
Frontiers in Sustainable Food Systems 01 frontiersin.org

Changes in land use practices 
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their bioavailability
Dhaneshwar Padhan 1*†, Pragyan Paramita Rout 2 and Arup Sen 1

1 Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India, 2 Institute of Agricultural Sciences, Siksha ‘O’ 
Anusandhan (Deemed to be University), Bhubaneswar, India

Changes in land use practices may affect the distribution of soil sulfur (S) fractions and 
their bioavailability. Therefore, this study was undertaken to assess the influence of 
different land use changes on the distribution of soil S fractions and their bioavailability 
for plant nutrition. Soil samples from farmers’ fields with different land use practices 
such as rice-mustard-jute (R-M-J), rice-lentil-jute (R-L-J), rice-lentil-sesame (R-L-S), 
rice-vegetable-jute (R-V-J), and rice-potato-green gram (R-P-G) were collected and 
analyzed for different fractions of S. The bioavailability of S was assessed by extracting 
the soil with six different extractants (acidic, neutral, and alkaline) with different 
extraction modes and chemistry. The results showed that changes in land use practices 
could influence the distribution of soil S fractions and their bioavailability. Organic S 
was the dominant fraction, accounting for 93.5% of total S across land use practices. 
The inorganic S fraction (water-soluble, sorbed, and occluded) varied significantly 
among the land use practices. Among the inorganic fractions, the water-soluble 
fraction was the dominant fraction across the land use practices. The bioavailability 
of S, as assessed by different chemical extractants, was in the following order: 
sodium hydrogen carbonate (NaHCO3) > mehlich-3 > ammonium bicarbonate-
diethylenetriamine penta-acetic acid (AB-DTPA) > ammonium acetate-acetic acid 
(NH4Ac-HOAc) > calcium dihydrogen phosphate {Ca(H2PO4)2} > calcium chloride 
(CaCl2). By establishing relationships between extractable S and soil S fractions, it 
was observed that all the extractants could obtain S from the water-soluble, sorbed, 
and organic S fractions, with little extractability from the occluded fraction. Among 
the extractants tested, mehlich-3 extracted a similar amount of S corresponding 
to the inorganic fraction across the land use practices. It also maintained positive 
relationships with different fractions of S, and as a multi-nutrient extractant, its use in 
routine soil testing can be recommended.
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1. Introduction

Sulfur (S) is a secondary nutrient element required for the growth and development of plants. 
As an important constituent of different biomolecules and enzyme systems, it plays an important 
role in crop production (Solomon et al., 2001). Although the requirement for S is crop-specific, 
oilseed crops require a higher amount of S for the synthesis of glucosinolates and oils (Padhan, 
2016). Therefore, an inadequate supply of S during the crop growth period affects crop production 
and product quality. In recent years, soil S deficiency has been found in many parts of the world. 
The widespread S deficiency in soils may be due to the use of chemical fertilizers with high 
analysis but low sulfur content (Balik et al., 2009; Eriksen, 2009; Scherer, 2009), the restricted use 
of organic manures, which are a major source of S for plant nutrition (Reddy et al., 2002), and 
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the introduction of high-yielding cultivars that remove higher amounts 
of S compared to traditional varieties (Kundu et al., 2020). It has been 
reported that approximately 58.6% of Indian soils are deficient in S 
(Shukla et al., 2021). Such S deficiency in soils causes significant yield 
reduction, and it is reported to be 50% in cereals (Zhao et al., 2001). 
Nearly 1.26 million tons of S are removed by different cropping 
systems, while only about 0.76 million tons are replenished by 
fertilizers (Tiwari and Gupta, 2006). Moreover, the use efficiency of the 
applied S is only 8–10% (Hegde and Murthy, 2005) in different crops, 
while it is 18% in cereals (Aula et al., 2019), which needs to be improved 
considering the escalating cost of S fertilizers and other environmental 
issues. The application of S to cereal-based cropping systems has been 
shown to improve yield and nutritional quality (Zhao et al., 2001). 
Cereal crops responded to different levels of S fertilization, and grain 
yield increased with increased S fertilization (Ying-Xin et al., 2017). 
However, contrary to this finding, Dhillon et al. (2019) observed a 
non-significant crop response to S fertilization, except for adequate S 
supply to the crop due to the mineralization of soil organic matter.

