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Climate-smart agriculture (CSA) is a global development strategy aimed to address 
the interlinked challenges of food security and climate change. Expanding the 
implementation of conservation agriculture (CA), a vital component of CSA, is 
essential for enhancing agricultural and food security resilience while sustainably 
managing arable land. However, the extensive heterogeneity of biophysical and 
socioeconomic conditions presents significant complexities in promoting CA 
adoption. Addressing these challenges, this study carried out a comprehensive 
theoretical investigation of biophysical and socioeconomic factors influencing 
CA adoption and performance, integrating stakeholder feedback to create 
a systematic and robust evaluation index system for assessing CA suitability. 
By integrating multi-influencing factor techniques and fuzzy logic methods, 
we spatially identified suitable areas for CA implementation in China, providing 
valuable insights for land use policy. The reliability of the models was verified 
through a sensitivity analysis using the map removal sensitivity analysis method 
and the extended Fourier amplitude sensitivity test. The results indicated that 
29.78% of the cultivated land was unsuitable or marginally suitable for CA, while 
29.30 and 40.92% were determined to be  moderately suitable and suitable 
zones, respectively. Suitable cultivated land was primarily distributed in the 
northern arid and semi-arid regions, the Loess Plateau, the Huang-Huai-Hai 
Plain, and the Northeast China Plain. Conversely, unsuitable, and marginally 
suitable cultivated land was predominantly located in the Qinghai Tibet Plateau, 
Middle-lower Yangtze Plain, Sichuan Basin and surrounding areas, the Yunnan-
Guizhou Plateau, and Southern China. The topographical index, annual mean 
precipitation, humidity index, and population density were identified as the most 
significant factors influencing CA suitability. The CA suitability maps generated 
in this study will guide the development and extension agents targeting CA to 
suitable locations with a high potential impact, thereby maximizing the likelihood 
of adoption and minimizing the risk of failure.
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1. Introduction

In the coming decades, food security is projected to become a 
significant global challenge (Bongaarts, 2020). Moreover, climate 
change’s influence on global agricultural production may be substantial 
due to climate variability and extreme meteorological events (Ortiz-
Bobea et al., 2021). Climate-smart agriculture (CSA) has emerged as 
a global development strategy to address the intertwined challenges 
of food security and climate change (Palombi and Sessa, 2013). CSA’s 
primary goals involve alleviating vulnerability and fostering the 
resilience of agricultural and food-secure systems to climate change 
(Campbell et  al., 2014). Conservation agriculture (CA), a vital 
component of CSA in arable systems, combines three interrelated 
practices (minimal or no tillage, biomass mulch soil cover, and crop 
rotation) to minimize the risk of yield damage from climate shocks 
and promote sustainable food production through efficient natural 
resource use and minimal environmental impact (Kassam et al., 2009; 
Pittelkow et al., 2015). Implementing biomass mulch soil cover in 
conjunction with minimal or no tillage helps prevent topsoil 
displacement and has the potential to rejuvenate soil organic carbon 
content. This approach can also contribute to enhanced soil moisture 
content and the water use efficiency. In addition, crop diversity, which 
includes crop rotation through different seasons and the use of legume 
crops as cover crops, can provide several benefits, such as improved 
pests and diseases control and enhanced soil health.

In China, the rising demand for food and the degradation of 
cultivated land pose considerable challenges to food security. It is 
estimated that over 19% of farmland is polluted, and approximately 
50% of farmland is threatened by degradation (Chen et al., 2014). To 
secure its food supply, China must increase food output by 30–50% 
within the next 25–35 years (Li et al., 2016). Given China’s declining 
food production efficiency and escalating environmental costs, a 
paradigm shift toward a system-based CA approach represents a vital 
strategy for ensuring agricultural sustainability and food security (Li 
et  al., 2016; Komarek, 2018; Lal, 2018). No-till, straw mulching, 
wheat-pea rotation, and corn-soybean intercropping are the most 
prevalent CA practices in China. CA is essential for the modernization 
of agriculture. Notably, CA offers two benefits: first, it helps preserve 
land resources, and second, it reduces production costs while 
maximizing land utilization efficiency and longevity (Komarek, 2018). 
The Central No. 1 Documents issued by the Central Committee of the 
Communist Party of China has repeatedly urged for CA’s 
advancement. However, despite numerous government policies and 
strategies to promote CA practices vigorously, adoption has been slow 
(Komarek, 2018; Kan et al., 2020). According to the China Agricultural 
Machinery Industry Yearbook, only 6.42% of China’s cultivated land 
was under CA in 2020, highlighting the need for greater CA 
promotion across Chinese regions.

The promotion and application of CA involve numerous scientific 
technologies, including agronomy, soil, plant protection, environment, 
farm machinery, and economics (Kassam et  al., 2009). The 
knowledge-and technology-intensive nature of CA, combined with 
the heterogeneity of biophysical and socioeconomic conditions, 
intensifies the challenges associated with promoting CA (Xiao et al., 
2020). Researchers are increasingly recognizing that the effectiveness 
of CA is site-specific (Prestele and Verburg, 2020; Rodenburg et al., 
2021). Previous studies have underscored the importance of spatial 
targeting when promoting specific agricultural practices or 

technologies (Brandt et al., 2017; Notenbaert et al., 2017; Thornton 
et  al., 2018; Andrade et  al., 2019; Wiśniewski et  al., 2021), as 
appropriate location targeting is crucial for scaling-out particular 
technologies and increasing adoption rates. Consequently, identifying 
regions with the potential to successfully implement CA practices is 
essential when promoting CA. Additionally, CA has been proposed as 
a beneficial strategy to support climate change mitigation and 
adaptation objectives due to its potential for large-scale carbon 
sequestration, greenhouse gas emission reduction, and its capacity to 
provide and regulate soil water and nutrients (Kassam et al., 2009; Li 
et  al., 2016; Jat et  al., 2020; Xiao et  al., 2020). Therefore, accurate 
spatially explicit information on CA distribution can enhance the 
precision of various ecosystem modeling applications, allowing for a 
more realistic assessment of CA’s climate mitigation and adaptation 
potential (Prestele et al., 2018).

Several studies have identified the recommendation domains 
(RDs) where dual-use maize varieties (Notenbaert et al., 2013) and 
climate-smart agricultural practices (Notenbaert et al., 2017; Andrieu 
et al., 2021) are most likely to be implemented. Some studies have also 
focused on identifying suitable zones for CA (Tesfaye et al., 2015; 
Prestele et  al., 2018). However, these studies have given limited 
consideration to the biophysical and socioeconomic factors that 
influence the performance and adoption of CA. Currently, there is a 
lack of a comprehensive evaluation indicator system for identifying 
suitable zones for CA. In this study, we  addressed this gap by 
conducting a systematic review of the biophysical and socioeconomic 
factors that influence the performance and adoption of CA. We also 
conducted interviews with key stakeholders to gather valuable 
insights. Based on this information, we  developed an evaluation 
indicator system for identifying suitable zones for CA. The evaluation 
indicator system incorporates factors utilised in previous studies by 
Tesfaye et  al. (2015) and Prestele et  al. (2018). Additionally, 
we  included additional factors such as annual mean temperature, 
annual average effective accumulated temperature, soil organic matter, 
and the topographical index. Given the importance of CA in 
mitigating and adapting to climate change, as well as the significance 
of promoting services for the adoption of agricultural technologies in 
developing countries, our evaluation indicator system also considers 
the effects of climate change and extension services.

