions, with a maize GTFP variation index 
of 1.015, it may be  caused by the different level of economic 
development, technological innovation strength and technological 
improvement efficiency among different regions, and the maize GTFP 
of three provinces, Henan, Hebei, and Shandong, is greater than the 
average of all provinces. Lastly, the southwest region has a maize 
GTFP index of 1.001, but the overall agricultural GTFP is still on the 
rise between 2004 and 2020, with Sichuan, Guangxi, and Hubei 
provinces all ranking lower. Therefore, it is necessary to improve the 
green production status of maize in the southwest region.

TABLE 4 Values of GTFP, GEC, and GTC for maize production in China, 2004–2020.

Year GTFP GEC GTC

2004–2005 0.981 0.988 1.000

2005–2006 0.944 1.002 0.944

2006–2007 0.932 1.065 0.899

2007–2008 1.117 1.010 1.138

2008–2009 0.871 1.097 0.806

2009–2010 0.995 0.959 1.059

2010–2011 1.016 1.016 1.012

2011–2012 1.022 1.038 0.988

2012–2013 1.019 1.019 1.002

2013–2014 0.934 1.013 0.923

2014–2015 1.014 0.983 1.035

2015–2016 1.072 1.014 1.057

2016–2017 1.040 0.979 1.063

2017–2018 1.038 0.918 1.137

2018–2019 1.074 0.996 1.100

2019–2020 1.070 0.959 1.147

Average 1.008 1.003 1.019

MATLAB software results collated.
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Table 5. Comparative analysis of maize GTFP, GEC, and GTC by 
major maize-producing areas in China, 2004–2020.

3.2. Spatial correlation test

Before establishing a spatial measure, a pre-test for spatial 
autocorrelation must generally be conducted. The most famous ones 
are the Moran’I index, the Gearys’C index, and the Getic-Ord index, 
while the Moran’s I index is now preferred for testing among most 
studies (Maya et al., 2019). From the results of the global Moran’s 
I  index test, it was observed that maize GTFP was significant and 
positive in the majority of years, indicating a strong spatial 
autocorrelation of agricultural GTFP. The global Moran’s I test shows 
that maize GTFP in China shows a strong spatial dependence in all 
years. The global Moran’s I test (Table 6) shows that the maize GTFPs 
in China all exhibited strong spatial dependence.

3.3. Spatial regression results

The Hausman test was used to determine whether fixed effects 
or random effects were used for the spatial regressions, and the 
results were significant at the 1% level, rejecting the original 
hypothesis that fixed effects were better than random effects. In the 
selection of the spatial econometric model, the spatial lag model 
(SAR), the spatial error model (SEM), and the spatial Durbin 
model (SDM) were regressed under the selected geographic 
distance weight matrix, and the LR test was applied to verify 
whether the spatial Durbin model (SDM) would degenerate into 
the spatial lag model (SAR) and the spatial error model (SEM), and 
the statistical value results were significantly positive at the 1% 
level. Significantly positive; therefore, the final regression results of 
the Durbin spatio-temporal stationary model were selected for 
analysis as follows (Table 7).

In the spatial Durbin model, the coefficients of the direct effects 
of the level of urbanization and the level of financial support to 
agriculture were both significantly positive, which indicates that these 
variables helped increase maize GTFP. On the other hand, the level of 
agricultural disaster and the level of agricultural mechanization, both 
of which were significantly negative at the 5% level, slowed the growth 
of maize GTFP. However, the regression coefficients of economic 
development level, regional human capital, and maize planting 
structure level were not significant, but the coefficient of the spatially 
lagged term of regional human capital was significantly negative at the 
1% level and the coefficient of the spatially lagged term of maize 
planting structure level was significantly positive at the 5% level, 
indicating that the effect of high or low regional human capital and a 
reasonable maize planting structure level on maize GTFP in the 
province was not significant. The coefficient of the spatially lagged 
term is positive at the 5% level. In addition, the coefficient of the 
spatially lagged term of the degree of agricultural disaster is 
significantly negative at the 10% level, showing a negative spatial 
spillover effect on the GTFP of agriculture in neighboring provinces, 
while the coefficient of the spatially lagged term of the level of financial 
support to agriculture is significantly positive at the 5% level, showing 
a positive spatial spillover effect on the GTFP of agriculture in 
neighboring provinces.