Sulfur fractions in soils are highly dynamic (Dutta et al., 2013). Soil 
S primarily occurs in organic and inorganic fractions, with the organic 
fraction being dominant and accounting for more than 90% of total S in 
agricultural soils (Wang et al., 2006; Sharma et al., 2014; Padhan et al., 
2023). Plants uptake sulfate (SO4

2−)-S for their nutrition, which is 
supplied from the native soil reserves in addition to external fertilizer 
inputs. However, the availability of SO4

2−-S for plant uptake is governed 
by several soil properties. The presence of iron and aluminum oxides 
and/or soils with high clay content adsorb the SO4

2− ions through 
specific adsorption mechanisms that influence their availability to plants 
(Padhan, 2018; Das et al., 2020). Interestingly, this mechanism is more 
pronounced in soils with a pH below 6.5 (Williams and Steinbergs, 
1962). A similar one operates when the soil is rich in CaCO3, which 
could bind the SO4

2− as occluded S (Hu et al., 2005). Murthy et al. (2002) 
reported that changes in land use practices could affect the distribution 
and availability of soil nutrients by altering soil properties and 
influencing biological transformations in the rooting zone. Soil S 
fractions and their bioavailability varied under different land uses, for 

example, in maize-wheat (Gourav et al., 2018), rice-wheat (Sharma et al., 
2014; Meena et al., 2022), and finger millet-maize (Lavanya et al., 2019). 
The mineralization of organic S to an inorganic fraction or bioavailable 
form varies with changes in land use and types of crop species within 
the land use (Padhan et  al., 2016). Suri et  al. (2021) studied the 
relationship between the different fractions of soil S and their 
bioavailability under various land uses, viz., maize-wheat, paddy-wheat, 
vegetable-based cropping sequence, sugarcane-based cropping 
sequence, and orchard; the occurrence of S fractions followed the order 
of organic S > non-sulfate S > available S > exchangeable S > water-soluble 
S. Land use change has a strong influence on carbon storage by 
controlling the amount and quality of litter addition, decomposition 
rate, stabilization of soil organic carbon, etc. (Gelaw et al., 2014; Huang 
et al., 2018), which in turn influences the nutrient dynamics in soil. As 
the lion’s share of total soil S is associated with the organically bound 
form, bioavailability is influenced by land use management (Padhan 
et al., 2016). Information on the influence of land use changes on soil S 
fractions, extractable S, and their bioavailability for crop nutrition is 
scarce. We  hypothesized that changes in land use could alter the 
distribution of different fractions of soil S by changing the proportion of 
inorganic and organic S fractions, further influencing its bioavailability. 
Thus, the present study was designed to ascertain the influence of land 
use changes on soil S fractions and their bioavailability for crop nutrition.

2. Materials and methods

Surface soil samples (0–15 cm) were collected from farmers’ fields 
in Nadia district of West Bengal with five different land uses, viz., rice-
lentil-jute (R-L-J), rice-lentil-sesame (R-L-S), rice-mustard-jute (R-M-J), 
rice-vegetable-jute (R-V-J), and rice-potato-green gram (R-P-G), which 
were more than 10 years old. In total, 90 geo-referenced soil samples 
were collected after the rice crop was harvested using a simple random 
technique. The sampling site falls under the agroecological sub-region 
15.1 of India and is characterized by a tropical, moist, sub-humid 
climate. It receives an annual rainfall of ~1,400 mm, and more than 70% 

GRAPHICAL ABSTRACT

https://doi.org/10.3389/fsufs.2023.1233223
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Padhan et al. 10.3389/fsufs.2023.1233223

Frontiers in Sustainable Food Systems 03 frontiersin.org

of the rainfall occurs from June to September. In winter, the minimum 
temperature goes down to 8°C, while in summer, the maximum 
temperature goes up to 41°C. Different fertilizer schedules and doses are 
followed for all land uses. On average, R-L-J systems receive N:P:K at a 
rate of 94:60:80 kg/ha annually, while the R-L-S, R-M-J, R-V-J, and R-P-G 
systems receive 135:89:85, 175:120:125, 249:210:200 and 250:260:220 kg/
ha/ year, respectively. For lentils and green grams, no fertilizers are used. 
Canal and/or groundwater sources are used for the irrigation of rice, 
jute, vegetables, and potatoes, while lentils and green grams are cultivated 
with residual soil moisture. The collected samples were air-dried, 
ground, sieved with a 2.0 mm sieve, and stored in moisture-proof bags 
for further analysis of soil properties. Different chemical properties and 
available nutrients in soils of all land uses were analyzed following 
standard protocols as outlined in Table 1.