Furthermore, the existing studies have classified variables based 
on predetermined thresholds or expert knowledge, which may not 
accurately capture the continuous variation of environmental factors 
and small-scale spatial heterogeneity (Corona et al., 2008). To address 
this limitation, we  employed fuzzy set theory, which allows for a 
gradual evaluation of parameter membership using a continuous scale 
of membership called the membership function (Burrough et  al., 
2015). Weights are crucial in fuzzy-based agricultural suitability 
evaluation, and fuzzy analytical hierarchy analysis (FAHP) is 
frequently used to estimate weights in fuzzy evaluations (Akpoti et al., 
2019). However, FAHP cannot adequately represent the interaction or 
independence of variables. Considering the interrelated nature of 
attributes such as soil, topography, and climate, accounting for the 
correlation among independent thematic layers is essential in spatial 
mapping (Thomas and Duraisamy, 2018; Mandal et  al., 2021). 
Muthoni et al. (2019) demonstrated that considering the correlation 
structure among covariates can improve the risk estimation of 
extrapolation technologies. The multi-influencing factor (MIF) 
technique fully incorporates the interaction between variables when 
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determining parameter weights (Taheri et al., 2020). The applicability 
of this method for assessing agricultural suitability has been 
successfully examined and published by Nganga et al. (2020); Mandal 
et al. (2021); Roy et al. (2023). Hence, in this study, we employed the 
MIF technique to establish weights for various influencing variables 
or thematic layers, while employing fuzzy set theory to fuzzify the 
indicators. Subsequently, spatial integration of CA suitability analysis 
and weighted overlay analysis of spatial data were conducted.

The objectives of this study were (i) to establish a scientific and 
reasonable index system for assessing CA suitability for evaluating the 
spatial suitability of CA, (ii) to create a suitability map for CA in China 
and (iii) to evaluate the reliability and robustness of the resulting map. 
The initial step involved developing a robust evaluation index system 
to assess the suitability of CA. In the subsequent phase, fuzzy logic was 
employed to normalize the indicators, while the FAHP and MIF 
techniques were simultaneously utilised to determine the weights of 
the indicators. The CA suitability index was then calculated using the 
weighted overlay analysis method. Finally, the robustness of the 
suitability results was validated through both map removal-based 
sensitivity analysis and global sensitivity analysis techniques. The 
significant novelties are:

(i) The challenges posed by spatial heterogeneity in biophysical 
and socio-economic environments on the diffusion of CA have not 
been effectively addressed. The suitability map developed in this study 
offers a partial resolution to this predicament, providing decision-
makers with a valuable tool to promote the implementation of CA in 
the most suitable environments. Additionally, the first high-resolution 
(1,000 × 1,000 m) national dataset of potential CA distribution in 
China can be utilised in various modeling studies to derive more 
realistic environmental impact assessments.

(ii) The development of a systematic and comprehensive 
evaluation index system, providing a theoretical foundation for an 
accurate evaluation of CA suitability that could be applied to other 
regions or countries.

(iii) The integration of MIF techniques and fuzzy logic methods 
to determine the suitability map for CA, with sensitivity analysis 
demonstrating the robustness and reliability of the results. This offers 
an efficient method for accurately identifying locations suitable for 
agricultural management practices.

2. Materials and methods

2.1. Construction of evaluation system

Empirical evidence and relevant literature emphasize that 
successful and widespread diffusion and sustained adoption of 
agricultural innovations require a thorough evaluation of biophysical 
and socioeconomic factors influencing performance and adoption 
(Giller et  al., 2011; Kassie et  al., 2013; Arslan et  al., 2014). 
Consequently, we  systematically compiled factors affecting the 
performance and adoption of CA, drawing on both literature studies 
and stakeholder opinions. In January 2022, we conducted interviews 
with two technical experts researching CA, four agricultural extension 
specialists actively involved in CA extension, and ten producers who 
have implemented CA. During the interview process, stakeholders 
were asked to identify key factors they believed would impact the 
performance and adoption of CA. Subsequently, they were asked to 

rate the significance of each indicator using a Likert scale. The scores 
for each indicator were then aggregated and ranked in descending 
order in an effort to identify a consensus among stakeholders 
regarding the most important factors. We  also considered data 
availability when selecting biophysical and socioeconomic variables 
to determine suitable areas for CA. In addition, we investigated the 
mechanisms by which factors influence the performance and 
acceptability of CA, as well as the action direction and scope of 
variables. We  concurrently conducted an in-depth analysis of the 
interdependencies between variables. Defining the direction and 
scope of variable effects was intended to provide a theoretical 
foundation for the subsequent fuzzification of variables, while 
examining the interaction between indicators aimed to offer a 
theoretical basis for the MIF technique described in the following 
section. Table 1 presents a comprehensive list of the variables and 
sources of spatialized data used in this study. We will detail the basis 
for the selection of indicators and their mechanisms affecting CA in 
the following sections. This aims to provide a theoretical basis for the 
normalization of indicators and the MIF technique.

2.1.1. Biophysical indicators
For examining the influence of biophysical parameters on the 

viability of CA, precipitation, temperature, humidity index (HI), 
climate change, soil texture (ST), soil erosion risk (SER), soil organic 
matter (SOM), slope (SL) and the topographical index (TPI) were 
used as proxies. It was believed that precipitation, temperature, HI, ST, 
SL, and TPI affected the performance of CA, while climate change, 
SER, and SOM affected the adoption of CA from a demand perspective.

The annual mean precipitation (AMP) was used to measure the 
impact of precipitation. The use of CA in humid regions is more likely 
to just enhance soil organic carbon, whereas CA can be particularly 
beneficial in arid areas, reaching a win-win situation of increased 
carbon sequestration and higher crop yields (Sun et al., 2020; Xiao 
et al., 2020).

The annual mean temperature (AMT) and annual average 
effective accumulated temperature (>10°C) (AEAT) were used to 
measure the impact of temperature. The performance of CA is affected 
by temperature, because CA considerably reduces soil temperature 
compared to traditional tillage, and the surface soil temperature at the 
seedling stage is decreased by CA which in turn affects crop growth 
(Jiang et al., 2022).

HI was used to measure the combined impact of precipitation and 
temperature. Under CA, the interaction between precipitation and 
temperature has a major impact on soil organic carbon and crop yield. 
Sun et al. (2020) revealed that in arid and warm regions with a HI <40, 
both soil organic carbon sequestration and crop yield increased when 
all CA components (minimum tillage or no-till, biomass mulch soil 
cover, and crop rotation) were implemented. CA has the potential to 
increase soil organic carbon in semiarid to humid regions without 
significantly impacting crop yield. In regions that are cold, humid, and 
tropical humid, CA might have negative effects.

The precipitation coefficient of variation (CV) and anomalously 
high-temperature exposure (AHTE) were used to characterize climate 
change (Asfaw et  al., 2015). Climate change will considerably 
contribute to the adoption of CA from a demand perspective, given 
CA’s vital role in climate change mitigation and adaptation. Nyanga 
et al. (2011) demonstrated a positive correlation between farmers’ 
perceptions of climate variability and CA adoption, with a greater 
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likelihood of adoption in regions with high rainfall variability. Farmers 
use CA as an important strategy to mitigate the threat of rainfall 
variability (Arslan et al., 2014). And farmers are more likely to apply 
sustainable land management practices in regions with substantial 
temperature variability (Asfaw et al., 2015).

