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Introduction: The implementation of artificial intelligence (AI) in postharvest 
agriculture has significantly improved in recent decades, thanks to extensive 
scientific research. The study aimed to identify research gaps and hotspots for 
future research based on keyword co-occurrence and clustering analyses, as well 
as to discuss the results and highlight the research trends.

Methods: This study analyses research trends in AI application in postharvest 
agriculture using novel scientometric tools such as the Bibliometrix R package, 
biblioshiny, and VosViewer. The research analysed 586 published papers on AI 
application in postharvest agriculture research between 1994 and September 
2022, retrieved from the Scopus database.

Results and discussion: The results showed that publications on AI applications 
in postharvest agriculture research have been increasing for almost 30 years, with 
significant growth in the subject area in the last decade. China, the USA, and 
India were found to be the top three most productive countries, accounting for 
52.4%, 22%, and 18.6% of the total selected publications, respectively. The analysis 
also revealed that topics such as the Internet of Things, cold chain logistics, big 
data, decision-making, and real-time monitoring have low development degrees 
in the knowledge domain. This study demonstrated increased research on AI 
applications in postharvest agriculture, aiming to reduce postharvest losses, 
enhance food nutrition and quality, and mitigate food insecurity. It also provides 
valuable scientific references on AI applications in postharvest agriculture 
research for researchers and scholars. By identifying research gaps and hotspots, 
this study can guide future research in AI applications in postharvest agriculture 
to further improve the industry.
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1. Introduction

Despite various efforts to combat global hunger, food insecurity, and the ability to provide 
adequate quality, quantity, and safe food for the world’s growing population remain enormous 
challenges in many countries (Pawlak and Kołodziejczak, 2020; Fadiji et al., 2021). With the 
world’s population projected to exceed 9 billion by 2050, food demand is expected to increase 
by nearly 100% (Fukase and Martin, 2020; Pawlak and Kołodziejczak, 2020). Consequently, to 
meet future demands, food production and agricultural productivity will have to rise by about 
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70%, which could double to meet the growing future demand (Cole 
et al., 2018; Sharma et al., 2020). Hence, an integrated and innovative 
approach to the global effort to ensure sustainable food production 
and consumption is required. The agricultural sector is critically 
important in alleviating food insecurity, improving nutrition, and 
reducing postharvest losses (Emami et al., 2018).

The postharvest stage is the final and most critical in agriculture 
and requires close attention because time and money have been used 
to cultivate food products. An ineffective postharvest stage or 
negligence may result in severe postharvest losses and consequent 
financial loss (Prusky, 2011). Postharvest loss includes food loss 
across the food supply chain from harvesting food crops until 
consumption (regarded as food waste at the consumption level; 
Kumar and Kalita, 2017), broadly categorized as weight loss due to 
spoilage, quality loss, nutritional loss, seed viability loss, and 
commercial loss (Kumar and Kalita, 2017). In severe cases, 
postharvest losses have been estimated to be up to 80% of the total 
production; in Africa, postharvest losses could be as high as 40%, 
which is significant given the low agricultural productivity in the 
region (Abass et al., 2014; Naziri et al., 2014; Kumar and Kalita, 
2017; Minten et al., 2021). These losses can potentially reduce the 
economic value of food crops or make them unsuitable for human 
consumption, consequently impairing food security and nutrition 
(Prusky, 2011; Saima et al., 2014; Hailu and Derbew, 2015; Kumar 
and Kalita, 2017; Singh et al., 2022). A promising solution mentioned 
challenges is incorporating newer technology that increases food 
production while decreasing postharvest losses is critical to 
maintaining sustainable living standards and improving food 
security (Singh et al., 2022).

In postharvest agriculture, artificial intelligence (AI) has set an 
impeccable record (Kakani et al., 2020; Meshram et al., 2021). AI is a 
general term that includes machine learning (ML), deep learning 
(DL), and neural networks (NN). Machine learning is an approach to 
achieving artificial intelligence, while deep learning is a subfield of 
machine learning that includes convolutional and recurrent neural 
networks (Dokic et  al., 2020). Given its outstanding performance 
combined with increased application in different sectors, AI has the 
potential to complement existing approaches and techniques to 
minimize the massive postharvest losses problem, and postharvest 
agriculture is one area ripe for disruption with AI implementation. In 
agriculture, postharvest handling is the stage of crop production 
immediately following harvest, including cooling, cleaning, sorting, 
and packing to help reduce the fast deterioration of crops (El-Ramady 
et  al., 2015). In particular, the quality of horticultural products is 
critical in determining market acceptance and, as a result, directly 
affecting the storage and postharvest processing operations. There are 
pieces of evidence on the use of these techniques (AI, ML, and DL) on 
various agricultural products, especially in detecting defects, 
classification, sorting or grading, autonomous decision-making, 
predictive analytics, quality control, etc. For instance, Yang et  al. 
(2022) developed an image recognition system based on AI to sort 
apple fruit efficiently. Takruri et al. (2020) employed machine learning 
algorithms to estimate the freshness and quality of apples in terms of 
age using polarization images. Amoriello et al. (2022) applied artificial 
neural networks (ANN) to predict the quality parameters of 
strawberry fruit. In another study, Makkar et al. (2017) analyzed the 
quality of fruits and vegetables based on color, shape, and size and 
successfully segmented defective fruit regions using neural networks.

Further, researchers have demonstrated the excellent 
performance of artificial intelligence in agricultural computer vision 
applications. A deep neural network binary classifier to detect defects 
in tomatoes was proposed by da Costa et al. (2020). In another study, 
Thinh et al. (2019) classified mango fruit in terms of color, volume, 
size, shape, and fruit density. The study combined computer vision, 
image processing, artificial intelligence, and artificial neural networks. 
Using computer vision and artificial intelligence, Chakraborty et al. 
(2021) proposed a model to prevent the propagation of rottenness in 
apple, banana, and orange fruits. The model was capable of classifying 
fresh and rotting fruits. Another study by Roy et al. (2021) performed 
a real-time segmentation of rotten apples, which led to the 
classification of fresh apples from rotten apples by utilizing deep 
learning architecture. Despite the extensive use of artificial 
intelligence in classification and defect identification, its application 
has cut across real-time monitoring of fruit quality, food fraud and 
authentication, and cold chain logistics (Tsang et al., 2018; Loisel 
et al., 2021).

It is evident, therefore, that research on the application of artificial 
intelligence in postharvest agriculture has grown significantly in the 
last decade. There are several excellent recent reviews on the 
application of artificial intelligence in agriculture, including machine 
learning applications to monitor food safety (Wang et  al., 2021), 
digitalization and artificial intelligence for sustainable food systems 
(Marvin et  al., 2022), improving food quality using artificial 
intelligence (Ben Ayed and Hanana, 2021; Sahni et al., 2021), Internet 
of Things, big data, and artificial intelligence in agriculture and food 
industry (Kamilaris and Prenafeta-Boldú, 2018; Liakos et al., 2018; 
Santos et al., 2019; Dokic et al., 2020; Misra et al., 2020; Ren et al., 
2020; Bal and Kayaalp, 2021; Meshram et al., 2021), deep learning 
approaches in horticulture (Yang and Xu, 2021), fruit detection, 
recognition, and yield estimation (Koirala et al., 2019; Indira et al., 
2021), food processing applications (Zhu et al., 2021), to mention a 
few. These reviews provided good insights into the applications, 
opportunities, and challenges of artificial intelligence in agriculture, 
but none evaluated a quantitative structured methodology such as 
bibliometrics in postharvest agriculture. Bibliometrics employs 
mathematical and statistical methods to assess a specific knowledge 
domain’s current state and future direction. Therefore, this study 
aimed to utilize bibliometric analysis to provide a comprehensive 
insight into artificial intelligence in postharvest agriculture research.