2.1. Sequential fractionation of sulfur in soils

Fine soils (<2 mm) were used for the analysis of S fractions as per the 
method outlined by Morche (2008). The first step in the sequential 
fractionation was the extraction of the soil sample with demineralized 
water at 1:10 (w/v). After 30 min of shaking in a rotary shaker, the samples 
were centrifuged at 10,000 rpm for 10 min. In the second step, the samples 
were extracted with 0.032 M NaH2PO4 at a 1:10 (w/v) ratio by shaking for 
30 min followed by centrifugation at 10,000 rpm for 10 min. The residual 
soil sample was extracted with 1 M HCl, maintaining the extraction ratio 
of 1:20 (w/v). After shaking for 60 min, the samples were centrifuged for 
10 min at 10,000 rpm. The extracted S fractions were measured by 
following the method of Chesnin and Yien (1950). The sum of all three 
fractions was considered the total inorganic S fraction of the soil. The total 
S of soil samples was analyzed using the CHNS VarioEL cube analyzer 
(Elementar, Germany). Organic S was calculated as the difference 

between the total and inorganic S of soil samples. The extractable S from 
soils of all land uses was extracted with six different chemical extractants 
(two with a neutral solution pH, two with an acidic solution pH, and two 
with a slightly alkaline to alkaline solution pH) having different extraction 
modes and chemistry (Table 2).

Schematic representation of the sequential fractionation of sulfur 
in soil (Morche, 2008).

2.2. Statistical analysis

Statistical analysis was performed using the Windows-based SPSS 
program (ver. 22.0, SPSS Inc./IBM, Armonk, United States). Duncan’s 
Multiple Range Test (DMRT) was used to compare means. Pearson 
correlation was performed between S fractions and extractable S and 
between soil properties to establish their relationships. A multiple 
linear regression equation was also computed with extractable S as the 
dependent variable and the main soil properties as the 
independent variables.

3. Results

3.1. Influence of land use on soil properties 
and nutrient availability

Changes in land use significantly influenced soil properties and 
nutrient availability (Table 3). The soil pH, measured with a 0.01 M 
CaCl2 solution, ranged from 7.18 to 7.54. The highest soil pH was 
observed in the R-M-J system and the lowest in the R-P-G system. Soil 
organic carbon content (g kg−1) varied between 6.68 and 7.36 across 
different land use systems. Compared with the R-V-J system, the R-L-S, 

Sequential fractionation of Sulfur in soil (Morche, 2008)
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R-M-J, and R-L-J systems showed an increase in SOC content of 6.4, 
8.2, and 10.2%, respectively. Calcium carbonate content showed an 
increasing trend with rising soil pH, while oxides of Fe, Al, and Mn 
decreased with increasing pH (Table 3; Supplementary Figure S1). The 
iron oxide content (g kg−1) ranged from 0.800 (R-M-J) to 1.063 (R-P-G). 
Similarly, Alo and Mno contents (g kg−1) ranged from 0.503 to 0.562 and 

from 0.342 to 0.408, respectively. Soils under all land uses had medium 
levels of available nitrogen content except for the R-M-J system, while 
they had high levels of available phosphorus and potassium. The lowest 
available N was found in the R-M-J system, while the highest available 
N was reported in the R-P-G system. However, the availability of 
cationic micronutrients (iron, manganese, copper, and zinc) was 

TABLE 2 Extractants used for estimation of bioavailable S in soils under different land uses.

Extractants used Extractants composition Soil: extractant ratio Shaking time References

CaCl2 0.15% CaCl2 (pH 7.0) 1:5 30 min Williams and Steinbergs 

(1959)

Ca(H2PO4)2 (500 ppmP) Ca(H2PO4)2. 2H2O

(pH 7.0)

1:5 30 min Fox et al. (1964)

AB-DTPA 1.0 M NH4HCO3+ 0.5 M DTPA (pH 7.6) 1:2 15 min Soltanpour and Schwab 

(1977)

NaHCO3 0.5 M NaHCO3 (pH 8.5) 1:4 40 min Kilmer and Nearpass (1960)

Mehlich-3 0.2 MHOAc+0.25 M NH4NO3 + 0.015 M 

NH4F + 0.013 M HNO3+ 0.001 M EDTA (pH 2.5 ± 0.1)

1:10 5 min Mehlich (1984)

NH4Ac-HOAc 0.5 mol L−1NH4Ac + 0.25 mol L−1 HOAc(pH 4.5) 1:2.5 30 min Bardsley and Lancastor (1960)

TABLE 3 Chemical properties of soils under different land use practices.

Land use pH SOC CaCO3 Fe-oxide Al-oxide Mn-oxide

R-M-J 7.54a 7.23b 2.86a 0.800e 0.503b 0.342d

R-L-J 7.45ab 7.36a 2.61b 0.842d 0.518b 0.365c

R-L-S 7.32bc 7.11c 2.56b 0.945c 0.522b 0.388b

R-V-J 7.26c 6.68d 2.22c 0.987b 0.546a 0.403a

R-P-G 7.18c 6.78d 2.15c 1.063a 0.562a 0.408a

Different letters (a–e) in each column indicate significant differences between the treatments according to Duncan’s multiple range test (p < 0.05).
R-M-J: Rice-Mustard-Jute; R-L-S: Rice-Lentil-Jute; R-L-S: Rice-Lentil-Sesame; R-V-J: Rice-Vegetable-Jute; R-P-G: Rice-Potato-Green gram.