3.4. Decomposition of spatial effects

Table 8 shows the results of the effect decomposition of the spatial 
Durbin model. The significant influences are explained in this study 
as follows:

 (1) The regression coefficient for the level of urbanization (URB) is 
significantly negative at the 10% level, with each unit of elevation 
reducing the maize GTFP by 1.550 units, and its direct and 
indirect effects are both negative, indicating that the rural 
population moves to a certain extent into the urban, it not only 
inhibits the elevation of the maize GTFP in the region but also 
hinders the development of the maize GTFP in neighboring areas.

 (2) In terms of direct effects, the coefficient of the impact of the level 
of agricultural natural disasters (ADR) on the GTFP of maize in 
the region was negative and passed the 1% significance test. This 
indicates that the level of agricultural natural disasters had a 
negative, hindering effect on the GTFP of maize in the region. In 
the indirect effect, the coefficient of the effect of the level of 
agricultural natural disasters on GTFP in the surrounding area 
was positive and passed the significance test at the 10% level. This 
indicates that the level of agricultural disaster has a positive effect 
on the GTFP of maize in geographically adjacent areas.

 (3) For every additional unit of regional human capital (HC), maize 
GTFP goes down by 0.229, which is not statistically significant. 
The effects of direct and spatial spillover are 0.156 (significant at 
the 1% level) and −0.385 (significant at the 5% level), respectively. 
The results indicate there is a certain offsetting effect between the 
direct and indirect effects, which ultimately makes the total effect 
insignificant, so it is necessary to reasonably guide the flow of 
talents between provinces to bring into play the positive 
externalities of human capital.

 (4) For every 1 unit increase in cropping structure (CPS), maize GTFP 
increases by 1.145, which mainly comes from the direct effect. The 
indirect effect is not statistically significant, which indicates that the 
adjustment of crop structure only positively affects maize GTFP in 
the province and does not significantly affect the optimization or 
deterioration of maize GTFP in the surrounding areas.

 (5) For every 1 unit increase in financial support to agriculture (FSA), 
maize’s GTFP goes up by 0.00936. Its growth contribution is 
primarily attributable to its direct effect (0.00752). The effect of its 
spatial spillover is insignificant, which implies the need to improve 
policies to support agricultural development as well as increase 
financial investment to promote sustainable agricultural  
development.

 (6) Using mechanization (MACH) can help make the best use of 
production resources, bring in more advanced technologies for 
agricultural production, and help the province’s maize GTFP grow 
by making technological progress. But China’s level of 
mechanization in agriculture is not yet at the same level as that of 
developed countries. So, creating an imbalance between supply and 
demand, which always leads to fierce competition on the domestic 
market and the province’s aggressive development of agricultural 
mechanization will lead to a situation where supply and demand are 
not in balance. The vigorous development of agricultural 
mechanization in the province will hinder the development of 
mechanization levels in neighboring provinces, inhibiting the 
growth of agricultural GTFP in neighboring provinces.
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 (7) In terms of the level of economic development (PGDP), as the 
economy continues to develop, it will hinder the growth of 
maize GTFP in the region, but will promote the growth of maize 
GTFP in the surrounding areas, but none of it is significant.

3.5. Robustness test

The neighborhood space weight matrix was used to validate the 
results to make sure they were accurate. The results were generally in 

TABLE 6 Global Moran’s I test in 2004–2020.

Year Moran’s I p-value

2004–2005 −0.051 0.427

2005–2006 −0.041 0.372

2006–2007 0.150 0.000

2007–2008 0.046 0.016

2008–2009 0.131 0.001

2009–2010 0.119 0.002

2010–2011 0.110 0.002

2011–2012 −0.200 0.015

2012–2013 −0.060 0.482

2013–2014 0.016 0.095

2014–2015 −0.094 0.300

2015–2016 −0.002 0.176

2016–2017 0.118 0.001

2017–2018 0.089 0.004

2018–2019 0.013 0.116

2019–2020 0.204 0.000

Stata 17 software results collated.

TABLE 5 Comparative analysis of maize GTFP, GEC, and GTC by major maize-producing areas in China, 2004–2020.