2. Methodology

2.1. Bibliometric method and data 
collection

Bibliometrics has evolved into an independent discipline over the 
years. This study uses mathematics, statistics, and logic to organize 
and analyze aspects of literary works (Rons, 2018; Wang et al., 2021). 
In addition, critical decisions regarding expert and specialized issues 
are made using bibliometric analysis or methods, as it allows for 
monitoring scientific developments using various indicators, such as 
influential authors, journals, countries, academic affiliations, and 
research collaborations (Rons, 2018). Consequently, providing 
essential data for researchers to investigate current and future research 
trends (Benavides-Velasco et  al., 2013; Albort-Morant and 
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Ribeiro-Soriano, 2016; Rey-Martí et al., 2016; Rons, 2018; Cucino 
et al., 2021; de Castro et al., 2021). Ultimately, the bibliometric method 
ensures that research is presented transparently, objectively, and 
methodically (Donthu et al., 2021; Rejeb et al., 2021).

The present research data were collected and saved from the 
Scopus database, particularly on the 22nd of September 2022 at about 
5:40 p.m., spanning 28 years from 1994 to 2022. Scopus is a world-
renowned repository known for its comprehensive coverage and 
dependable content. It contains several publications published in 
journals from major and reputable publishers such as Elsevier, 
EmeraldInsight, Springer, Multidisciplinary Digital Publishing 
Institute (MDPI), and Taylor & Francis (Maflahi and Thelwall, 2016; 
Rejeb et al., 2021). The following search string with the “OR” and 
“AND” operators were used: [(“food quality” OR “food grad*” OR 
“food trac*” OR “food loss” OR “food waste” OR “food deteriorat*” 
OR “food discriminat*” OR postharvest OR post-harvest OR “cold 
chain” OR cold-chain OR coldchain OR “cold supply chain” OR 
agroprocessing OR agro-processing) AND (“machine learning” OR 
“artificial intelligence” OR “data mining” OR “data science” OR “deep 
learning” OR “Big data” OR “Real-time monitoring” OR “Transfer 
learning”)]. The search was performed in the title, abstract, and 
keyword fields. The titles and abstracts of these articles were screened, 
excluding all publications with missing bibliometric data (e.g., 
abstracts, keywords) and according to the subject area. We selected all 
languages to give an idea of the language distribution of published 
documents, resulting in 586 documents. The article selection process 
ensured that the chosen articles aligned with our research scope. This 
was achieved through manual exclusion, resulting in a focused and 
accurate representation of the literature that closely aligns with the 
search string used.

Figures 1A,B depict the proportion of documents by language and 
type, respectively. Among these publications, according to language 
category, English accounted for 95.90%, followed by Chinese (3.07%), 
Spanish (0.51%), French (0.17%), German (0.17%), and Japanese 
(0.17%; Figure 1A).

The percentage proportions of the documents according to types 
are as follows: articles (57.68%), conference papers (30.20%), review 
(8.36%), book chapters (2.73%), editorial (0.34%), note (0.34%), book 

(0.17%), and letter (0.17%; Figure 1B). Figure 2 depicts a summary of 
the main information of the analyzed data.

Supplementary Table S1 shows the distribution of the patents 
obtained using the exact search string.

2.2. Data analysis

The raw data from the Scopus search of 586 documents were 
saved in BibTeX and CSV formats for further analysis. The data 
were analyzed using bibliometric software, specifically the 
VosViewer and the “Bibliometrix” package software (Van Eck and 
Waltman, 2010; Aria and Cuccurullo, 2017; Sganzerla et al., 2021). 
The authors conducted a keyword co-occurrence network analysis 
to understand the current topic thoroughly. The VosViewer 
software generated maps based on the main keywords, authors, and 
their relationships. Furthermore, the Bibliometrix was used to 
illustrate the documents’ scientific trends and productivity, 
including the most productive authors and most significant 
articles published.

3. Results and discussion

3.1. Results of the descriptive statistics

3.1.1. Publication by year
Figure 3 shows the annual distribution of the total (586) scientific 

documents depicting a growing trend since 1994, with a yearly growth 
rate of 17.79%. The figure is divided into two parts: the initial period 
and the rapid-growth period. In the initial period (1994–2009), the 
literature appears limited, where the maximum annual publication did 
not exceed two documents. Conversely, the rapid-growth period 
(2009–2022) showed an exponential increase in the yearly publication 
on artificial intelligence in postharvest agriculture, with 178 
documents observed in 2021. At the time of this study, in 2022, the 
number of published papers was 54% of those published in 2021. This 
observation indicates rapid and significant growth in the subject area. 

562 English
18 Chinese
3 Spanish
1 French
1 German
1 Japanese

338 Article
177 Conference paper
49 Review
16 Book chapter
2 Editorial
2 Note
1 Book
1 Letter

A B

FIGURE 1

(A) The proportion of document distribution by language and (B) the proportion of document distribution by type.
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Figure 4 illustrates the annual average of document citations. It was 
discovered that 2008 had the highest average number of document 
citations. This finding corroborates those made for 2009, the start of 
the rapid-growth era, in the publications by year depicted in Figure 3.

3.1.2. Publication by country
Sixty-nine countries (or regions) were represented in the data on 

artificial intelligence in postharvest agriculture research from 1994 to 
2022. Figures 5A,B show the publication distribution according to 
country. Figure 5A depicts the distribution of scientific production in 
all 69 countries, with the deepest blue color indicating the country 
with the highest number of publications. As can be  seen, a high 
concentration of publications occurs mainly in developed countries. 

Figure 5B shows the occurrence of the number of publications for the 
top  20 countries. Among these countries, China has the highest 
number of publications with 307 documents, which was followed by 
the USA (129), India (109), Spain (88), Brazil (65), UK (58), Italy (51), 
Iran (47), South Korea (41), and Australia (35). Similar observations 
were reported by Dokic et al. (2020), showing China as a dominating 
country in production in their study on applying machine learning, 
neural networks, and deep learning in agriculture. The composition 
of the top countries shows a mix of developing and developed 
countries publishing in the research area.

From the perspective of citations according to countries, the 
top  20 countries are shown in Figure  6. It was observed that 
China (1,040), Spain (877), USA (357), Iran (253), and South 

FIGURE 2

Illustration of the main information of the analyzed data.
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FIGURE 3

Yearly distribution of scientific publications on AI applications in postharvest agriculture research.
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Korea (252) were the top five most cited countries. For both 
countries’ scientific production and most cited countries, China 
appeared in the leading position, indicating that China is the 
fastest-growing country in AI applications in postharvest 
agriculture research. Furthermore, results revealed that articles 
published in China were of high quantity.

Figure 7 shows the top 20 countries in terms of publications 
based on the corresponding author. SCP represents the intra-
country publication, while MCP represents the inter-county 
publication. Generally, for all the top  20 countries, when the 
nationality of the corresponding author was considered, SCP was 
higher than MCP. Additionally, China topped for combined SCP 
and MCP publications (102), followed by USA (32), India (29), 
Spain (29), and Brazil (21). The ratio of SCP to total publications in 
the top  20 countries was ~20%–90%, while MCP to total 
publications was ~10%–80% (Table 1). From Table 1, Brazil and 
Ireland have the highest percentage SCP and MCP ratios to total 
publications of 90% and 80%, respectively. This observation 
indicated that Ireland strongly preferred international cooperation 
or collaboration concerning research in AI applications in 
postharvest agriculture. Furthermore, some countries have similar 
% SCP and MCP ratios to total publications. For instance, the % 
SCP and MCP ratios to total publications for India and South were 
76% and 24%; Italy, Japan, and Malaysia (56% and 44%), Hong 
Kong and Turkey (67% and 33%); Germany and Netherlands (60% 
and 40%), respectively. Interestingly, Greece has the same % SCP 
and MCP ratios to total publications of 50%. Notably, most 
countries showed more tendencies for intra-country collaborations 
than inter-country collaborations regarding research in AI 
applications in postharvest agriculture.