TABLE 1 Methods used for analysis of soil properties and available nutrients.

Soil properties Abbreviation Unit Method

pH - - Soil: 0.01 M CaCl2 suspension of 1:2 (Jackson, 1973)

Soil organic carbon SOC g kg−1 Walkey and Black (1934)

Calcium carbonate CaCO3 g kg−1 Page et al. (1982)

Iron oxide Feo g kg−1 McKeague and Day (1966)

Aluminum oxide Alo g kg−1 McKeague and Day (1966)

Manganese oxide Mno g kg−1 McKeague and Day (1966)

Available nitrogen Av. N kg ha−1 Alkaline-KMnO4 method (Subbiah and Asija, 1956)

Available phosphorus Av. P kg ha−1 Sodium bicarbonate extraction method followed by colorimetric determination (Olsen et al., 1954)

Available potassium Av. K kg ha−1 Ammonium acetate extraction method followed by analysis in flame photometer (Jackson, 1973)

Available iron Av. Fe mg kg−1 DTPA extraction method followed by analysis in Atomic absorption spectrophotometer (Lindsay and 

Norvell, 1978)

Available manganese Av. Mn mg kg−1 DTPA extraction method followed by analysis in Atomic absorption spectrophotometer (Lindsay and 

Norvell, 1978)

Available copper Av. Cu mg kg−1 DTPA extraction method followed by analysis in Atomic absorption spectrophotometer (Lindsay and 

Norvell, 1978)

Available zinc Av. Zn mg kg−1 DTPA extraction method followed by analysis in Atomic absorption spectrophotometer (Lindsay and 

Norvell, 1978)
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significantly higher in the R-L-J system compared to other land uses 
(Table 4).

3.2. Total and organic S fractions in soils 
under different land use practices

The data presented in Table 5 show that soil organic and total S 
contents varied significantly among the land uses. The highest 
organic and total S concentrations (249.1 and 266.4 mg kg−1, 
respectively) were observed in the R-P-G system, while the lowest 
(209.5 and 225.3 mg kg−1, respectively) were observed in the R-L-S 
system. Compared to the R-L-S system, the R-V-J and R-P-G systems 
showed an increase in total S content to the magnitude of 11.1 and 
18.2%, respectively. The organic S followed a similar pattern of 
occurrence as the total S content in all land uses.

3.3. Inorganic soil S fractions under 
different land use practices

A significantly higher inorganic S fraction was observed in R-P-G land 
use, while the lowest amount was found in the R-M-J system. The 

water-soluble, sorbed, and occluded S fractions together constituted the 
inorganic fraction. Across all land uses, the inorganic S fraction constituted 
6.5% of total soil S. The water-soluble S fraction was lowest in the R-M-J 
system (7.1 mg kg−1) and highest in the R-P-G system (11.2 mg kg−1). 
Similarly, the sorbed S fraction ranged from 1.0 to 2.0, being lowest in the 
R-M-J system and highest in the R-P-G system. On the other hand, R-P-G 
land use witnessed the lowest amount of occluded S fraction, while R-M-J 
land use showed the highest value. Across the land uses, inorganic S 
fractions were found in the order of water-soluble>occluded>sorbed S.

3.4. Extractable S in soil under different 
land use practices

Land use change significantly influenced the extractability of all six 
extractants (Table 6). The CaCl2 extractable S ranged from 8.4 mg kg−1 in 
the R-M-J system to 12.6 mg kg−1 in the R-P-G system. Irrespective of the 
extractants used, the lowest amount of extractable S was observed in the 
R-M-J system, while the highest amount was observed in the R-P-G 
system. Interestingly, the mehlich-3 and NaHCO3 extractants obtained on 
average 1.7 and 2.8 times more S than those extracted with CaCl2 solutions, 
respectively. Across all land uses, the order of extractability was: 
NaHCO3 > mehlich-3 > AB-DTPA > NH4Ac-HOAc > Ca(H2PO4)2 > CaCl2.

TABLE 4 Available nutrient status of soils under different land use practices.

Land use Av. N Av. P Av. K Av. Fe Av. Mn Av. Cu Av. Zn

R-M-J 270.3e 42.8e 220.6d 8.68b 6.44b 6.02a 0.98b

R-L-J 285.2d 50.3d 228.5c 9.02a 6.59a 6.12a 1.05a

R-L-S 304.5c 58.2c 240.3b 8.34c 6.23c 5.93ab 0.87c

R-V-J 328.3b 68.7b 253.5a 7.78e 5.87e 5.64c 0.68e

R-P-G 346.2a 74.2a 260.2a 8.04d 6.06d 5.71bc 0.75d

Different letters (a–e) in each column indicate significant differences between the treatments according to Duncan’s multiple range test (p < 0.05).
R-M-J: Rice-Mustard-Jute; R-L-S: Rice-Lentil-Jute; R-L-S: Rice-Lentil-Sesame; R-V-J: Rice-Vegetable-Jute; R-P-G: Rice-Potato-Green gram.