Provinces or 
regions

GEC Rank GTC Rank GTFP Rank

  Heilongjiang 1.008 7 1.034 3 1.050 1

  Jilin 0.979 15 1.033 4 1.004 13

  Liaoning 0.976 16 1.040 2 1.012 6

  NeiMonggol 0.994 12 1.013 10 1.006 11

  Gansu 0.993 14 1.013 9 0.976 16

  Xinjiang 1.002 10 1.002 16 1.005 12

Thenorthernregion 0.992 1.023 1.009

  Henan 1.021 3 1.018 7 1.033 2

  Shandong 1.045 1 1.072 1 1.016 4

  Hebei 1.015 4 1.022 6 1.032 3

  Shanxi 0.993 13 1.011 11 1.002 14

  Shaanxi 1.014 5 1.007 13 1.008 8

  Anhui 1.008 8 1.000 17 1.001 15

Yellow and Huaihai region 1.016 1.022 1.015

  Sichuan 1.005 9 1.007 12 1.007 9

  Yunnan 1.012 6 1.005 15 1.012 7

  Guizhou 0.996 11 1.014 8 1.012 5

  Guangxi 1.029 2 1.007 14 1.007 10

  Hubei 0.970 17 1.028 5 0.967 17

The southwest region 1.003 1.014 1.001

MATLAB software results collated.
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line with the signs of the coefficients of the above variables, which 
showed that the model results were reliable (Table 9).

4. Discussion

Striving for green development in agriculture is closely tied to the 
healthy expansion of our agricultural economy, and is also 
fundamental for sustainable food production and food security. It 
plays a crucial role in the balanced growth of our economy, society, 

and environment. As a result, studying the Green Total Factor 
Productivity (GTFP) of maize is of utmost importance. In recent 
times, research into the green development of maize has gained 
traction, attracting attention from scholars both locally and globally 
(Xu X. et al., 2019; Xu X. et al., 2020; Edison, 2022; Gupta et al., 2022; 
Liu S. et al., 2022; Liu W. et al., 2022).

Following the same trajectory, this study evaluates the productivity 
of maize in China’s main maize production regions by integrating 
carbon emissions into the measurement of maize GTFP. This approach 
provides a more comprehensive understanding of maize production 

TABLE 7 Empirical regression results.

Models SAR SEM SDM

Variable GTFP GTFP GTFP

Main

  GDP (Economic development level) −0.0230 (0.0527) −0.0241 (0.0524) −0.0627 (0.0449)

  URB (Urbanization level) −0.248 (0.597) −0.303 (0.614) 1.165** (0.569)

  ADR (Agricultural natural disaster level) −0.145* (0.0757) −0.151** (0.0694) −0.156** (0.0651)

  HC (Regional human capital) −0.0905 (0.0776) −0.102 (0.0798) −0.0674 (0.0599)

  CPS (Cultivation structure level) −0.190 (0.435) −0.108 (0.497) −0.273 (0.369)

  FSA (Financial support level) 0.00483*** (0.00122) 0.00493*** (0.00128) 0.00624*** (0.00105)

  MACH (Agricultural mechanization level) −0.513*** (0.131) −0.495*** (0.126) −0.361** (0.167)

Spatial

  Rho −0.229* (0.127) −0.442** (0.176)

  Lambda −0.319 (0.268)

Variance

  Sigma2_e 0.00879*** (0.00126) 0.00871*** (0.00116) 0.00703*** (0.00113)

Wx

  GDP (Economic development level) −0.290 (0.230)

  URB (Urbanization level) 0.106 (2.575)

  ADR (Agricultural natural disaster level) −0.557* (0.332)

  HC (Regional human capital) −0.890*** (0.319)

  CPS (Cultivation structure level) 5.075** (1.994)

  FSA (Financial support level) 0.0105** (0.00479)

  MACH (Agricultural mechanization level) −0.264 (0.826)

Individual fixation YES YES YES

Fixed time YES YES YES

Stata 17 software results collated. 
*, **, and *** indicate that the results are significant at 10%, 5%, and 1% levels, respectively. The numbers in the table represent regression coefficients, standard deviations are given in 
parentheses.

TABLE 8 Decomposition of effects for the spatial Durbin model.

Total Direct Indirect

GDP (Economic development level) 0.0370 (0.0758) −0.0184 (0.0187) 0.0554 (0.0729)

URB (Urbanization level) −1.550* (0.904) −1.115*** (0.269) −0.435 (0.926)

ADR (Agricultural natural disaster level) 0.0371 (0.237) −0.464*** (0.0935) 0.501* (0.262)

HC (Regional human capital) −0.229 (0.155) 0.156*** (0.0303) −0.385** (0.150)

CPS (Cultivation structure level) 1.145*** (0.384) 0.515*** (0.118) 0.630 (0.405)

FSA (Financial support level) 0.00936** (0.00425) 0.00752*** (0.000784) 0.00184 (0.00417)

MACH (Agricultural mechanization level) 0.253 (0.197) 0.370*** (0.0606) −0.117 (0.221)

Data source: Stata 17 software results collated.
*, **, and *** indicate that the results are significant at 10%, 5%, and 1% levels, respectively. The numbers in the table represent regression coefficients, standard deviations are given in 
parentheses.
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efficiency. Our findings show that the growth of China’s maize GTFP 
is primarily fueled by the country’s strong commitment to green 
agriculture. In the delicate balance between agricultural development 
and environmental protection, the government has stepped up its 
promotion of green agricultural policies. This move has sparked a shift 
in farmers’ mindset, encouraging them to adopt more eco-friendly 
production methods. The subsequent decrease in pollutants and 
undesirable output is a promising initial accomplishment towards the 
green development of maize.