3.1.3. Publication by institutions
Figure 8 illustrates the top 20 academic institutions contributing 

the most to AI applications in postharvest agriculture research. 
Zhejiang University, located in China, had the highest number of 
publications, with 19 documents, followed by China Agricultural 
University, with 18 publications, and the University of Kentucky 
(USA), with 14 publications. These results corroborated the 
observations on the scientific publications by country shown in 
Figure  5, where China was the top country regarding scientific 
publications, followed by the USA. Additionally, out of the top 20 
academic affiliations, 20 and 15% of the institutions were from China 
and USA, respectively.

3.1.4. Publication by journals (top 10)
The top 10 relevant sources (journals) publishing articles on AI 

applications in postharvest agriculture are shown in Figure  9. 
Generally, it was observed that the top 10 journals published 110 
documents, accounting for approximately 19% of the total sampled 
586 papers. From Figure 9, Computers and Electronics in Agriculture 
rank first on the list, with 29 documents corresponding to about 26% 
of the documents published by the top 10 journals. This was followed 
closely by Food Control with 13 published documents and Postharvest 
Biology and Technology with 12 documents. The highest number of 
publications by Computers and Electronics in Agriculture may 
be attributed to the scope of the journal, which provides international 
coverage of advances in the development and application of computer 
hardware, software, electronic instrumentation, and control systems 
for solving problems in agriculture with specific emphasis on 
postharvest agriculture. Additionally, the journal covers relevant 
technology areas, including intelligence, sensors, machine vision, 
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Yearly average citations of scientific publications on AI applications in postharvest agriculture research.
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robotics, networking, and simulation modeling. Furthermore, given 
the distribution of the top 10 journals, the scope of the journals either 
falls within the technology application or the evaluation of food 
quality. Among the top 10 journals, the lowest number of published 
documents (n = 7) appeared in Food Chemistry, Food Analytical 
Methods, and ACM International Conference Proceedings Series.

Figure  10 shows the impact of the relevant sources measured 
according to the H-index. Computers and Electronics in Agriculture and 
Food Control, the top 2 in the number of publications, top the list with an 
H-index of 13 and 8, respectively. Following closely, Meat Science and 

Sensors each has an H-index of 7, and Postharvest Biology and Technology 
with an H-index of 6. Although some journals appeared in the top 10 
according to the source impact and were not in the top 10 in the most 
relevant sources, such as Computers and Electronics in Agriculture, Food 
Control, Postharvest Biology and Technology, Sensors, Sustainability, and 
Food Analytical Methods appeared in both.

3.1.5. Most productive authors (top 10)
From 1994 to 2022, 2,160 participated in AI applications in 

postharvest agriculture research, with only 24 authors of 

FIGURE 5

The distribution of the scientific publications on AI applications in postharvest agriculture research by country. (A) World map distribution on the 
scientific publications, with the deepest blue colour representing the higher number of publications; (B) Bar chart showing the top 20 scientific 
publications by country.
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single-authored documents, constituting 1.1%. The top  10 most 
prolific authors are shown in Figure 11. It can be noted that Zhang X 
and Zhang Z are the most productive authors, with an equal number 
of 9 publications. Zhang X’s 2016 study summarized current methods 
and technologies in stream data mining with applications in Internet 
of Things systems for supporting fruit cold chain logistics (Juric et al., 
2016). Through real-time temperature monitoring using a Wireless 
Sensor Network (WSN) and correlation analysis of the various quality 
indicators, Zhang X’s study from 2017 identified the essential quality 
parameter(s) in the cold chain logistics of table grapes (Xiao et al., 

2017). This was followed closely by Wang J and Wang X, with 8 
publications each. Other productive authors include Li Y, Li Z, Wang 
Z, and Zhang C, each with 7 published documents, and the bottom 
two authors with 6 published papers were Cancilla JC and He Y.

Figure 12 shows a graph of the top 10 author’s productivity over 
time, and it calculates and plots the author’s production (in terms of the 
number of publications and impact) over time. The graph represents a 
measure of an author’s relevance over time based on productivity and 
impact in a subject area (Forliano et al., 2021). These metrics provide an 
overview of the top 10 most productive authors over the last 16 years 
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The most cited countries of scientific publications on AI applications in postharvest agriculture research.
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(2006–2022). The number of articles published by an author in a given 
period was used to determine productivity. At the same time, the impact 
was assessed based on the number of citations received each year.

The intensity of the color in Figure 12 is proportional to the year 
of the citation, and the size of the bubbles represents the various 
authors’ annual output. For instance, Zhang X had approximately 2.73 
total citations per year in 2012 (1 document published) and published 

1, 3, and 4 articles in 2016, 2017, and 2019, respectively. Before the 
last decade, only two authors, Li Y and Zhang Z, with 1 article each 
published in AI applications in postharvest research in 2006 and 
2010, respectively (Figure 12). The study by Li Y in 2006 applied data 
mining for early warning in food supply networks (Li et al., 2006). In 
2010, the work by Zhang Z developed a novel system solution for 
global fresh food tracking services (Pang et al., 2010). As shown in 

TABLE 1 Top 20 countries of publication based on the corresponding author.

No. Countries SCP MCP Total publications
% SCP to total 
publications

% MCP to total 
publications

1 China 80 22 102 78 22

2 United States 26 6 32 81 19

3 India 22 7 29 76 24

4 Spain 16 13 29 55 45

5 Brazil 19 2 21 90 10

6 Iran 13 6 19 68 32

7 Italy 10 8 18 56 44

8 South Korea 13 4 17 76 24

9 United Kingdom 7 8 15 47 53

10 Australia 9 4 13 69 31

11 Greece 5 5 10 50 50

12 Hong Kong 6 3 9 67 33

13 Japan 5 4 9 56 44

14 Malaysia 5 4 9 56 44

15 Canada 5 2 7 71 29

16 France 5 1 6 83 17

17 Turkey 4 2 6 67 33

18 Germany 3 2 5 60 40

19 Ireland 1 4 5 20 80

20 Netherlands 3 2 5 60 40

SCP and MCP represent intra-country and inter-country collaborations or country publications and multiple-country publications, respectively.
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FIGURE 8

The most relevant affiliations of scientific publications on AI applications in postharvest agriculture research.
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Figure 12, most are emerging authors with more active publications 
observed from 2018 to date. Besides, most authors achieved a higher 
scientific production in 2021. From Figure 12, five authors had over 
15 total citations per year. Wang J had 17 total citations per year in 
2020 and 2021; Wang X had approximately 17 in 2021; Zhang C had 
28.5 in 2019; Cancilla JC had 18 in 2020; He Y had 29 in 2019.

Supplementary Table S2 shows the 10 most relevant author 
impacts ordered by h_index. Three measures are provided concerning 
the local dataset and the top 10 most productive authors: the times 
cited (TC), the h-index (h_index), the g-index (g_index), and the 
m-index (m_index). The h-index measures quantity with quality by 
comparing publications to citations. It is a metric for assessing the 
overall impact of an author’s scholarly output and performance. The 

distribution of citations received by the publications of a particular 
researcher is used to calculate the g-index, which gives more weight 
to highly cited articles. The last impact measure, the m_index, is 
another variant of the h_index that displays the h-index per year since 
its first publication. The m-index is the h_index divided by the number 
of years a scientist has been active (Hirsch, 2007; Forliano et al., 2021). 
The most cited authors in the dataset are Blasco J (269 citations) and 
He Y (138 citations), closely followed by Alfian G and Rhee J (128 
citations). Zhang X, who was top in the author productivity over time 
(Figure 12), has 96 citations, h_index, g_index, and m_index of 5, 6, 
and 0.455, respectively. It is worth mentioning that Cancilla JC and 
Torrecilla JS, with publication starting year in 2020, both have the 
highest h_index, g_index, and m_index of 5, 6, and 1.667.