TABLE 5 Changes in soil S fractions under different land use practices.

Land use Water Sorbed Occluded Inorganic Organic Total

R-M-J 7.1e 1.0d 6.6a 14.7d 216.1c 230.8c

R-L-J 8.3d 1.1d 5.4b 14.8d 230.5b 245.3b

R-L-S 9.4c 1.5c 4.9c 15.8c 209.5c 225.3c

R-V-J 10.2b 1.8b 4.6d 16.6b 233.6b 250.2b

R-P-G 11.2a 2.0a 4.1e 17.3a 249.1a 266.4a

Different letters (a–e) in each column indicate significant differences between the treatments according to Duncan’s multiple range test (p < 0.05).
R-M-J: Rice-Mustard-Jute; R-L-S: Rice-Lentil-Jute; R-L-S: Rice-Lentil-Sesame; R-V-J: Rice-Vegetable-Jute; R-P-G: Rice-Potato-Green gram.

TABLE 6 Extractable S in soils under different land use practices.

Land use CaCl2 Ca(H2PO4)2 Mehlich-3 NH4Ac-HOAc NaHCO3 AB-DTPA

R-M-J 8.4e 9.8e 15.4d 10.9d 23.4e 12.8d

R-L-J 9.3d 10.5d 16.8c 11.7c 26.5d 13.2d

R-L-S 10.2c 11.6c 17.2c 10.6e 28.4c 14.5c

R-V-J 11.1b 12.4b 18.9b 12.9b 32.4b 16.8b

R-P-G 12.6a 13.8a 20.2a 14.2a 36.5a 18.1a

Different letters (a–e) in each column indicate significant differences between the treatments according to Duncan’s multiple range test (p < 0.05).
R-M-J: Rice-Mustard-Jute; R-L-S: Rice-Lentil-Jute; R-L-S: Rice-Lentil-Sesame; R-V-J: Rice-Vegetable-Jute; R-P-G: Rice-Potato-Green gram.
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4. Discussion

4.1. Influence of land use changes on soil 
properties

Changes in land use significantly influence soil properties and 
nutrient availability. The low pH value in the R-P-G system could 
be due to the higher content of amorphous Feo and Alo. The presence 
of Feo and Alo generally lowers the soil pH due to their oxidation, 
which releases H+ ions into the soil system (Yang et  al., 1997). 
Furthermore, the high quantity of chemical fertilizers applied in the 
R-P-G system compared to other land uses might be the reason for 
low soil pH. Higher SOC content in the R-M-J and R-L-J systems may 
be caused by the slow decomposition of organic matter due to the 
prevailing anaerobic environment during rice and jute cultivation. 
Manlay et al. (2002) also reported that anaerobic conditions could 
slow down the organic matter decomposition rate during rice 
cultivation. A high calcium carbonate content in the R-M-J system 
could be associated with the soil pH, which was supported by their 
positive correlations (S1). Similarly, the decrease of Feo, Alo, and Mno 
in all land uses with the increase in soil pH can be attributed to their 
strong negative relationships (S1). The highest amount of available 
nutrient content, especially N, P, and K, may be  due to the high 
amount of fertilizer applied in the R-P-G system compared to other 
land uses. The increased availability of cationic micronutrients in 
R-L-J land use compared to the others may correspond to the 
increased organic carbon content, which was observed from their 
significant positive correlations (S1). A reduced soil environment in 
rice and jute cultivations could have altered the availability of 
cationic micronutrients.

4.2. Influence of land use on soil S fractions

The highest organic and total S were found in the R-P-G system, 
which might be due to the lower crop removal compared to oilseed-
based land use. The sulfur requirement is high for oilseed crops 
compared to cereals and other crops, and the inclusion of crops with 
high S requirement in the land use could deplete the soil S. Meena 
et al. (2022) reported that the inclusion of pulses in the rice-wheat 
land use system could influence the availability of S. Shifting the 
virgin soils to cultivable lands with different agricultural management 
could change the equilibrium status of soil organic S and affect its 
distribution in surface layers (Solomon et  al., 2003). Organic S 
accounted for an average of 93.5% of the total S, representing the 
dominant fraction in the soils. A similar magnitude of the organic S 
fraction under different land uses has been reported by other 
researchers (Padhan et al., 2016; Meena et al., 2022). The inorganic S 
fraction represented the pool of S available for plant uptake. The 
inorganic S present in soils is readily available (extracted with 
distilled water or any weak salt solution), adsorbed S (extracted with 
phosphate-containing solution), and sulfate co-precipitated with 
CaCO3 or BaCO3 (solubilized and extracted with HCl solution). 
Therefore, we employed the sequential fractionation procedure as 
described by Morche (2008), which includes demineralized water, 
0.032 M NaH2PO4, and 1 M HCl solution. Among the three fractions, 
water-soluble S accounted for an average of 58% of the total inorganic 
S in the soils (Figure 1). This signifies that a higher proportion of 
inorganic S is readily available for all land uses. On average, the 