These findings hold significant practical and theoretical implications. 
They contribute to ensuring national food security, promoting sustainable 
agricultural growth, modernizing the agriculture sector, supporting 
economic growth, and protecting the environment. Moreover, these 
findings offer insights into solving the “three rural issues.” As such, this 
trend towards greener maize production practices is a vital step in 
promoting sustainable food production.

In this paper, by combing through the research on the spatial 
correlation of GTFP, most previous studies have assumed that the 
variables are independent for each province. However, in reality, because 
agriculture has the attribute of a public good, there will inevitably 
be some correlation among provinces, and whether and what kind of 
impact the influencing factors in the home province will have on the 
green total factor productivity of maize in neighboring provinces is one 
of the pressing questions in this paper. Some research (Liu, 2019; Hu 
J. et al., 2022; Hu Q. et al., 2022; Xiao et al., 2022; Zhao et al., 2022) 
argues that while spatial correlations and maize GTFP are considered 
together, the interactions between different regions are neglected, and 
the traditional regression model analysis fails to reflect the role of each 
influencing factor well. To better study the trends of GTFP changes in 
China’s major maize-producing regions, this study further examined the 
spatial characteristics of agricultural GTFP in the major maize-
producing regions using the Moran index, based on which an empirical 
study was conducted on the factors affecting the green development of 
maize in China using the spatial Durbin model. The results show that 
regional human capital, maize planting structure, level of agricultural 
financial support and level of agricultural mechanisation all have 
significant effects on maize GTFP growth, indicating that higher 
regional human capital, more optimised maize planting structure, 
higher level of agricultural financial support and higher level of 
agricultural mechanisation are conducive to promoting maize green 
total factor productivity growth; the degree of regional natural disasters 
has a driving effect on maize GTFP growth in the surrounding areas 
growth is driven, possibly because more severe agricultural disasters 

reduce the region’s total maize production, thus hindering the growth 
of local maize green factor productivity, but instead promoting the 
growth of surrounding maize green factor productivity; regional human 
capital has a significant inhibitory effect on the increase of maize total 
factor productivity in the surrounding region, possibly because the 
inflow of talent from the surrounding area leads to the growth of 
surrounding maize GTFP decreased.The level of economic development 
in the region had no significant effect on maize GTFP growth in the 
region and adjacent areas. Through systematic and in-depth analysis, it 
will help to understand the current situation and influencing factors of 
maize GTFP in China and gain insight into the differences in maize 
development among different regions, etc., to achieve sustainable 
development among regions and ensure regional food security and even 
the food security of the whole country.

5. Conclusions and policy implications

5.1. Conclusion

To address the problems of traditional maize TFP measurement, 
this paper incorporates undesirable output (carbon emissions) into 
the research framework of maize TFP from the perspective of green 
development and uses the SBM-GML indicator to measure the 
dynamic evolution of China’s maize GTFP in 2004–2020 and analyze 
it’s influencing factors.

 (1) From the perspective of time evolution, China’s maize GTFP 
showed an upward trend during 2004–2020, with an average 
annual growth rate of 0.8%, gradually changing from being 
driven by a combination of technological progress and 
technical efficiency, but the contribution of technological 
progress was greater than that of technical efficiency.

 (2) From the perspective of spatial partitioning, the growth of 
China’s maize GTFP is dominated by the Yellow and 
Huaihai Sea region and the northern region, with mean 
values of 1.015 and 1.009, respectively, during the study 
period, while the southwest region lags behind the 
northern region and the Yellow and Huaihai Sea region, 
with a mean value of 1.001, but is still greater than 1 and is 
in the optimization stage.

TABLE 9 Robustness test results.