FIGURE 9

The top 10 relevant sources of scientific publications on AI applications in postharvest agriculture research.

FIGURE 10

The source impact of scientific publications on AI applications in postharvest agriculture research.
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3.2. Top 20 most-cited documents

Table 2 shows the top 20 most cited documents in AI applications 
in postharvest agriculture based on Scopus’s data analyzed, with total 
citations ranging from 52 to 146. Ruiz-Garcia et al. (2008), Tsugawa 
et al. (2011), Lorente et al. (2013), Jiménez-Carvelo et al. (2019), Zhou 
et al. (2019), and Zhai et al. (2020) have ranked top with total citations 
above 100. Ruiz-Garcia et al. (2008), Tsugawa et al. (2011), Zhou et al. 

(2019), and Zhai et al. (2020) received 146, 137, 134, and 126 citations, 
respectively. Both Jiménez-Carvelo et al. (2019) and Lorente et al. 
(2013) received 105 citations.

The work by Tsugawa et al. (2011) developed a data mining system 
to obtain metabolite information on Japanese green tea quickly and 
easily by using two mathematical methods: (1) Pearson’s product–
moment correlation coefficient for identification based on retention 
time and weighted mass spectrum and (2) Soft Independent Modeling 

FIGURE 11

The most relevant authors of scientific publications on AI applications in postharvest agriculture research.

FIGURE 12

Authors’ productivity over time from 2006 to 2022.
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of Class Analogy (SIMCA), a supervised classification technique that 
is based on principal component analysis (PCA) for the annotation of 
unknown peaks. The developed data analysis tool could provide 
essential metabolite information accurately and rapidly and offer new 
insights into food quality evaluation and predictions. Zhai et al. (2020) 

presented a state-of-the-art review of decision support systems by 
exploring the upcoming challenges of their utilization in Agriculture 
4.0. The authors systematically analyzed the decision support systems 
from the aspects of interoperability, scalability, accessibility, usability, 
uncertainty and dynamic factors, re-planning, expert knowledge, and 

TABLE 2 Top 20 most cited documents.

Authors Title Journal
Total 

citations

Tsugawa et al. (2011) GC/MS-based metabolomics: development of a data mining system for metabolite 

identification by using soft independent modeling of class analogy (SIMCA)

BMC Bioinformatics
146

Zhai et al. (2020) Decision support systems for agriculture 4.0: Survey and challenges Computer and Electronics in 

Agriculture
137

Ruiz-Garcia et al. (2008) Performance of ZigBee-Based wireless sensor nodes for real-time monitoring of 

fruit logistics

Journal of Food Engineering
134

Zhou et al. (2019) Application of Deep Learning in Food: A Review Comprehensive Review in 

Food Science Food Safety
126

Jiménez-Carvelo et al. (2019) Alternative data mining/machine learning methods for the analytical evaluation of 

food quality and authenticity—A review

Food Research International
105

Lorente et al. (2013) Selection of Optimal Wavelength Features for Decay Detection in Citrus Fruit Using 

the ROC Curve and Neural Networks

Food Bioprocess Technology
105

Ropodi et al. (2016) Data mining derived from food analyses using non-invasive/non-destructive 

analytical techniques; determination of food authenticity, quality and safety in 

tandem with computer science disciplines

Trends Food Science and 

Technology 99

Vélez Rivera et al. (2014) Early detection of mechanical damage in mango using NIR hyperspectral images 

and machine learning

Biosystems Engineering
96

Yu et al. (2018) Development of deep learning method for predicting firmness and soluble solid 

content of postharvest Korla fragrant pear using Vis/NIR hyperspectral reflectance 

imaging

Postharvest Biology and 

Technology 93

Alfian et al. (2017) Integration of RFID, wireless sensor networks, and data mining in an e-pedigree 

food traceability system

Journal of Food Engineering
81

Tsang et al. (2018) An Internet of Things (IoT)-based risk monitoring system for managing cold supply 

chain risks

Industrial Management and 

Data Systems
73

Toffali et al. (2011) Novel aspects of grape berry ripening and post-harvest withering revealed by 

untargeted LC-ESI-MS metabolomics analysis

Metabolomics
72

Li et al. (2018) Advances in Non-Destructive Early Assessment of Fruit Ripeness toward Defining 

Optimal Time of Harvest and Yield Prediction—A Review

Plants
70

Wang et al. (2010) A radio frequency identification and sensor-based system for the transportation of 

food

Journal of Food Engineering
68

Ding et al. (2015) Network analysis of postharvest senescence process in citrus fruits revealed by 

transcriptomic and metabolomic profiling

Plant Physiol
67

Liu et al. (2015) Recent Developments and Applications of Hyperspectral Imaging for Quality 

Evaluation of Agricultural Products: A Review

Critical Review in Food 

Science and Nutrition
66

Humston et al. (2010) Quantitative assessment of moisture damage for cacao bean quality using two-

dimensional gas chromatography combined with time-of-flight mass spectrometry 

and chemometrics

Journal of Chromatography

61

Fabris et al. (2010) PTR-TOF-MS and data-mining methods for rapid characterization of agro-

industrial samples: influence of milk storage conditions on the volatile compounds 

profile of Trentingrana cheese

Journal of Mass Spectrom

55

Semary et al. (2015) Fruit-Based Tomato Grading System Using Features Fusion and Support Vector 

Machine

Advances in Intelligent 

Systems Computing
54

Gunasekaran and Ding (1994) Using computer vision for food quality evaluation: Applications of 

immunobiosensors and bioelectronics in food sciences and quality control

Food Technology
52
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analysis of historical information. Ruiz-Garcia et al. (2008) explored 
the potential of wireless sensor technology (ZigBee) for monitoring 
fruit storage and transport conditions. A comprehensive review of the 
application of deep learning in food was provided by Zhou et  al. 
(2019), a first in the food domain. An in-depth discussion on deep 
learning and its ability as a data analysis tool to solve various problems 
and challenges encountered in the food domain was presented. These 
challenges include food recognition, calorie estimation, quality 
detection of fruits, vegetables, meat, and aquatic products, food supply 
chain, and food contamination. The authors concluded that deep 
learning had more outstanding performance capabilities than other 
methods, such as manual feature extractors, conventional machine 
learning algorithms, and serves as a promising tool in food quality and 
safety inspection.

The assurance of food authenticity is the primary concern of many 
consumers and manufacturers of high-quality products and official 
bodies and authorities in response to the need to protect consumers 
by detecting potential food fraud. Hence, Jiménez-Carvelo et  al. 
(2019) reviewed alternative data mining/machine learning methods 
for evaluating food quality and authenticity (food analytics). Here, 
various methods such as principal component analysis (PCA), partial 
least squares-discriminant analysis (PLS-DA), soft independent 
modeling by class analogy (SIMCA), k-nearest neighbors (kNN), 
parallel factor analysis (PARAFAC), and multivariate curve resolution-
alternating least squares (MCR-ALS) were identified as the most 
widely used techniques. Nonetheless, other methods, including 
support vector machine (SVM), classification and regression tree 
(CART), and random forest (RF), show a great potential than 
conventional ones. Automatic detection of fungal infections in fruits 
and vegetables, particularly during postharvest operations such as 
storage, handling, and transportation, is critical because only a few 
infected produce can spread the infection. The study by Lorente et al. 
(2013) proposed a methodology to select features in multi-class 
classification problems using the receiver operating characteristic 
(ROC) curve to detect rottenness in citrus fruits through hyperspectral 
images. The authors aimed to distinguish fruit with decay symptoms 
from sound fruit with minor defects.