The percentage of soil clay was used to characterize the ST. The 
effects of ST on crop yield vary depending on precipitation and 
temperature under CA. During high-rainfall seasons, the positive 
effect of increasing heat stress on the efficacy of CA diminishes as the 
clay content of the soil rises (Steward et al., 2018; Wan et al., 2018). 

TABLE 1 Weight assignments of factors based on multi-influencing factor technique and fuzzy analytical hierarchy process models.

Abbreviations References Data source

Climatic characteristics

Annual mean precipitation AMP Zheng et al. (2014); 

Xiao et al. (2020)

The National Earth System Science Data Center, National Science & Technology 

Infrastructure of China (http://www.geodata.cn)

Annual mean temperature AMT Zheng et al. (2014); 

Jiang et al. (2022)

The National Earth System Science Data Center, National Science & Technology 

Infrastructure of China (http://www.geodata.cn)

Annual average effective 

accumulated temperature 

(>10°C)

AEAT Jiang et al. (2022) Resource and Environment Science and Data Center of Chinese Academy of Science 

(https://www.resdc.cn/Default.aspx)

Humidity index HI Sun et al. (2020); 

Prestele et al. (2018)

The Resource and Environment Science and Data Center of Chinese Academy of 

Science (https://www.resdc.cn/Default.aspx)

Climatic change

Coefficient of variation of 

precipitation

CV D’Emden et al. (2006); 

Arslan et al. (2014)

The National Earth System Science Data Center, National Science & Technology 

Infrastructure of China (http://www.geodata.cn)

Anomalously high-temperature 

exposure

AHTE Maggio et al. (2022) The National Earth System Science Data Center, National Science & Technology 

Infrastructure of China (http://www.geodata.cn)

Topographical variables

Slope SL Muthoni et al. (2017) The Resource and Environment Science and Data Center of Chinese Academy of 

Science (https://www.resdc.cn/Default.aspx)

The topographical index TPI Muthoni et al. (2017) The Resource and Environment Science and Data Center of Chinese Academy of 

Science (https://www.resdc.cn/Default.aspx)

Soil variables

Soil texture ST Tesfaye et al. (2015) The Resource and Environment Science and Data Center of Chinese Academy of 

Science (https://www.resdc.cn/Default.aspx)

Soil erosion risk SER Prestele et al. (2018) The Resource and Environment Science and Data Center of Chinese Academy of 

Science (https://www.resdc.cn/Default.aspx)

Soil organic matter SOM Jiang et al. (2022) The National Earth System Science Data Center, National Science & Technology 

Infrastructure of China (http://www.geodata.cn)

Human capital

Population density PD Tesfaye et al. (2015) The National Earth System Science Data Center, National Science & Technology 

Infrastructure of China (http://www.geodata.cn)

Economic development level

GDP GDP Liu et al. (2005) The National Earth System Science Data Center, National Science & Technology 

Infrastructure of China (http://www.geodata.cn)

Night-time light data NTL Maggio et al. (2022) The National Earth System Science Data Center, National Science & Technology 

Infrastructure of China (http://www.geodata.cn)

Infrastructures

Market accessibility index MAI Prestele et al. (2018) The Open Street Map (https://extract.bbbike.org)

Agricultural extension services

The density of agricultural 

extension agencies

DAEA Wang et al. (2021) The official website of the Ministry of Science and Technology of the People’s Republic 

of China (https://www.most.gov.cn/index.html)

Cultivated land fragmentation

Cultivated land fragmentation 

index

CLFI Aryal et al. (2018); 

Ward et al. (2018)

The “2020 China Land Use Remote Sensing Monitoring Data” (https://www.resdc.cn/

data.aspx?DATAID=335)
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Under situations of high precipitation, the infiltration and retention 
of soil moisture under CA may exacerbate all production problems 
connected with waterlogging, whereas an increase in clay content may 
exacerbate waterlogging problems and lead to lower yields (Baudron 
et al., 2012; Jiang et al., 2022).

SER and SOM were identified as relevant for the viability of 
CA. The loss of fertile soils owing to soil deterioration, especially 
erosion, is one of the fundamental reasons for the development of 
no-till and reduced-tillage techniques (Kassam et al., 2009). Farmers 
that are confronted with severe agroecological constraints and land 
degradation are more likely to adopt CA (Arslan et al., 2014; Aryal 
et al., 2018). According to Govaerts et al. (2009) and Schmitz et al. 
(2015), CA could benefit agricultural producers in erosion-prone 
locations in Asia and Africa.

The SL has a significant impact on the CA yield, as yields tend to 
increase logarithmically with increasing SL (Jiang et al., 2022). CA 
lowers sediment loss on steeper areas more than on flatter landscapes 
(Gowda et al., 2003). Farmers prefer to implement soil and water 
conservation techniques on moderately to steeply sloping croplands 
over flat croplands (Kassie et al., 2013; Kotu et al., 2017). In addition, 
based on research conducted in the United States, CA was deployed 
more commonly on steeper croplands (Gowda et al., 2003).

TPI was identified as relevant for the feasibility of CA. Beehler 
et al. (2017) demonstrated a potential interaction between topographic 
position and the carbon sequestration benefits of cover crops, with soil 
organic carbon being significantly higher in cover crops on slopes and 
summits compared to that of uncovered crops; however, there was 
little distinction between cover crops and uncovered crops in 
depressions. Aside from that, Negassa et al. (2015) found that cover 
crops in depressions result in lower crop yields than on slopes and 
summits and are associated with the highest rise in CO2 emissions.

2.1.2. Socio-economic indicators
In addition to an appropriate biophysical context, the impact of a 

technology intervention depends on the adoption pathway. Socio-
economic factors typically influence regional agricultural 
development. Thus, the local socioeconomic climate is crucial for the 
acceptance and implementation of CA. Population density (PD), gross 
domestic product (GDP), night-time light data (NTL), the market 
accessibility index (MAI), extension services, and the cultivated land 
fragmentation index (CLFI) were used as proxies to assess how 
socioeconomic factors affected the viability of CA.

PD were taken into consideration. Due to population pressure-
induced land scarcity, farmers may employ land-saving and yield-
boosting strategies to increase agricultural productivity (Kassie et al., 
2013). CA is viewed as an intensive production strategy, and high PD 
is a key factor in the intensification of agricultural systems in 
developing countries (Tesfaye et al., 2015).

GDP and NTL statistics are frequently employed to quantify 
economic development levels in the economics and human 
development literature of the social sciences (Maggio et al., 2022). 
No-till seeding is more susceptible to pest and disease problems than 
conventional tillage, demanding more chemical spraying, which 
increases production costs (Rodenburg et al., 2021). Adoption of CA 
therefore requires large financial incentives, and access to financing 
for investment in agricultural equipment is easier in prosperous 
countries than in impoverished ones.

MAI was calculated by Verburg et  al. (2011) as a proxy for 
market access and transport input capacity. Improved market 

accessibility can impact the use of both input and output markets, 
the availability of knowledge and assistance from organizations 
(e.g., credit agencies), the opportunity cost of labor, and the 
availability of technology (Wollni et al., 2010). The labor and/or 
capital intensity can be  increased via market accessibility by 
improving the output-to-input price ratio. CA implementation is 
more likely when market conditions are favorable than when 
market conditions are unfavorable (Giller et  al., 2011; Tessema 
et al., 2015).