Total Direct Indirect

GDP (Economic development level) −0.0265 (0.0370) −0.0128 (0.0200) −0.0137 (0.0308)

URB (Urbanization level) −0.599 (0.556) −1.533*** (0.299) 0.935* (0.515)

ADR (Agricultural natural disaster level) −0.223 (0.142) −0.341*** (0.0912) 0.118 (0.142)

HC (Regional human capital) −0.152* (0.0784) 0.124*** (0.0315) −0.276*** (0.0702)

CPS (Cultivation structure level) 1.008*** (0.250) 0.391*** (0.127) 0.617** (0.281)

FSA (Financial support level) 0.00961*** (0.00274) 0.00683*** (0.000814) 0.00279 (0.00252)

MACH (Agricultural mechanization level) 0.602*** (0.124) 0.247*** (0.0684) 0.355** (0.150)

Data source: Stata 17 software results collated.
*, **, and *** indicate that the results are significant at the 10%, 5%, and 1% levels, respectively. The numbers in the table represent regression coefficients, standard deviations are given in 
parentheses.
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 (3) In terms of influencing factors, the region’s regional human 
capital, maize cultivation structure, level of financial support 
for agriculture, and level of agricultural mechanization have 
significant promoting effects on the growth of maize GTFP, 
while the level of urbanization and the frequency of natural 
disasters significantly inhibit the growth of maize GTFP. The 
level of natural disasters in the region plays a driving role in 
the growth of maize GTFP in neighboring regions, and the 
regional human capital had a significant inhibitory effect on 
the increase in maize total factor productivity in the 
neighboring region. The level of economic development in the 
region had no significant effect on maize GTFP growth in the 
region and adjacent areas.

5.2. Policy recommendations

The following recommendations are made based on the findings 
of the research:

 (1) Farmers should improve their scientific quality and focus on 
transforming their development methods to improve agro-
ecological efficiency, while focusing on cultivating new 
agricultural business entities, such as training highly qualified 
farmers, establishing rural cooperatives, and supporting leading 
agricultural enterprises, as well as prioritizing ecology, the need to 
vigorously develop the agricultural machinery industry, and more 
importantly, making breakthroughs in green agricultural 
production technologies to promote high-quality agricultural 
economic development (Gesche et al., 2022).

 (2) To improve the technical efficiency of maize production and 
reduce pollution, farmers should strengthen technical training 
and rationalize the planting structure so as to reduce the 
agricultural disaster rate. This would provide a theoretical 
reference and policy basis for further improving maize GTFP 
(Zhu L. et al., 2022; Zhu Y. et al., 2022).

 (3) Technological progress plays an important role in boosting 
GTFP in Chinese agriculture, both temporally and regionally. 
However, technical efficiency can often be a constraint on the 
growth of this productivity. At the same time, the farther the 
distance of technology diffusion, the weaker the technology, 
and the farther the distance, the lower the level of agricultural 
technology. This means China needs to be able to innovate in 
science and technology, establish an agricultural technology 
extension system, increase extension services, strengthen inter-
regional exchanges and cooperation, and close the gap in 
technology levels (Wang et al., 2020; Guo et al., 2021; Zhang 
F. et al., 2022; Zhang Y. et al., 2022).

5.3. Limitations of the study and future 
research

This study uses the SBM-GML index to measure maize GTFP, 
explores its dynamic evolution, and identifies the important factors 
affecting the improvement of maize GTFP based on spatial 
measurement. Due to the limitations of research capacity and 
conditions, some limitations are worth noting:

Firstly, in the process of data collection and processing, the full 
range of carbon emission indicators cannot be directly obtained. At 
present, China’s agricultural green total factor productivity 
non-expected output indicators do not have a complete measurement 
system, and their measurement results have some deviations from the 
actual situation. This paper provides a more detailed assessment of 
China’s carbon emissions, based on references to relevant domestic 
and international research and drawing on the currently accepted 
calculation methods for various indicators.

Secondly, from the breadth and depth of research, as an important 
grain crop production base in China, the main maize-producing areas 
are responsible for the major task of ensuring national food security and 
the balance between supply and demand of agricultural products. With 
the rising food consumption level of residents in the new era, the main 
producing areas, the main marketing areas, and balanced production 
and marketing areas are working together to enhance the comprehensive 
grain production capacity (Murrell et al., 2022; Skawińska and Zalewski, 
2022; Stavi et al., 2022; Teeuwen et al., 2022). How can the interests of 
the three regions be balanced? Furthermore, the study of GTFP in 
China’s main maize-producing regions is of great significance in 
promoting GTFP in China’s major maize-producing regions and in 
formulating green development strategies in a scientific manner. This 
aspect is yet to be further explored.

Thirdly, the prospect of this study is to find out the factors 
affecting the growth of GTFP in maize by measuring the GTFP of 
maize in China’s three major maize producing regions and exploring 
its spatial spillover effects by analysing its temporal and spatial 
dynamic evolution patterns, so as to contribute to the development of 
food security. Future research will focus more on the spatial spillover 
effects of green total factor productivity in agriculture.
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