In summary, It can be observed in Table 2 (top 20 most cited 
documents) that the studies focused on the following broad areas: 
real-time monitoring and decision support system for perishable 
products, food quality evaluation, and food classification (grading and 
sorting). These areas are broadly discussed in section 3.4.

3.3. Co-occurrence network analysis

3.3.1. Co-occurrence—all keywords
The keyword co-occurrence network analysis helps researchers 

detect the literature’s core content and depict the knowledge’s 
structure. It is used to identify “keywords” that co-occur in at least 
two publications in a period (Rejeb et al., 2021; Zhong et al., 2021). 
This scientometric method helps to generate clusters that provide a 
broader view of different research foci in a specific knowledge 
domain (Rejeb et  al., 2021). The keyword is a significant part of 
scholarly publications, which can play a vital role in information 
retrieval and research. In this study, using VosViewer to analyze all 
keywords (full counting method), we selected the minimum number 
of keywords occurrence as 5, of which 337 met the thresholds out of 

the 4,979 keywords. Figure 13 shows the co-occurrence network of 
all keywords in AI applications in postharvest agriculture research, 
while the occurrences and link strengths of all keywords are shown 
in Supplementary Table S3. Total link strength (TLS) represents the 
collaboration intensity of keywords. The link strength between the 
circles reflects the frequency of the keyword’s co-occurrence. The 
total link strength is the sum of the link strengths of the keyword over 
all the other keywords (Guo et al., 2019; Martynov et al., 2020). As 
shown in Figure 13, we identified five clusters of words with distinct 
colors. The nodes in the figure indicate a keyword, and the node size 
corresponds to the co-occurrence frequency of the keyword or the 
number of publications with the corresponding keywords. The 
distance between two keywords in the visualization is determined by 
density, and the higher this density, the closer the distance between 
the nodes (Rejeb et al., 2021).

The red cluster (cluster 1, with 123 items) has artificial intelligence as 
the highest occurring keyword. Cluster 2, represented by green, contained 
86 items, with food quality as the highest occurring keyword. Clusters 3 
and 4, represented by blue and yellow, have 67 and 60 items, with machine 
learning and deep learning as the highest occurring keywords, 
respectively. Finally, cluster 5, represented by purple color, has only one 
item (trees) as the only occurring keyword in the cluster.

Supplementary Table S3 shows the top  10 keywords in the 
co-occurrence all-keyword analysis. As can be seen, the highest occurring 
keywords in clusters 1 to 4 appeared in the top 10. Machine learning had 
the highest occurrence (178), which was followed by food quality (146), 
artificial intelligence (100), and deep learning (94). Other keywords in the 
top 10 include quality control (71), learning systems (67), food safety (64), 
fruits (64), learning algorithms (59), and data mining (59). Additionally, 
it was observed that the total link strength was independent of the 
keyword occurrences (Supplementary Table S3). Machine learning and 
data mining had the highest and lowest total link strength, respectively. 
The total link strength indicates the number of publications in which two 
keywords occur together.

3.3.2. Co-occurrence—author keywords
Author keywords are those provided by the original authors. Here, 

we selected the minimum number of keyword occurrences as 5, of 
which 67 met the thresholds out of 1,653. Figure  14 shows the 
co-occurrence network of author keywords in AI applications in 
postharvest agriculture research. The co-occurrence network has 6 
clusters represented with distinct colors. Specifically, as was shown in 
the red cluster (cluster 1, 16 items), keywords such as machine 
learning, deep learning, random forest, support vector machine, 
feature extraction, food processing, pattern recognition, etc., are 
evidently related to the topic of “AI algorithms in food processing.” In 
this cluster, machine learning was the highest occurring keyword. The 
green color represents cluster 2 (15 items) has artificial intelligence as 
the highest occurring keyword. Other keywords in this cluster are cold 
chain, cold chain logistics, real-time monitoring, wireless sensor 
network, etc. Cluster 3 was represented in blue and contained 11 items 
with keywords such as big data, food safety, food security, 
sustainability, traceability, industry 4.0, etc. The highest keyword in 
this cluster was food safety, which may be attributed to the topic of 
“food safety and sustainability.” Clusters 4 and 5, represented by yellow 
and purple colors, each have 10 items, respectively. Cluster 4 contained 
keywords such as food, feature selection, and food quality (highest 
occurring keyword). The keywords in cluster 5 include agriculture, 
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precision agriculture, sensors, smart farming, food waste, etc. In this 
cluster, food waste was the highest occurring keyword. Finally, Cluster 
6 has 5 items and contains keywords such as adulteration, food fraud, 
transfer learning, and convolution neural network (highest 
occurring keyword).

Supplementary Table S4 shows the top  10 keywords in the 
co-occurrence author-keyword analysis. Machine learning, artificial 
intelligence, deep learning, food quality, food safety, and convolution 
neural network were the highest occurring keywords in clusters 1, 2, 
3, 4, 5, and 6, respectively, appearing in the top 10 author keywords 
occurrences. Like the all-keywords analysis, machine learning had the 
highest occurrence (116) in the author-keyword analysis. This was 
followed by deep learning (63), food quality (43), artificial intelligence 
(28), computer vision (26), classification (24), food safety (24), image 
processing (22), big data (19), and convolutional neural network (19). 
From Supplementary Table S4, Machine learning and big data had the 
highest and lowest total link strength, respectively. The total link 
strength indicates the number of publications in which two keywords 
occur together.

3.3.3. Co-occurrence—index keywords
Scopus selects index keywords, standardized to vocabularies 

derived from thesauri owned or licensed by Elsevier. Index keywords, 
as opposed to Author keywords, consider synonyms, alternate 

spellings, and plurals (Golub et al., 2020). For the index keywords, 
we selected the minimum number of keywords occurrence as 5, of 
which 302 met the thresholds out of the 4,014 keywords. The 
co-occurrence network of index keywords in AI applications in 
postharvest agriculture research is shown in Figure  15. The 
co-occurrence network contains five clusters. Cluster 1, represented 
in red, contains 98 items with keywords such as artificial intelligence, 
data mining, Internet of Things, supply chain, cold chain logistics, 
food supply, and food waste. In this cluster, artificial intelligence was 
the highest occurring keyword and part of the top 10 index keywords 
occurrences (Supplementary Table S5). The green cluster represents 
the second cluster (72 items) and has deep learning as the highest 
occurring keyword. Other keywords in this cluster include learning 
systems, learning algorithms, neural networks, computer vision, 
image processing, support vector machines, decision trees, and fruits. 
Cluster 3, with 60 items in blue, has machine learning as the keyword 
with the highest occurrence. Other keywords in cluster 3 are quality 
control, artificial neural networks, and fruits. The yellow color 
represents cluster 4 (59 items) containing keywords such as food 
quality, metabolism, metabolomics, and algorithms. In this cluster, the 
occurrence of food quality was highest. The last cluster (cluster 5, 13 
items), represented by purple, has forecasting as the highest occurring 
keyword. Other keywords in cluster 5 include vegetables and 
predictive analytics.

FIGURE 13

All keywords co-occurrence network.
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FIGURE 14

Author keywords co-occurrence network.