The density of agricultural extension agencies (DAEA) was 
utilised to determine the impact of extension services on CA adoption. 
Extension services serve as a bridge for agricultural innovations and 
policy directives to reach farmers in developing nations. According to 
Gwandu et al. (2014), more than 90% of farmers view public extension 
as the most trustworthy information source. In China, the primary 
providers of agricultural extension services are national agricultural 
extension agencies, research institutes, and rural professional and 
technical cooperative organizations. Agricultural research institutions 
(ARIs) and national agricultural science and technology parks 
(NASTPs) were regarded as public agricultural extension services 
(Wang et al., 2021, 2022).

CLFI was utilised to evaluate the impact of plot size on CA 
adoption. Land availability is a critical necessity for the implementation 
of CA. Moreover, CA necessitates mechanization, as large acreages 
improve the productivity of agricultural machines. According to Ward 
et al. (2018) and Aryal et al. (2018), the size of a plot significantly 
affected the adoption of no-till or minimum tillage. Maggio et al. 
(2022) also suggested that as farm size increased, so did the 
proportion of CA.

2.2. Data collection and pre-processing

An exhaustive list of sources and references for the spatial data 
(Supplementary Figures S1–S5) used to determine the RDs for CA is 
presented in Table 1. Talukdar et al. (2022) proposed using long-term 
climate data in the modeling of agricultural suitability to increase the 
robustness and trustworthiness of the results. Therefore, in this study, 
AMP and AMT were obtained by calculating the rainfall and 
temperature over a 20-year period from 2001 to 2020 in China. CV 
was measured as the standard deviation of rainfall over the 20-year 
period divided by the mean for the respective periods. AHTE was 
identified by developing a variable to measure the positive deviation 
of the maximum temperature from the historical average over the 
20-year period. SL was generated based on DEM data using the spatial 
analysis tool in ArcGIS10.6. TPI (De Reu et al., 2013) was calculated 
based on DEM data using equation (1):

 
TPI Z

n
i RZ

R
i= ∑ ∈−0

1

 
(1)

where Z0 is the elevation of the center point, R is the predetermined 
neighborhood, Zi is the elevation in the neighborhood, and n is the 
number of elevation points in the neighborhood.

Road network data (including railroads, highways, primary or 
secondary roads, tertiary roads, and large rivers) were used to 
calculate the MAI. To spatialize the role of agricultural extension 
agencies, this study gathered the distribution list of ARIs and NASTPs, 
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as well as the point-of-interest data of NASTPs and ARIs using the 
global positioning system. Hence, point-of-interest data were used to 
calculate DAEA using ArcGIS10.6.

CLFI is uscalculated based on the landscape index analysis 
method by considering the average plot size (APS), edge density (ED), 
and aggregation index (AI) (eg. Xu et al., 2020). The smaller the APS 
and the higher the ED and AI, the greater the CLFI. The calculation 
method is shown in equation (2):

 
CLFI APS w AI w ED wAPS AI ED= − × + ×[ ] + ×1

 (2)

where wAPS, wAI, and wED represent the corresponding weights of APS, 
ED, and AI, respectively. APS, ED, and AI were considered equally 
important to CLFI, (wAPS = wAI = wED = 1/3). The calculation process 
for APS, AI, and ED is based on equation (3).
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where LA and NP represent the total area of cultivated land and 
the number of patches of cultivated land in the study area, 
respectively. Pi denotes the perimeter of patch i, and P denotes the 
total perimeter of all cultivated land. All grid layers were 
resampled to a resolution of 1 km based on a tradeoff between the 
resolution of the majority of the aforementioned data, the 
appropriate degree of detail for the size of the study area, and the 
computational time.

2.3. Weight assignment using the FAHP and 
MIF technique

2.3.1. Methods for FAHP
First, on the basis of the literature review and expert opinions, the 

Delphi method was used to construct a fuzzy complementary 
judgment matrix by quantitatively comparing the relative significance 
of each aspect in the evaluation indexes, such that the elements of the 
matrix satisfy the condition aij + aji = 1. The consistency of this matrix 
was subsequently evaluated; if it failed, the initial value judgment 
matrix was updated until it satisfied the consistency requirement. In 
this study, CI and other assessment variables were consistent with an 
extent of 1%, consistency index (CI) of 0.0136, random index (RI) of 
0.0141, and CI/RI of 0.964%.

Second, the constructed fuzzy complementary judgment matrix 
was transformed into a fuzzy consistent matrix using the 
following steps:

Each row of the fuzzy complementary-judgment matrix was 
summed using equation (4):
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Next, we used equation (5) to perform a transformation:

 
r

r r
n

i j ni
i j=
−

+ =
2

0 5 1 2. , , , , ,

 
(5)

Where rij is the element of the transformed matrix.
Indicator weights were calculated. Currently, the standard 

approaches for determining ranking vectors consist primarily of the 
square root, sum normalization, and power methods. The first two 
methods only sum up each row of the Fuzzy Consistency Matrix and 
perform the square root or sum normalization method, resulting in 
substantial inaccuracy in the computation results. The power method, 
which employs iterations to obtain the ranking vector and can control 
the number of iterations while minimizing errors, has become the 
mainstream calculation method. However, the number of iterations in 
the power approach is directly influenced by the initial value. To 
optimize the starting value of the power iteration and increase the 
convergence speed, the average values of the weights acquired using the 
square root technique and sum row normalization method were used 
as the initial values of the power iteration and the target weights were 
calculated. Following the aforementioned procedure, a MATLAB code 
was created to determine the weights of each indication (Table 2).

2.3.2. MIF technique
Shaban et al. (2001) were the first to introduce and apply the 

MIF modeling technique for groundwater potential zone mapping 
within a GIS framework. In this method, the weight of each factor 
is rated based on its influence on other factors that control the 
evaluation objective. Therefore, when applying the MIF technique, 
it is essential to identify how these factors are related to one 
another and how they affect one another. Table 1 lists the main 
factors that determine the RDs for CA. Correlation analysis was 
used to identify the interrelationships between each factor and 
determine the robustness of the variables impacting CA suitability. 
The correlation matrix was obtained through a principal 
component analysis (PCA) approach in the ArcGIS software using 
a raster dataset with the same spatial resolution. Finally, the 
correlation matrix’s output was prepared using the “R” software 
(Figure 1).

The interrelations between each factor were established based on 
the correlation analysis of all elements and theoretical analysis 
described within section 2.1, combined with field observations and 
expert knowledge. The relationships are depicted in Figure 2, with 
major factors being represented by solid lines and minor factors being 
represented by dashed lines. The effects of each major and minor 
factor were assigned weights of 1.0 and 0.5, respectively (Taheri et al., 
2020; Mandal et al., 2021). Relative rates were calculated using the 
cumulative weight of both the major and minor effects (Table 2). 
These rates were subsequently used to calculate the score of each 
influencing factor, using equation (6).