magnitude of water-soluble S was 1.9 times that of occluded and 6.4 
times that of sorbed S. Increased amounts of water-soluble S in the 
R-P-G system compared to other land uses might be due to lower 
crop removal.

The sorbed S varied among land uses. Among all land uses, the 
R-P-G system had the highest amount of sorbed S, which suggests 
that this particular land use had a high amount of inorganic S bound 
to the colloidal matrix. The presence of high amounts of Feo and Alo 
in R-P-G could offer a specific adsorption site for SO4

= (Singh, 1984; 
Das et al., 2020). This was confirmed by the positive relationships 
between the sorbed S and the oxides of Fe and Al 
(Supplementary Figure S2). A highly sorbed S could also suggest a 
high amount of bound SO4

= in the soil system, as water extracts the 
readily available SO4

= and leaves behind the adsorbed fraction. The 
low amount of sorbed S in the R-M-J system could be due to the 
organic anions released from the decomposition of soil organic 
matter, which could have displaced the adsorbed SO4

= in the colloidal 
matrix of Feo and Alo into the soil solution. Previous research has also 
shown that SO4

= and low-molecular-weight organic anions compete 
for the same adsorption site (Evans, 1986) and that removal of 
organic matter can increase the adsorption capacity of soils (Das 
et al., 2002). Moreover, the organic anions make chelation with oxides 
of Fe and Al (which preferentially adsorb SO4

=) resulting in reduced 
sorption of SO4

=. The magnitude of occluded S was higher than that 
of sorbed S for all land uses. A significant positive relationship 
between occluded S and CaCO3 content of soils confirmed that the 
presence of a high amount of carbonate could adsorb SO4

=, rendering 
it unavailable for plant nutrition (Supplementary Figure S3). It was 
also observed that, on average, S co-precipitated with carbonate 
accounted for 32.8% of the total inorganic S. Such co-precipitated S 
could be released and made available to the plant, which is primarily 
governed by rhizosphere pH. In addition, nitrogenous fertilizers 
applied to the soil may have a favorable effect on the solubilization of 
CaCO3-occluded S, and this solubilized fraction may be partially 
transformed into a soluble organic form (Hu et al., 2005).

4.3. Extractable S

The CaCl2 solution extracted the lowest amount compared to other 
extractants across land uses, accounting for 4.2% of total soil S. Suri et al. 
(2021) reported similar observations in soils from different land use 
practices. On average, Ca(H2PO4)2, Mehlich-3, NH4Ac-HOAc, AB-DTPA, 
and NaHCO3 extracted 4.8, 7.3, 4.9, 12.0, and 6.2% of total soil S, 
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respectively. The highest amount of NaHCO3−extractable S across land 
uses compared to other extractants could be due to the extraction of a 
portion of the organically-bound S (mostly ester sulfate) due to its high 
pH besides the readily available S (Kilmer and Nearpass, 1960). This was 
confirmed by the positive relationship between NaHCO3-extractable S 
and the organic S content of the soil (computed across different land uses). 
In addition, the presence of HCO3

− in AB-DTPA and 0.5 M NaHCO3 
displaced the sorbed S from the colloidal complex (Tabatabai, 1996), while 
also solubilizing partly the labile insoluble minerals in the soil (Soltanpour, 
1985). Acidic extractants, particularly mehlich-3, showed higher 
extractability compared to neutral solvents {CaCl2 and Ca(H2PO4)2} and 
slightly alkaline solvents (AB-DTPA) across land uses. Low pH can 
solubilize the oxides of Fe and Al, thereby releasing the bound sulfate into 
the soil solution. Moreover, the acetate and nitrate anions in Mehlich-3 
favored the extraction of S from the soil (Seth et al., 2018). The lowest 
amount of S extracted by a 0.15% CaCl2 solution in soils of all land uses 
could be due to its efficiency in extracting only the readily available or 
water-soluble S. Hu et al. (2005) reported that Cl−-based extractants can 
mobilize only the water-soluble SO4

= and also have lower extraction 
power due to their tendency to form slowly soluble CaSO4 (Matula, 1999). 
Phosphate ions in Ca(H2PO4)2 solution could displace the sorbed S, 
thereby showing increased extractability compared to CaCl2 solution 
across land uses.