Supplementary Table S5 shows the top  10 keywords in the 
co-occurrence index-keyword analysis. As can be seen, the highest 
occurring keywords in clusters 1 to 4, except cluster 5, appeared in the 
top 10. Food quality had the highest occurrence (130), which was 
closely followed by machine learning (101), artificial intelligence (80.), 
and deep learning (72). Other keywords in the top 10 include quality 
control (70), learning systems (67), fruits (64), food safety (59), 
learning algorithms (58), and data mining (57). Here, food quality had 
the highest total link strength in contrast to the analyses of all 
keywords and author keywords, where machine learning had the 
highest total link strength (Supplementary Tables S3, S4). 
Furthermore, it was observed that the total link strength was 
independent of the keyword occurrences (Supplementary Table S5).

3.3.4. Thematic map and thematic evolution
Figure 16 shows the thematic map of the keyword plus the dataset 

investigated in this study. The map is divided into four quadrants: 
Niche themes, Motor themes, Basic themes, and Emerging themes 
based on relevance degree (centrality) and development degree 
(density). In the analysis, the number of words was set as 1,000, the 
minimum cluster frequency (per thousand documents) was set as 5, 
the number of labels was set as 5, and the clustering algorithm used 
was the “Walktrap” algorithm. Based on Figure 16, more emphasis 
should be placed on the topic in the upper right quadrant based on its 
density and relevance. Here, it was observed that topics such as food 
quality, machine learning, deep learning, quality control, and learning 
systems have high density and relevance and should be examined and 

researched in-depth. The topics in the upper left quadrant have a high 
development degree and low centrality (i.e., relevance). The basic 
theme quadrant (lower right quadrant) contains topics such as 
artificial intelligence, food safety, data mining, food supply, and food 
waste; these topics have relatively high development and relevance 
degrees. Although the trend topics in the upper right quadrant are the 
most promising topics for future research, the topics in the lower right 
quadrant (basic themes) also have favorable research prospects and 
are worth investigating. Furthermore, the lower left quadrant contains 
topics such as the Internet of Things, cold chain logistics, big data, 
decision making, and real time monitoring. These topics have low 
development degree and relevance degree.

To show the historical facets of research shift to direct prospects, 
thematic evolution has become an effective technique in bibliometrix 
analysis (Moral-Munoz et al., 2018; Chansanam and Li, 2022). This 
technique highlights the most significant research themes and charts 
theme evolution through time, offering insight into the field’s future 
path (Chen et al., 2019; Chansanam and Li, 2022). Figure 17 depicts 
the thematic evolution of the keyword plus based on the dataset from 
1994 to 2022. Two periods were chosen as cut-off points: 2008 and 
2009. These cut-off points were based on the publication results by 
year (Figure  3), where we  observed a significant increase in the 
number of publications in 2009, which has continued to increase. In 
the first period (1994–2008), the popular keywords were food 
processing and artificial intelligence, merged in the next period 
(2009–2022) as food quality, deep learning, and artificial intelligence. 
It was observed that the term artificial intelligence in the first period 
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(1994–2008) is separated into two branches in the second period 
(2009–2022): food quality and artificial intelligence. In comparison, 
food processing in the first period is categorized into two in the 
second period: food quality and deep learning. This trend 
demonstrates that food quality is a core topic in the second period.

3.3.5. Co-authorship—countries
Figure  18 shows the co-authorship-countries network. Here, 

we selected the maximum number of countries per document as 25 
and the minimum number of documents of a country as 5, of which 
out of 79 countries, 38 met the threshold. The network contains seven 
clusters. Cluster 1, represented with the orange color, contains 10 
items, with Iran having the highest occurrence. The second and third 
clusters (clusters 2 and 3) have 7 and 5 items, represented by the colors 
green and blue, respectively. In clusters 2 and 3, the countries with the 
highest occurrence were Italy and Spain, respectively. Clusters 4 and 
5 (represented with pink and purple) contain 5 items, with the 
United States and China as the countries with the highest occurrences, 
respectively. In cluster 6 (light blue color), the United  Kingdom 
occurred the highest, and the cluster contains 5 items. The last cluster 
(cluster 7), represented in yellow color contains 2 items, has South 
Korea occurring the highest, followed by Brazil.

In Figure 18, countries are indicated by a label and by a circle. 
The more critical a country, the larger its label and its circle. The 
size of each circle shows the number of papers written by authors 

from the country. Each link between two circles of different 
countries indicates a co-authorship between the organizations in 
those countries. Hence, more papers have been written by authors 
from China, closely followed by the United States, India, and Spain. 
This observation corroborates the results shown in Figure 5. It is 
with mentioning that the United  States network links with all 
the clusters.

3.4. Identification of a research agenda 
(opportunities and gaps) in postharvest 
agriculture

The postharvest stage is the final and most critical agricultural 
stage that needs extensive attention (Meshram et al., 2021). After 
completing all stages, from preharvesting to harvesting, 
negligence in postharvesting may spoil all the efforts and cause 
severe economic loss. Many studies have shown that, for instance, 
farmers lose as high as 40% of fruit and vegetables before they 
reach the final end-users (Kitinoja et al., 2011). Activities that 
can be considered in the postharvest stage are factors that affect 
the shelf life of the food and postharvest handling processes to 
maintain the food quality (Meshram et  al., 2021). Hence, 
postharvest management is a collection of post-production 
practices that includes cleaning, washing, selection, grading, 

FIGURE 15

Index keywords co-occurrence network.
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FIGURE 16

Thematic map of the keyword plus.

FIGURE 17

Thematic evolution of the keyword plus.

disinfection, drying, packing, and storage. These remove 
undesirable elements and improve product appearance while 
ensuring the product meets established quality standards for 
fresh and processed products (El-Ramady et al., 2015). Based on 
the analyzed data and the observed research evolution and trend, 
we categorized opportunities for future research into three broad 
categories discussed below.

3.4.1. Food classifications (grading and sorting)
The appearance of food, mainly fruits and vegetables, is an 

important property that influences its market value, affects consumer 
choices, and, to some extent, is an indicator of its internal quality 
(Naik and Patel, 2017). Human graders have typically performed 
quality inspections and classified agricultural and food products. 
Some features such as color, texture, size, shape, weight, and visual 
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defects are generally examined to assess the outside quality of food 
(Naik and Patel, 2017). However, most manual inspections are time-
consuming and labor-intensive (Brosnan and Sun, 2002; Naik and 
Patel, 2017). Moreover, the manual classification of food products 
exacerbates postharvest losses, but technology and emerging 
algorithms offer solutions to reduce such losses (Piedad et al., 2018). 
Hence, there is a need for a fast, efficient, and intelligent food 
grading system. Artificial Intelligence is rapidly becoming a part of 
agriculture’s technological evolution to increase food production 
and reduce losses. Artificial intelligence in food classification, 
grading, and sorting offers an excellent opportunity for reducing the 
manual work of classification and sorting to improve the quality of 
food grading. For instance, computer vision and numerous 
algorithms (such as machine learning and deep learning) help to 
achieve the required food classification and grading to produce 
accurate, rapid, consistent, and efficient outcomes over manual 
work, which can be done automatically, provided some standard 
grading criteria are made (Naik and Patel, 2017; Behera et al., 2020; 
Bhargava et  al., 2022). The following are examples of 
research questions:

 a. How can AI technologies aid the identification and 
classification of the ripening degree of different produce?

 b. What are the possibilities of classifying various agricultural 
produce using higher-level features with more discriminative 
information with deep learning methods?