 
Weight w

w w
w wi
Ma Mi

Ma Mi
( ) = +( )

∑ +( )











×100

 
(6)

Where Wi is the weight of individual factors, WMa indicates the 
major relationships among different factors, and WMi represents the 
minor relationships among variables.
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2.4. Identifying potential RDs for CA using 
fuzzy methods

Fuzzy logic approaches use fuzzy membership to represent the 
probability that a parameter belongs to a particular level rather 
than assigning the parameter to a fixed rank (Corona et al., 2008). 
In agricultural suitability evaluation, common fuzzy membership 
functions include the Euclidean distance; bell-shaped curves or 
S-function; sigmoid, parabolic, and linear functions; and Gaussian 
combination membership function (Akpoti et al., 2019). For each 
parameter, it is necessary to set its range and select a fuzzy 
membership function based on the purpose of the study. Outside 
the range, the membership value is either 0 or 1, whereas within 
the range, the fuzzy membership function is used to calculate the 
specific membership value, which varies between 0 and 1. Based 
on the literature review and theoretical analysis described in 
Section 2.1, a suitable range and convergence of each indicator in 
the study region were identified (Table 3). Based on this, the fuzzy 
membership tool in ArcGIS 10.6 was utilised to generate a fuzzy 
map for each parameter using (Supplementary Figures S6–S10). 
The final RDs for CA mapping in this paper were achieved in two 
steps. First, the influencing factors were integrated to obtain 
suitability indices for CA using the multi-factor weighted overlay 
method (equation 7). The suitability indices for CA were 
subsequently divided into five descriptive levels (unsuitable, 
marginally suitable, moderately suitable, good, and highly suitable) 
using the natural breakpoint method, and the regions with good 
and highly suitable values were the RDs for CA.

 
SICA A w

i

n
i i= ×

=
∑

1  
(7)

SICA is the suitability indices of CA, wi represents the weight 
value of each indicator, and Ai represents the membership degree of 
each indicator.

2.5. Sensitivity analyses

Sensitivity analysis can be used to evaluate the effect of changes 
in input parameters on the model simulation results (Napolitano 
and Fabbri, 1996). In this study, the map removal sensitivity 
analysis method (Lodwick et al., 1990) and the extended Fourier 
amplitude sensitivity test (EFAST) (Saltelli, 1999) were used to 
evaluate the effects of each thematic layer on the suitability 
map of CA.

2.5.1. The map removal-based sensitivity analysis
After removing one or more thematic layers from the input 

data, map removal analysis assesses the sensitivity of the final 
suitability map (Lodwick et al., 1990). Several suitability maps were 
generated based on the number of input layers. Comparing the 
new suitability index to the original index provides a direct 
measurement of the parameter’s impact. Using the following 
equation (8), the sensitivity of the final map to the absence of each 
major factor can be determined.

TABLE 2 Weight assignments of factors based on multi-influencing factor technique and fuzzy analytical hierarchy process models.

Major 
effect 
(Ama)

Minor 
effect 
(Ami)

Proposed 
relative weight 

(Ama+ Ami)

Proposed 
weight by 

MIF (%)

Proposed 
weight by 
FAHP (%)

Annual mean precipitation 4 1 5 7.407 6.022

Annual mean temperature 4 0 4 5.926 5.813

Annual average effective accumulated temperature (>10°C) 2 1.5 3.5 5.185 5.499

Humidity index 3 0.5 3.5 5.185 6.300

Coefficient of variation of precipitation 4 0.5 4.5 6.667 6.231

Anomalously high temperature exposure 5 1 6 8.889 6.231

Slope 4 0 4 5.926 5.882

The topographical index 4 0.5 4.5 6.667 6.474

Soil texture 1 2.5 3.5 5.185 6.196

Soil erosion risk 2 1 3 4.444 5.673

Soil organic matter 2 1.5 3.5 5.185 5.813

Population density 3 0.5 3.5 5.185 4.802

GDP 4 0.5 4.5 6.667 4.837

Night-time light data 3 0.5 3.5 5.185 5.743

Market accessibility index 3 0.5 3.5 5.185 6.440

Density of agricultural extension agencies 3 0 3 4.444 5.569

Cultivated land fragmentation index 4 0.5 4.5 6.667 6.474

• 67 5. 100.00 100.00
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FIGURE 1

Correlation coefficient between the multi-influencing factors controlling recommended domains for conservation agriculture. The spectrum from 
dark blue to light blue indicates the high positive to low positive relationship among different factors, while dark maroon to light maroon indicates high 
to low negative relation.

FIGURE 2

Interrelationship between the multi-influencing factors controlling recommended domains for conservation agriculture.
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where S is the sensitivity measure expressed as the variation index and 
RD and RD’ are the unperturbed (RDs for the CA index without 
removing any parameter) and perturbed (vulnerability index after 
removing one or more parameters) RDs for the CA indices, 
respectively. N and n are the numbers of thematic layers used to 
calculate RD and RD’, respectively.

2.5.2. Global sensitivity analysis using EFAST
The map removal sensitivity analysis provided interesting insights 

into the effect of modifying one model parameter at a time on the 
model’s output. Nevertheless, systematic variations in the model’s key 
parameters can significantly affect the model’s output. Therefore, it is 
advantageous to examine how the interaction of input parameters 
impacts model output. To further explore the interaction effects 
between parameters, we  applied the EFAST method to a global 
sensitivity analysis. In EFAST, the first-order indices (Si) measure the 
local sensitivity of each parameter, whereas the total indices (STi) 
represent the global sensitivity by accounting for the effects of higher-
order interactions or correlations among multiple inputs. The ranges 
of both Si and STi were between 0 and 1, with higher values indicating 
a greater influence of the parameter.

EFAST was conducted using Simlab software (Tarantola, 2005). 
The implementation of this method consisted of the four phases listed 
below: (1) Defining the parameters and their distributions. A 
Constructing a fishing net using ArcGIS10.6 to evenly extract data 
from 5,934 points in each of the parameter maps. Generating scatter 
plots based on the extracted data to determine the probability 
distribution for each parameter; (2) Performing Monte Carlo sampling 
of the distributions based on the probability distribution and range of 
values for each parameter to generate sets of crop parameters; (3) 
Writing the programs using MATLAB to invoke the CA-RD models 
based on the MIF and FAHP to read the samples, and the model 
simulation results were written to a local file according to the SimLab 

software sample output format; (4) Selecting the results using the 
SimLab software, executing Monte Carlo simulations, and using the 
post-processing procedure for uncertainty and sensitivity analysis.

3. Results

3.1. Biophysical and socioeconomic 
suitability of CA practices

Figure  3 illustrates the final biophysical suitability map of 
CA. According to the MIF, 13.70, 18.61, 22.36, 23.93, and 21.41% 
of the cultivated land were identified as unsuitable, marginally, 
moderately, good, and highly suitable for CA, respectively. 
According to the FAHP, 21.92, 23.94, and 23.53% of cultivated land 
were assessed to be moderately suitable, good suitable, and highly 
suitable, respectively. In contrast, 13.41 and 17.20% were assessed 
to be unsuitable and marginally suitable. Approximately 50% of 
China’s cultivated land had a high biophysical potential for CA 
adoption. Cultivated land with good or high biophysical suitability 
were concentrated in the Northeast China Plain, Northern arid and 
semiarid region, Huang-Huai-Hai Plain, and Loess Plateau, all 
regions with high biophysical potential. In contrast, cultivated 
lands with no or marginal biophysical suitability were concentrated 
in the Middle-lower Yangtze Plain, Yunnan-Guizhou Plateau and 
Southern China, regions with low biophysical potential 
(Supplementary Table S1; Supplementary Figure S11).