Among the five land uses, the R-P-G system always had the 
highest amount of extractable S compared to other land uses (Table 6). 
Moreover, the influence of the R-P-G system over the R-M-J system 
was more pronounced when S was extracted with 0.5 M 
NaHCO3(56.0), followed by CaCl2 (50.0), AB-DTPA (41.4), 
Ca(H2PO4)2 (40.8), Mehlich-3 (31.2), and NH4Ac-HOAc (30.3; 
Figure 2). High organic S content in the R-P-G system (Table 5), which 
increases the availability of S in soils (by mineralizing the labile S), was 
captured by the extractants used in the present study.

4.4. Extractable S and S fractions

By establishing the relationship between extractable S (neutral 
extractants) and S fractions across the land uses, it was observed that CaCl2 

extractable S was positively correlated with water-soluble S (r = 0.968**), 
sorbed S (r = 0.950**), and organic S (0.696**), while negatively correlated 
with occluded S (r = −0.927**; Table  7; Figures  3A–D). A similar 
relationship was found between Ca(H2PO4)2-extractable S and S fractions. 
Both extractants are highly correlated with the water-soluble S fraction, 
which is considered the readily available S in the majority of agricultural 
soils. Acidic extractants mehlich-3 and NH4Ac-HOAc maintained 
significant positive correlations with water-soluble, sorbed, organic, and 
total S fractions while they were negatively correlated with occluded S 
(Table 7; Figures 4A–D). Interestingly, the NH4Ac-HOAc-extractable S 
showed a high degree of correlation with organic (r = 0.914**) and total S 
(0.928**) compared to mehlich-3 indicating that it could extract a higher 
proportion from the organic S fraction. A similar relationship existed 
between the S extracted by weakly alkaline to alkaline extractants 
(NaHCO3 and AB-DTPA) and the S fractions (Table 7; Figures 5A–D). 
Notably, the inorganic fraction closely corresponds to the amount of S 
extracted by Mehlich-3 and AB-DTPA. Occluded S was the only fraction 
of S that maintained a negative correlation with S obtained by the 
extractants across all land uses. From the relationships established between 
extractable S and S fractions, it can be inferred that all extractants primarily 
extracted the water-soluble, sorbed, and partially organic S fractions, with 
little extractability from the occluded S fraction.

4.5. Comparison of extractants

Acidic extractants, particularly mehlich-3, were able to extract 
1.7 and 1.5 times more S than CaCl2 and Ca(H2PO4), respectively. 
Notably, the NH4Ac-HOAc extracted higher amounts of S than 
CaCl2 and Ca(H2PO4)2. Across all land uses, the order of 
extractability was: NaHCO3 > mehlich-3 > AB-DTPA > NH4Ac-
HoAc > Ca(H2PO4)2 > CaCl2. A Pearson correlation was constructed 
among the extractable S to establish their relationships. The CaCl2-
extractable S showed a strong positive correlation with Ca(H2PO4)2; 
r = 0.988**), mehlich-3 (r = 0.967**), NH4Ac-HoAc (r = 0.846**), 
NaHCO3 (r = 0.980**), and AB-DTPA (r = 0.956**; Table 8). Such 
dynamic relationships among the extractable S suggested that S 
could be obtained from similar pools, which was further supported 
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by their relationship with different S fractions. Comparing the 
procedure involved during the extraction process, it can be noted 
that the shaking time for mehlich-3 and AB-DTPA was restricted 
to 5 min and 15 min respectively, and since they are primarily used 
as multi-nutrient extractants, they can be  employed in routine 
laboratory analysis. However, the unavailability of NH4NO3 
(banned in many countries), which is one of the primary chemicals 
in the mehlich-3 composition, calls into question the use of 
mehlich-3 in routine laboratory analysis in the future. The presence 
of Ca in Ca(H2PO4) and CaCl2 extractants flocculates the soil 
particles, and a clear extract can be  obtained, which is highly 
essential for the turbidimetric determination of S. On the other 
hand, in the case of NaHCO3, the high pH of the extractant could 
partially solubilize the organic matrix of the soil, resulting in a 

turbid solution that needs to be clarified prior to S determination. 
To test the reproducibility of extractable S by all six extractants, the 
relative standard deviation (RSD) value was calculated. A high RSD 
value indicates poor reproducibility of the data, while a low RSD 
value shows greater reproducibility. Across all land uses, mehlich-3 
had the lowest RSD value, while NaHCO3 showed a high RSD value 
signifying its poor reproducibility.