In food identification and classification, particularly in fresh 
produce, previous endeavors have commonly revolved around using 
various sensors in conjunction with machine learning or deep learning 
techniques. The primary objective of these efforts has been to decipher 
and identify the intrinsic features associated with different types of 
produce. For instance, attributes such as shape, color, texture, and size 
in fruit and vegetables have been harnessed to execute classification 
tasks (Hameed et al., 2018). However, classifying fruits and vegetables 
remains a formidable challenge, primarily due to several factors. These 

include the irregularities observed in their shapes, variations in size, 
the dynamic range of colors, and the profound variability inherent 
within a single category. The latter is particularly pronounced in cases 
where the maturity phase significantly influences visual characteristics, 
particularly in the context of fruits (Hameed et al., 2018; Hossain 
et al., 2018).

Addressing the intricate challenges stemming from their inherent 
diversity, the next generation of AI models is poised to take a 
transformative approach. These future models will be engineered to 
accommodate the multifaceted differences encompassing shape, size, 
color, and ripeness. Deep learning architectures, honed through 
extensive and diverse datasets, are set to fortify the system’s resilience 
across various environmental conditions. This resilience is a testament 
to the AI model’s capacity to withstand the complexities arising from 
variations in lighting, perspectives, and environmental factors, 
ensuring a steadfast and reliable performance (Shahi et al., 2022). 
Moreover, the augmentation of AI’s capabilities extends to the mastery 
of comprehensive datasets that encapsulate a diverse spectrum of fruit 
and vegetable characteristics. This embracement of a broad knowledge 
base enables AI systems to traverse beyond the confines of specific 
conditions and generalize their discernment. Such adaptability proves 
indispensable in securing accurate classifications, thus facilitating 
confident and precise identifications.

Furthermore, incorporating multispectral imaging techniques 
introduces an innovative dimension (Gaikwad and Tidke, 2022). By 
extending the scope of analysis beyond the constraints of the visible 
spectrum, AI-powered systems are endowed with the capability to 
capture information that transcends human visual perception. This 
broader perspective facilitates the identification of nuanced 
distinctions in elements such as shape attributes, color variations, 
surface textures, ripeness indicators, and even the freshness of the 
produce. As the amalgamation of AI technologies and multispectral 
imaging paves the way for a more comprehensive understanding of 
produce characteristics, the horizon of food classification and 
identification stands poised for a paradigm shift. These combined 
advancements address the complexities posed by variability and 

FIGURE 18

Network of the co-authorship countries.
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unlock novel avenues for improved accuracy, efficiency, and reliability, 
ultimately shaping the future landscape of food classification 
and identification.

3.4.2. Food quality evaluation
Another aspect that has been identified is food quality. Although 

supplying similar products is critical, food quality is essential to the 
consumer’s delight (Hemamalini et al., 2022). Food quality assessment, 
including freshness assessment, is rapidly becoming a priority for both 
end-users (consumers) and food processing industries (Takruri et al., 
2020). Although it is a complex concept that is frequently measured 
using objective indices related to the food’s nutritional, 
microbiological, or physicochemical characteristics or designated 
expert opinions (Cardello, 1995; Giménez et  al., 2012), its role in 
decision-making regarding storage and processing requirements is 
critical (Takruri et  al., 2020). Typically, conventional methods 
(chemical or biological analyses) are used to evaluate food quality. 
However, they are time-consuming, costly, require highly skilled or 
trained technicians (operators), and are often destructive, resulting in 
a high financial loss. Similarly, the use of nondestructive techniques 
for evaluating different food quality attributes has grown over the 
years and has proved to be rapid and accurate in estimating food 
quality. These include near-infrared spectroscopy, Fourier transform 
infrared spectroscopy, color and visual spectroscopy, electronic nose 
and tongue, computer vision (image analysis), ultrasound, X-ray, CT, 
and magnetic resonance imaging (Jha, 2010; Amoriello et al., 2019; Pu 
et al., 2019; Wang et al., 2019; Dold and Langowski, 2022; Malvandi 
et al., 2022). While nondestructive methods are beneficial for quality 
testing, their implementation necessitates expertise, skill, and 
experience; besides, data processing can be computationally expensive 
(Abasi et al., 2018).

Consumers place a high value on food quality, mainly fresh fruits 
and vegetables. Besides, it is critical to breeding activities’ success and 
the fruit industry’s competitiveness and profitability (Mezzetti et al., 
2018; Amoriello et al., 2022). The entire food supply chain has recently 
demanded simple and quick quality evaluation systems. Artificial 
intelligence, machine learning, and deep learning have provided an 
avenue to effectively evaluate different food quality characteristics and 
play a crucial role in food safety and quality assurance (Dharmaraj and 
Vijayanand, 2018; Liu, 2020). For instance, the chemical attributes of 
food, mainly fruits and vegetables (such as total soluble solids, acidity, 
pH, firmness, etc.) and nutritional properties (such as total phenols, 
anthocyanins, antioxidant potential, etc.) can be determined efficiently 
using these techniques.

Furthermore, it is well established that the deterioration of most 
fruits and vegetables is linked to rapid metabolism, cellular damage, 
and softening that occurs due to external damage during postharvest 
handling (Li and Thomas, 2014; Fadiji et al., 2016a,b; Hussein et al., 
2018; Opara and Fadiji, 2018; Choi et al., 2021). AI, ML, and DL can 
quickly detect small changes or defects that may occur in the 
produce subjected to mechanical damage during handling, 
distribution, and storage, allowing easy monitoring and sorting 
(Azizah et al., 2017). Also, these techniques are becoming valuable 
tools in conjunction with sensing devices and computer vision to 
detect pathological disorders in food associated with attacks by 
viruses, fungi, bacteria, or microbial pathogens (Ray et al., 2017; Cui 
et al., 2018; Gokulnath, 2021); physiological stresses, which can lead 
to disorders such as bitter pit, watercore, mealiness, sunburn, 

browning, superficial scald, granulation, and internal drying, among 
others (Magwaza et al., 2012; Zhang et al., 2020; Tang et al., 2022); 
morphological disorders that manifest themselves as deformations 
that make foods have an irregular or abnormal appearance 
(Moallem et al., 2017; Ireri et al., 2019); internal defects (Arendse 
et  al., 2016, 2018a,b; Nturambirwe and Opara, 2020; Van De 
Looverbosch et al., 2020; Dubey et al., 2021; Çetin et al., 2022; Okere 
et al., 2022). The ability to detect or identify various food defects 
aids in reducing the risk of spoilage and decay. Moreover, identifying 
and sorting defective produce reduces contamination of healthy 
produce, mitigating food losses while maintaining high 
consumer satisfaction.

The following are examples of research questions:

 a. How can AI technologies improve the shortcomings of physical 
field drying of fruits and vegetables?

 b. How can AI technologies detect defects in produce such as fruit 
and vegetables effectively?

 c. What is the feasibility of applying AI techniques (deep learning) 
in combination with other promising techniques, such as 
thermography and magnetic resonance, for the early detection 
of defects?

The application and development of Artificial Intelligence (AI) in 
the domain of food drying have garnered substantial attention. With 
advanced technologies such as big data and cloud computing, AI is 
dramatically reshaping the global landscape and transforming 
everyday life (Chen et al., 2020; Misra et al., 2020). AI emerges as a 
transformative solution as we  strive to achieve high-quality end 
products, reduce operational and energy costs, enhance production 
rates, and optimize the design and operational parameters of 
industrial-scale dryers. Its inherent self-learning ability, adaptability, 
robust fault tolerance, and proficiency in mapping complex and 
dynamic phenomena make it a potent alternative strategy for various 
aspects of drying modeling, physicochemical property analysis, and 
quality optimization.

The utilization of AI in food drying has been particularly 
impactful in addressing critical challenges. Dry intelligence 
innovation, energy conservation, and intelligent process control are 
focal points that demand attention to ensure superior drying 
outcomes. AI’s capabilities have been harnessed to tackle these 
challenges, offering innovative approaches that lead to enhanced 
results, reduced costs, and optimized operational parameters.