Figure  4 depicts the socioeconomic suitability map of 
CA. According to MIF, the overall socioeconomic potential of CA 
adoption in the study area was low: 36.19% of the cropland was 
socioeconomically unsuitable; 36.45% was marginally suitable; and 
18.05, 6.88, and 2.40% were moderately, good, and highly 
socioeconomically suitable, respectively. The FAHP indicates that 
32.12% of the cropland were economically unsuitable, 36.21% were 
marginally economically suitable, and only 20.02, 8.64, and 3.04% 
were economically moderate, good, and marginally suitable, 
respectively. Cropland with good or high socioeconomic suitability 
were concentrated in the Huang-Huai Plain, Middle-lower Yangtze 

TABLE 3 Range of suitability for all influence factors.

Variables The most 
suitable range

Tendencies Variables The most suitable 
range

Tendencies

Annual mean precipitation [0,1,000] − Soil erosion risk [Light Erosion, Strong 

Erosion]

+

Annual mean temperature [3,10] + Soil organic matter [2,10] −

Annual average effective accumulated 

temperature (>10°C)

[2,500,3,500] + Population density [50,600] +

Humidity index [40,100] − GDP [50,15,000] +

Coefficient of variation of precipitation [0, 0.75] + Night-time light data [0,48] +

Anomalously high temperature exposure [0,100] + Market accessibility index [0.1,0.95] +

Slope [3,7] + Density of agricultural 

extension agencies

[0,0.8] +

The topographical index [0,110] + Cultivated land 

fragmentation index

[0,0.8] −

Soil texture [25, 35] −

https://doi.org/10.3389/fsufs.2023.1219938
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Wang et al. 10.3389/fsufs.2023.1219938

Frontiers in Sustainable Food Systems 10 frontiersin.org

FIGURE 3

Biophysical suitability for conservation agriculture based on the FAHP (A) and MIF technique (B) within the cultivated land of China.

Plain, and Southern China. Cropland was socioeconomically 
unsuitable for concentration in the Northeast China Plain, Northern 
arid and semiarid region, and Loess Plateau (Supplementary Table S2).

3.2. CA recommendation domains

The final map of CA suitability was produced by superimposing 
17 fuzzy data layers (Figure 5). According to the FAHP method, while 
9.75% of cultivated land was unsuitable for CA, 21.44% was marginally 
suitable, 27.14% was moderately suitable, 27.22% was good suitable, 
and 14.45% was highly suitable. Based on the MIF technique, the 
marginally suitable, moderately suitable, good suitable, and highly 
suitable areas for CA comprised 20.80, 29.30, 27.02, and 13.90% of the 
cultivated land, while only 8.98% was unsuitable for CA. Results 
indicate that there is a considerable portion of cropland with 
significant biophysical and socioeconomic potential for CA adoption.

Although good and highly suitable areas scattered over a range of 
ecological zones, they were mainly distributed in the northern arid and 
semi-arid region, the Loess Plateau, the Huang-Huai-Hai Plain, and the 
Northeast China Plain. Most unsuitable and marginally suitable areas 
were concentrated in the Qinghai Tibet Plateau, middle–lower Yangtze 
Plain, Sichuan Basin and surrounding regions, Yunnan-Guizhou Plateau, 
and southern China (Supplementary Figure S12). The sum of good and 
highly suitable areas constituted more than 50% of the cultivated land in 
Northeast China Plain, Northern arid and semiarid regions, Huang-
Huai-Hai Plain, and Loess Plateau, whereas the sum of unsuitable and 
marginally suitable areas comprised more than 50% of all cultivated land 
in the Yunnan-Guizhou Plateau and Southern China 
(Supplementary Figure S13). The Northeast China Plain, Northern arid 
and semiarid region, Huang-Huai-Hai Plain, and Loess Plateau have 
great potential for CA adoption, whereas the Middle-lower Yangtze 
Plain, Sichuan Basin and surrounding regions, Southern China, and 
Yunnan-Guizhou Plateau have a lower potential for CA adoption.

3.3. Sensitivity of the FAHP and MIF models

As ground-based monitoring is not feasible, it is crucial to test the 
model output robustness to changes in parameters. A sensitivity analysis 
was performed for the suitability models based on the FAHP and MIF 
techniques. Table 4 lists the variations in sensitivity indices of both the 
FAHP and MIF models after removing each layer from the assessment. 
The contribution of each thematic layer to the map of suitability is 
summarized by our findings. Despite differences in the mean variation 
index, the elimination of each parameter had an effect on the output map, 
indicating that each of the thematic layers used in the FAHP and MIF 
techniques played a unique role in the suitability map. For the FAHP 
model, the highest sensitivity index was observed when the ST data layer 
was removed from the computation (0.528%). HI and SOM also had a 
significant impact on the map, while AMT, PD, NTL, GDP, TPI, and 
AMP had a moderate impact. The TPI, ST, and HI had relatively high 
standard deviations, indicating an important dispersion or a large 
variation in their sensitivity indices at the regional scale. For the MIF 
model, AHTE and AMP were identified as critical parameters in 
determining the CA suitability map. This could be ascribed to AHTE and 
AMP being assigned the highest theoretical weights. The suitability map 
was shown to be extremely sensitive to changes in HI and ST, while 
changes in PD, TPI, SOM, AMT, NTL, and GDP appeared to have a 
moderate effect. The CA suitability map was less strongly impacted by 
changes in the CLFI and CV in both the FAHP and MIF models.

The Si and the STi of the 17 parameters of the CA suitability map 
are depicted in Figure 6 based on EFAST. For the FAHP model, EFAST 
confirmed that SL, CV, TPI, AMP, and AHTE were the most influential 
parameters with a combined STi of 0.872. Their individual effects are 
all higher than 0.1 (Jin et al., 2018), whereas their interaction effects 
are all lower than their individual effects. In addition, PD and HI have 
relatively high effects on output variance, while having higher 
interaction effects. For the MIF model, the top seven parameters were 
AHTE, HI, AMP, GDP, CV, SL, and PD, with a combined STi of 1.500. 
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We discovered that six parameters were the same in the top seven for 
both the FAHP and MIF models based on STi. In addition, CLFI, 
AEAT, NTL, SER, and DAEA were identified as the least influential 
parameters based on STi for both the FAHP and MIF models. These 
results confirm the rationality of the indicator selection and the 
robustness of the model results.

SL, AHTE, TPI, CV, AMP, MAI, PD, SOM, and HI were identified 
as critical indicators in the FAHP model based on Si (>0.05; Jin et al., 
2018). The top nine FAHP model parameters were ST, HI, SOM, AMT, 
PD, NTL, GDP, TPI, and AMP as identified using the map removal 
method. The FAHP model’s significant parameters included TPI, AMP, 
SOM, HI, and PD, as identified by both the EFAST and map removal 
methods. Using the MIF model based on Si, AHTE, AMP, SL, CV, GDP, 
TPI, HI, and PD were strongly responsible for the suitability map of CA 
(>0.05; Jin et al., 2018). It can be concluded that TPI, AMP, HI, and PD 
considerably impacted the suitability for CA through both the map 
removal and EFAST approaches for the FAHP and MIF models. Our 
findings reveal that the most ubiquitously sensitive factors are TPI, 
AMP, HI, and PD. In addition, parameter interactions accounted for a 
larger part of the total variance, except for AHTE in the MIF model. The 
ratio of Si to STi for all parameters of the FAHP model was greater than 
that of the MIF model, except for AHTE, which indicates that the MIF 
model is more effective in reflecting the interactions between parameters 
than the FAHP model (Supplementary Figure S14).