4.6. Influence of soil properties on the 
extractability of extractants

The results presented in Table 9 indicate that the extractability 
of different extractants is influenced by soil properties. In the 

TABLE 7 Pearson correlation between S fractions and extractable S.

CaCl2 Ca(H2PO4)2 Mehlich-3 NH4Ac-HOAc NaHCO3 AB-DTPA

Water-soluble 0.968** 0.970** 0.948** 0.785** 0.968** 0.940**

Sorbed 0.950** 0.967** 0.918** 0.778** 0.943** 0.937**

Occluded −0.927** −0.926** −0.923** −0.715** −0.921** −0.862**

Inorganic 0.949** 0.955** 0.915** 0.806** 0.949** 0.959**

Organic 0.696** 0.651** 0.736** 0.914** 0.724** 0.665**

Total 0.729** 0.686** 0.765** 0.928** 0.756** 0.700**

* and ** significant at 0.05 and 0.01 level, respectively.
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(A–D) Relationship between soil S fractions and extractable S (extracted with neutral pH extractants).
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(A–D) Relationship between soil S fractions and extractable S (extracted with acidic pH extractants).
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(A–D) Relationship between soil S fractions and extractable S (extracted with slightly alkaline to alkaline pH extractants).
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case of CaCl2-extractable S, Fe oxide alone caused a variation of 
93.4%, which was improved to 95.8% with the inclusion of 
CaCO3. Similarly, the variation in Ca(H2PO4)2-extractable S 
caused by Fe oxide alone was 91.8%, and it was improved to 94.4 
and 95.8% with the inclusion of Fe oxide and Mn oxide and 
oxides of Fe, Mn, and Al, respectively. Both CaCO3 and Mn oxide 
could explain 82.8% of the variability in NH4Ac-HOAc-
extractable S, and the exclusion of Mn oxide from the regression 
model decreased the predictability by 8.5%. The amount of S 
extracted by NaHCO3 was found to be influenced by the oxides 
of Fe and Al. In general, the oxides of Fe, Al, Mn, and CaCO3 are 
the main soil constituents that are highly responsible for 
predicting the variability of extractable S in soil under different 
land uses.

5. Conclusion

Land use practices significantly influence the distribution of S 
into different fractions and its bioavailability. Land use practices 
with high oxides of Fe and Al and CaCO3 content showed a high 
amount of sorbed and occluded S, respectively. Extractants used to 
capture the bioavailable S removed S from water-soluble, sorbed, 

and organic fractions, with little extractability from the occluded 
fraction. The dynamic relationships among the extractants and 
between extractable S and S fractions suggest that all extractants are 
efficient enough to extract the bioavailable S. However, the use of 
multi-nutrient extractants such as Mehlich-3 can save time and cost 
and, thus, can be recommended for routine laboratory analysis. 
Further research must focus on the replacement of NH4NO3 in 
Mehlich-3 with a suitable chemical compound.
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TABLE 8 Pearson correlation coefficients among the extractable S.

CaCl2 Ca(H2PO4)2 Mehlich-3 NH4Ac-HOAc NaHCO3 AB-DTPA

CaCl2 1

Ca(H2PO4)2 0.988** 1

Mehlich-3 0.967** 0.950** 1

NH4Ac-HOAc 0.846** 0.827** 0.880** 1

NaHCO3 0.980** 0.981** 0.972** 0.877** 1

AB-DTPA 0.956** 0.968** 0.943** 0.863** 0.967** 1

* and ** significant at 0.05 and 0.01 level, respectively.

TABLE 9 Step-wise multiple regression between extractable S and soil properties.

Extractable S Regression equation R2

CaCl2

−2.978+ 14.348 Fe-oxide*** 0.934

6.991+ 9.172 Fe-oxide***−2.085 CaCO3** 0.958

Ca(H2PO4)

−1.334+ 13.955 Fe-oxide*** 0.918

−4.388+ 9.790 Fe-oxide*** + 18.148 Mn-oxide* 0.944

−8.506+ 7.622 Fe-oxide*** + 16.322 Mn-oxide* + 12.872 Al-oxide* 0.958

Mehlich-3
32.613–6.013 CaCO3*** 0.887

21.081–3.812 CaCO3** + 6.553 Fe-oxide* 0.911

NH4Ac- HOAc
22.843–4.347 CaCO3*** 0.743

46.188–7.806 CaCO3***−38.747 Mn-oxide** 0.828

NaHCO3

−12.217+ 44.913 Fe-oxide*** 0.903

−37.867 + 29.916 Fe-oxide*** + 76.620 Al-oxide*** 0.949

AB-DTPA
33.130–7.283 CaCO3*** 0.867

16.010–4.016 CaCO3* + 9.728 Fe-oxide* 0.902

*, ** and *** significant at 0.05, 0.01 and 0.001 probability levels respectively.
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