AI’s contributions encompass a spectrum of applications, 
including the modeling, predicting, and optimizing of essential 
parameters such as heat and mass transfer, thermodynamic 
performance metrics, quality indicators, and physicochemical 
properties of dried products. These applications span artificial 
biomimetic technologies, such as electronic nose and computer vision, 
and various conventional drying methods. The implementation of AI 
tools, including Artificial Neural Networks (ANN), fuzzy logic, expert 
systems, and evolutionary algorithms, either individually or in 
combination, has proven exceptionally effective in addressing intricate 
problems within the drying process (Aghbashlo et  al., 2015; Sun 
et al., 2019).

The potential of AI in defect detection holds significant promise, 
particularly in achieving the coveted characteristic of “fast detection.” 
While computer vision has made substantial strides in defect 
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detection, its scope is often limited to surface-level defects. However, 
integrating hyperspectral and multispectral imaging with AI 
technologies presents a compelling avenue for rapid and 
comprehensive defect detection (Feng and Sun, 2012; Soni et  al., 
2022). Hyperspectral and multispectral imaging technologies are 
emerging as powerful contenders for rapidly detecting agricultural 
produce defects. AI, and specifically DL, plays a pivotal role in 
effectively implementing these “fast” detection systems (Wieme et al., 
2022). The advancements enabled by DL in image processing and 
feature extraction have revolutionized the efficiency of direct defect 
detection. Despite the potential demonstrated by the application of DL 
in this domain, research in this area, particularly in the context of 
adulteration detection, remains relatively scarce. Consequently, there 
is a pressing need for further research to harness the full potential of 
AI and DL in realizing these goals.

Additionally, AI’s successful application extends to the quantitative 
analysis of fruit deterioration, encompassing factors such as severity 
and degree of damage defects. In conjunction with objective 
non-destructive measuring instruments, learning methods have been 
employed to distinguish between different extents of deterioration. 
However, despite the advancements, this study area remains under-
explored in leveraging sophisticated AI algorithms. The quantification 
of damage and disorders continues to pose challenges in the 
agriculture industry, warranting heightened attention to utilizing 
learning algorithms for enhanced accuracy and efficiency.

3.4.3. Real-time monitoring and decision support 
system

Due to the increased consumer demand for food, food 
industries are not keeping up with the demand–supply chain and 
also lacking in food safety. Similarly, until now, retailers lack 
visibility into the real-time status of foods in stock, resulting in 
massive food losses and waste. AI technology is a promising tool 
for monitoring food status in the supply chain (Wang et  al., 
2022). It is critical to monitor potential food safety hazards 
throughout the food supply chain to ensure the proper operation 
of food safety management systems and, consequently, the food 
products [International Organization for Standardization (ISO), 
2013; Focker et  al., 2018]. Besides, an AI-based system can 
manage food production and distribution processes more 
efficiently and effectively based on AI, ML, and DL algorithms 
(Kumar et al., 2021; Wang et al., 2022). For instance, the cold 
chain, in particular, plays an essential role in the supply chain’s 
quality control of perishable foods such as fresh fruits and 
vegetables (Lu and Wang, 2016; Loisel et al., 2021). Fluctuating 
temperatures or breaks could rapidly deteriorate the perishable 
products and significantly impact the food shelf life (Ndraha 
et al., 2018; Villa-Gonzalez et al., 2022). It is, therefore, critical to 
maintaining optimum environmental conditions to control the 
quality of perishable foods in real-time, detect cold chain breaks, 
and measure their impact on product quality. AI has proven to 
be  more precise and efficient in performance compared to 
traditional or physic-based systems (models; Mercier and Uysal, 
2018; Hoang et al., 2021; Loisel et al., 2022). In the cold chain, 
wireless temperature sensors and data transmission are expected 
to be widely used to provide a large amount of data, making real-
time analyses and predictions possible (Loisel et  al., 2021). 
Additionally, with the structured infrastructure of the sensor 

network in IoT (Internet of Things) and robust computations in 
AI, integrating IoT and AI is a promising way to establish risk 
monitoring systems in the cold chain for controlling product 
quality (Tsang et al., 2018).

Another aspect in which AI could be useful is in the area of food 
traceability. Food traceability involves tracking, tracing, and evaluating 
food quality along the supply chain and providing consumers with 
information to increase consumer experience and product confidence 
in the food supply chain (Aung and Chang, 2014; Islam and Cullen, 
2021). AI has shown the potential to improve how food is traced, 
decrease losses and waste, and mitigate the vulnerability to food fraud 
(Hassoun et al., 2022).

4. Conclusions, research implications, 
and limitations

This study conducted a bibliometric analysis utilizing techniques 
such as co-authorship, co-occurrence, co-citations, and visualization 
networks of AI applications in postharvest agriculture research. The 
study analyzed 586 documents obtained from Scopus and the most 
extended study period (1994–2022) to present the state of the art, 
future trends and identify research tendencies. The review results can 
be  relevant to researchers actively applying AI in postharvest 
agriculture. Several significant observations were made in this study. 
First, the number of papers on AI applications in postharvest 
agriculture has substantially grown, particularly from 2009 to 2022. 
Country-wise productivity showed China and USA as the top 
countries in the research area. The distribution of papers published 
according to journals suggested that Computers and Electronics in 
Agriculture is the top or leading journal contributing to the knowledge 
on AI application in postharvest agriculture. Regarding author 
productivity, Zhang X and Zhang Z are the most prolific authors in 
the research area. In terms of contributions of academic institutions, 
results revealed Zhejiang University, located in China, as the most 
productive institution. The keywords analysis showed that the 
frequently used keywords include machine learning, food quality, 
artificial intelligence, deep learning, quality control, learning systems, 
food safety, fruit, learning algorithms, and data mining. According to 
the thematic map trend, food quality, machine learning, deep learning, 
quality control, and learning systems are well-developed themes 
fundamental for structuring the research field. Whereas Internet of 
Things, cold chain logistics, big data, decision making, and real time 
monitoring are weakly developed and marginal areas in the 
research domain.

The present study can help researchers and practitioners 
embarking on this topic who want a comprehensive overview of the 
scientific literature produced. Moreover, scholars can leverage the 
results of this study to address future studies better, considering the 
proposed avenues for future research. Additionally, this work can 
provide a valuable perspective for future research in the studied 
knowledge domain since it demonstrates the existence of an emerging 
area of study intended to enhance quality and reduce postharvest 
losses and waste in horticultural crops.

In the present study, only one database was used: Scopus. Scopus 
is a widely recognized multidisciplinary abstract and citation database 
offering comprehensive coverage of academic literature from various 
disciplines. Its user-friendly interface and powerful search capabilities 
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make it efficient and familiar to researchers. Focusing on one database 
makes the study’s literature review process time and resource-efficient 
while ensuring access to peer-reviewed and high-quality content. 
Moreover, Scopus provides citation analysis and impact metrics to 
assess research significance. The consistency in data retrieval enhances 
data management and analysis throughout the study. The specificity 
of Scopus also aligns with the study’s focus, allowing for in-depth 
analysis and a comprehensive understanding of the research topic. 
Nevertheless, while Scopus is a valuable resource, future work could 
benefit from including additional databases such as the Web of Science 
(WOS) and Medline to strengthen the study’s robustness and broaden 
its scope. Furthermore, the keywords used in the search string may 
have excluded some important papers. Hence, for more enriched 
results, future studies should include more keywords. Another 
limitation is the lack of citations for newly published papers. New 
research takes time to accumulate citations, while older publications 
have more citations.
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