4. Discussion

4.1. Indicators and methods for generating 
RDs for CA

This study developed an evaluation index system for the suitability of 
CA based on an in-depth theoretical study, stakeholder opinions, and data 
availability. For biophysical factors, in addition to the classical variables 

used in CA suitability studies (Tesfaye et al., 2015; Prestele et al., 2018), 
this study used variables that characterize climate change, such as CV and 
AHTE, highlighting the significance of CA in climate change mitigation 
and adaptation. Farmers’ adoption of CA is positively related to variations 
in precipitation and temperature (Arslan et al., 2014; Asfaw et al., 2015). 
Therefore, CV and AHTE can effectively measure the severity of the need 
for CA in various places owing to climate change adaptation. Considering 
climate change-related variables, the RDs for CA identified in this study 
can better direct extension agencies to promote CA in regions with a 
greater risk of climate change, thereby maximizing the climate adaptation 
and mitigation effectiveness of CA. From a socioeconomic perspective, 
we combined the factors used by Tesfaye et al. (2015) and Prestele et al. 
(2018), while also considering the impact of extension services, a key 
source of agricultural knowledge for farmers, on the adoption of CA, as 
the knowledge required for practicing CA has been identified as a 
significant determinant of adoption.

In contrast to Tesfaye et  al. (2015), we  did not consider the 
livestock density. Although most agricultural producers in China are 
smallholders, crop production and animal husbandry are not 
interdependent for most smallholders. In regions where there is a 
trade-off between using residues as fodder or mulch retention, 
livestock density should be incorporated into the indicator system. 
The results of the sensitivity analysis demonstrated the appropriateness 
of the measurement indicators. Our evaluation index system provides 
a theoretical foundation for the accurate evaluation of CA suitability 
and is potentially extendable to other regions or countries.

MIF techniques and fuzzy logic methods were integrated to 
identify the RDs for CA, which could provide a more reliable outcome 
for all stakeholders. Previous studies mapping RDs for agricultural 
management practices assumed that various factors had an equal 
contribution (Muthoni et al., 2017; Andrade et al., 2019; Andrieu 
et al., 2021). MIF techniques allow for the quantitative analysis of the 
interactions between indicators. We employed the MIF technique to 
derive weights for indicators based on their relative importance. Using 

FIGURE 4

Socioeconomic suitability for conservation agriculture based on the FAHP (A) and MIF technique (B) within the cultivated land of China.
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the PCA method and image analysis, a correlation matrix was created 
to precisely identify the interrelationships between indicators. The 
EFAST demonstrated that the MIF model better reflects the 
interactions between indicators than the FAHP model. Since CA 
adoption and performance are influenced by physical, economic, 
sociocultural, institutional, and environmental factors, all these 
components are interrelated (Steward et al., 2018; Swanepoel et al., 
2018; Rodenburg et al., 2021). It is obvious that the combination of 
MIF and GIS techniques is advantageous, as it provides a dependable 
outcome for identifying suitable areas for CA in heterogeneous 
environments. Additionally, fuzzy logic methods were used to 
normalize the input data. This is a valid extension to previous studies 
in which variables were classified based on thresholds (Notenbaert 
et al., 2013; Tesfaye et al., 2015; Andrade et al., 2019; Andrieu et al., 
2021). According to their level of expertise and knowledge, common 
classifications like ‘lowlands’, ‘mid-latitudes’ and ‘highlands’ may differ 
between regions or scholars (Muthoni et al., 2017). Moreover, the 
classification of a variable does not reflect the continuous variation 
and geographic heterogeneity of variables at a small scale, which 
means it does not accurately communicate the information reflected 
in the data itself. Fuzzy logic is the optimal method for resolving such 
issues, as it is specifically created to handle problems with a degree of 
uncertainty by converting data to a range between 0 and 1. Based on 
the aforementioned analysis, the integration of MIF techniques and 
fuzzy logic methods provides an effective strategy for accurately and 
successfully identifying RDs for agricultural management practices.

4.2. Implications of the research for 
out-scaling CA

Suitability maps for CA were generated by considering the 
interaction and diversity of biophysical and socioeconomic factors that 
influenced the performance and adoption of all CA components. 

Because we considered CA in its entirety, our research revealed that the 
most suitable arable land is mainly distributed in the northern arid and 
semi-arid zone, the Loess Plateau, the Yellow-Huaihai Plain, and the 
Northeast Plain (Figure 5). Notably, Xiao et al. (2020) conducted a study 
that focused on a specific CA component and found that it was more 
suitable for the southern region. However, their research also supported 
our findings as they demonstrated that straw mulching combined with 
tillage reduction, including no tillage and reduced tillage, performed 
exceptionally well in the northern areas. This alignment with the 
findings of Xiao et al. (2020) provides partial validation for our study. 
Furthermore, our investigation aligns with the discoveries of Prestele 
et al. (2018), who identified substantial potential for adopting CA in the 
Yellow and Huaihai plains, as well as in the northeastern and western 
regions of China. Consistent with Prestele et al. (2018), we found that a 
significant portion of cultivated land in these regions exhibited either 
suitability or high suitability for CA. The sensitivity analysis results 
further demonstrated the reliability of our findings.

The preceding analysis demonstrates that the results of this study 
are trustworthy and may be relied upon for decision-making. The 
spatial prioritization of zones with the greatest suitability for scaling 
out agricultural technologies rationalizes limited resources and 
reduces failure risk (Muthoni et al., 2017). The study’s suitability maps 
can help policymakers, administrators, and decision-makers target 
CA on a national scale to suitable regions where it functions best and 
can be  adopted quickly. In addition, it can help decision makers 
prioritize CA interventions across the nation. This may involve 
selecting regions with high biophysical and socioeconomic suitability 
as implementation entry sites for scaling-up CA. Additionally, the use 
of suitability indices would promote the rational investment of 
available resources to achieve the greatest prospective impact at scale. 
For example, they provide the foundation for establishing the best 
number and placement of experimental demonstration stations and 
demonstration sites at a certain scale or give a basis for decisions 
pertaining to the optimisation of existing experimental sites (Andrade 

FIGURE 5

Suitability maps of conservation agriculture based on the FAHP (A) and MIF technique (B) within the cultivated land of China.
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et al., 2019). In general, suitability maps can serve as tools to guide 
discussions with other stakeholders regarding sustainable food 
production and to design effective CA promotion strategies.

According to our analysis, 40.92% of the currently cultivated areas 
are suitable for CA, whereas 8.89% of arable land is unsuitable for 
CA. However, only 6.42% China’s arable land is currently processed 
under CA conditions, which is far less than the 13.90% land identified 
as highly suitable in this study (Figure 5). Targeting highly suitable 
cultivated areas in the near future with appropriate CA technologies 
and extension systems could increase the coverage and benefits of CA 
in China. To promote CA in suitable areas more effectively, a deeper 

exploration of the specific drivers and constraints to CA 
implementation practices is required. Our sensitivity analysis revealed 
that TPI, AMP, HI, and PD were the most ubiquitous factors 
influencing the suitability of CA. Consequently, when promoting CA, 
these factors should be carefully considered.

Similarly, the availability of more affordable credit services can 
encourage small-scale producers to engage in activities with long-term 
advantages. In regions with high biophysical suitability but low 
socioeconomic suitability, such as the Northern arid and semi-arid 
region, Loess Plateau, and Northeast Plain (Figures 3, 4), increasing 
subsidies or improving credit access mechanisms could be effective 

TABLE 4 Sensitivity index according to the map removal sensitivity analysis test.

Parameter removed Variation index (%)

Min Max Mean Standard 
deviation

FAHP MIF FAHP MIF FAHP MIF FAHP MIF

Annual mean precipitation 0 0 1.260 1.488 0.323 0.447 0.164 0.226

Annual mean temperature 0 0 1.630 2.412 0.368 0.346 0.171 0.269

Annual average effective accumulated temperature (>10°C) 0 0 1.340 1.184 0.296 0.291 0.166 0.160

Humidity index 0 0 1.830 4.470 0.468 0.408 0.234 0.287

Coefficient of variation of precipitation 0 0 0.650 0.705 0.161 0.146 0.068 0.071

Anomalously high-temperature exposure 0 0 1.390 1.883 0.212 0.452 0.163 0.239

Slope 0 0 1.570 1.514 0.293 0.293 0.108 0.109

The topographical index 0 0 2.380 2.173 0.340 0.356 0.245 0.253

Soil texture 0 0 1.960 1.466 0.528 0.406 0.226 0.173

Soil erosion risk 0 0 1.030 0.742 0.281 0.252 0.126 0.131

Soil organic matter 0 0 1.590 1.224 0.413 0.349 0.167 0.142

Population density 0 0 0.540 0.636 0.361 0.360 0.026 0.028

GDP 0 0 0.780 1.222 0.341 0.336 0.056 0.064

Night-time light data 0 0 0.880 0.710 0.343 0.343 0.066 0.066

Market accessibility index 0 0 0.990 0.761 0.298 0.298 0.108 0.104

The density of agricultural extension agencies 0 0 1.870 1.284 0.286 0.228 0.149 0.127

Cultivated land fragmentation index 0 0 1.790 1.691 0.114 0.109 0.166 0.174

FIGURE 6

Sensitivity indices for the CA suitability maps using the EFAST method. Si represents the first-order sensitivity, STi – Si indicates parameter interactions. 
Parameter abbreviations on the x-axis are listed in Table 1.
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strategies for promoting CA adoption. Farmers can avoid the financial 
restrictions of purchasing farm machinery by outsourcing machinery 
services, whereas socialized agricultural service organizations can 
circumvent the land-scale constraints of adopting CA by serving a 
larger number of farmers (He, 2021; Qing et  al., 2023). In these 
regions, supporting and guiding the development of agricultural 
socialization services is also a viable alternative.

At the same time, regions with low biophysical suitability may 
permit the implementation of one or two CA practices, but not the 
entire set. In these regions, such as the Middle and Lower Yangtze 
River Plain, the Yunnan-Guizhou Plateau, and southern China 
(Figure 3), CA practices should be adapted and redesigned to match 
the local biophysical conditions, based on a thorough knowledge of 
the local limitations and opportunities, as well as the advantages and 
disadvantages of CA in these locations. Farmers’ participation in 
research and extension networks enables CA promotion to be flexible 
and transitional by allowing them to test and adapt their components 
(Rodenburg et al., 2021). Attracting farmers to participate in the CA 
research and promotion would be an effective strategy to improve its 
adaptability in regions with low biophysical suitability.

4.3. Further research

Agricultural land management has a significant effect on the 
regional climate and determines local responses to anticipated climate 
change. CA, crop residue management, and no-till farming have 
received increasing attention in the literature on climate change 
mitigation and adaptation. However, large-scale assessments have 
largely ignored the spatially variable effects of agricultural land 
management practices, which leads to an overestimation of agricultural 
output and climate change mitigation potentials (Prestele and Verburg, 
2020). This is mostly due to the absence of spatially explicit datasets 
reflecting the implementation of this type of management. Moreover, 
CA is performed optimally when all three fundamental principles are 
adequately combined in the field (Pittelkow et  al., 2015), and the 
agricultural production’s growth potential is likely to be underestimated 
if a single CA practice is implemented (Xiao et al., 2020). We have 
generated the high-resolution (1,000 × 1,000 m) national dataset of the 
potential distribution of CA in its three practices. The maps provide 
useful input to land surface models for evaluating the impacts of 
alterations to agricultural land management strategies on production 
potential and associated climate variables.

It is well known that there is significant heterogeneity among 
various types of farmers within a certain region based on production 
goals and resource endowments (Giller et  al., 2011). Technology 
adoption may differ between large and smallholder farms situated in 
a favorable zone. As spatial information generally fails to account for 
micro-heterogeneity at the field/local level, one limitation of this study 
is that it does not consider the great diversity of smallholder farms’ 
resource endowment. More precise targeting of optimal alternatives 
that match farm characteristics and expectations is required. 
Therefore, future research should focus on coupling the two 
approaches (RDs and farm household typologies) to complement 
spatial information with household-level data. As noted in similar 
studies (Andrieu et  al., 2021), widely accessible cross-sectional 
household data could represent effective means of bridging this gap.

5. Conclusion

By conducting a thorough theoretical examination of biophysical 
and socioeconomic factors influencing CA adoption and 
performance, and incorporating stakeholder input, we developed a 
systematic and robust framework for evaluating CA suitability. 
Additionally, we introduced an innovative assessment approach that 
combines the MIF technique and fuzzy logic methods to identify 
areas suitable for CA implementation. Fuzzy logic application enables 
the normalization of biophysical and socioeconomic variables, 
effectively capturing continuous variation and geographic 
heterogeneity at a granular level. Conversely, the MIF technique 
allows for considering interrelationships among indicators when 
calculating their respective weights, leading to a more comprehensive 
analysis. To test the reliability of the results, we conducted a sensitivity 
analysis using the map removal method and EFAST. This analysis 
demonstrated that the integration of MIF techniques and fuzzy logic 
methods exhibited a high degree of flexibility in addressing variations 
in biophysical and socioeconomic conditions and facilitated a more 
accurate identification of suitable areas for CA promotion.

Applying the proposed method to China, we  generated CA 
suitability maps, revealing that 29.30 and 40.92% of cultivated land 
was moderately and quite suitable for CA, respectively. Compared 
to the current adoption rate of 6.42%, China holds significant 
potential to promote sustainable CA across more cultivated land. 
Regions with high biophysical and socioeconomic suitability can 
serve as entry points for scaling up CA. In areas with high biophysical 
suitability but low socioeconomic suitability, strategies such as 
increasing subsidies or improving credit access mechanisms could 
effectively promote CA adoption. In regions with low biophysical 
suitability, adapting and redesigning CA practices to align with local 
conditions is essential.

Our research contributes to guiding land use policy-making by 
spatially identifying areas suitable for CA implementation. This 
information enables policymakers to concentrate on appropriate 
areas for CA deployment to achieve sustainable food production and 
climate objectives, thereby informing land use policy formulation 
and execution. Moreover, our findings enhance policy 
implementation effectiveness by reducing the risk of failure in CA 
promotion, maximizing its impact and adoption rate. Implementing 
CA in suitable areas contributes to improved resource use efficiency, 
ecological environment protection, enhanced agricultural disaster 
resilience, and increased crop yield and quality. Additionally, our 
maps serve as essential inputs for ex-ante impact assessments of CA, 
as they illustrate the scale and distribution of croplands where CA 
adoption is likely, providing valuable information for evaluating the 
potential effects of wide-scale CA promotion. Overall, our study sets 
the stage for future research on land use policy and CA 
implementation, with potential applications in other regions facing 
similar challenges.
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