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Introduction: Soybean breeding in southwestern China has vastly improved 
soybean yields with the increasing demand for nutrients such as phosphorus (P) 
and nitrogen (N). This study aimed to assess the impact of soybean breeding on P 
and N utilization efficiencies.

Methods: Field experiments with split-plot experimental designs were conducted 
at two locations [Dafang (DF) and Shiqian (SQ)] in the 2019 growing season 
to determine the agronomic efficiency of P fertilizer (AEp), P and N utilization 
efficiencies, and P and N accumulation and partitioning in different soybean 
organs under 0 (P0) and 35 (P35) kg ha−1 P supply.

Results: The results showed that soybean breeding targeting high seed yield 
also improved AEp (p < 0.05) and P (p < 0.05) and N utilization efficiencies  
(p < 0.05), with the improvement in AEp associated with the high yield response 
to P supply. P and N accumulation significantly increased in pods (p < 0.05) and 
leaves (p < 0.05) but not in stems or roots with year of release, while P and N 
concentrations did not change in any organ with year of release. In addition, 
only pod dry weight significantly increased (p < 0.01) with year of release, and  
P and N partitioning increased to pods (p < 0.05) but decreased to stems (p < 0.05) 
with year of release. Correlation and PCA analyses revealed P and N utilization 
efficiencies positively correlated with P and N partitioning to pods but negatively 
correlated with P and N partitioning to stems. While P supply increased P and N 
accumulation, it reduced P utilization efficiency.

Discussion: We conclude that (1) soybean breeding improved AEp and P and N 
utilization efficiencies; (2) the increased P and N partitioning to pods but decreased 
partitioning to stems contributed to the high P and N utilization efficiencies in 
new soybean cultivars, reducing the demand for N and P; (3) P supply increased 
nutrient accumulation but reduced P utilization efficiency. These results 
highlight the significance of appropriate resource allocation among organs and 
efficient P management for enhancing nutrient utilization and reducing fertilizer 
requirements.
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1. Introduction

Soybean (Glycine max (L.) Merrill) is an important crop cultivated 
for its rich protein content (Wu et  al., 2015). However, in China, 
soybean production faces a shortfall in domestic soybean production, 
relying heavily on imports (>80%). Southwestern China, a key 
soybean production area, has undertaken numerous efforts, including 
soybean breeding, to improve soybean yields (Yang et al., 2022; Zhang 
et al., 2022). Breeding programs aimed at increasing seed yield have 
significantly improved yields (Todeschini et al., 2019; de Felipe et al., 
2020), primarily through increased biomass in China (Jin et al., 2010; 
Yang et al., 2022), United States (Cafaro La Menza et al., 2017) and 
South America (Todeschini et al., 2019). Increases in harvest index 
have contributed to soybean yield gains worldwide (He et al., 2016; 
Todeschini et  al., 2019; Tamagno et  al., 2020; Feng et  al., 2022). 
Changes in yield components, such as seed number and seed size, 
have also been associated with increased soybean seed yields in China 
(Wang et al., 2016; Qin et al., 2017; Zhang et al., 2022), United States 
(Kumudini et al., 2001), and South America (de Felipe et al., 2016). 
Genetic gains in soybean seed yield range from 0.4 to 2.2% y−1 
worldwide and about 2.0% y−1 in southwestern China (Yang et al., 
2022). Improved lodging resistance has also helped boost yields 
during soybean breeding (Jin et  al., 2010; Kumudini et  al., 2001; 
Rogers et  al., 2015; Milioli et  al., 2022). However, the impact of 
soybean breeding on P and N utilization efficiencies in southwestern 
China remains unclear.

Nutrient uptake, especially nitrogen (N) and phosphorus (P) is 
vital for crop growth and productivity (Jat and Bijay-Singh, 2014; 
Salvagiotti et al., 2021; Meng et al., 2022). Both P and N are involved 
in leaf photosynthesis, essential for crop growth, and high 
accumulation of these nutrients is important for achieving high seed 
yields (Tamagno et al., 2017) and efficient nutrient utilization (Meng 
et al., 2022). High nutrient accumulation is needed to accumulate high 
biomass (Cafaro La Menza et al., 2017), associated with high seed 
number and/or seed size and, thus, seed yield (He et al., 2019; Meng 
et  al., 2022). Thus high-yielding soybean cultivars have high N 
(Salvagiotti et al., 2008; Gaspar et al., 2017) and P accumulation (He 
et al., 2017b, 2019), requiring increased P and N uptake through root 
inputs and/or modifications to root structure characteristics, such as 
increased adventitious root density and shallow root angle (He et al., 
2017b; Lynch, 2019). Recent studies have shown that N accumulation 
increased with seed yield improvement during soybean breeding in 
Argentina (de Felipe et al., 2020) and United States (Donahue et al., 
2020). However, the relative contributions of increased biomass and 
nutrient concentration to nutrient accumulation during soybean 
breeding are poorly understood. Enhancing nutrient utilization 
efficiencies (seed yield/total nutrient accumulation) under low 
fertilizer inputs can enhance yields and potentially reduce N and P 
demands, promoting sustainable agriculture and increasing food 
security (An et  al., 2018; Wu et  al., 2019). Nutrient utilization 
efficiencies have been associated with harvest index, a key trait 
determining grain yield (Meng et al., 2022). Genetic variations in 
nutrient utilization efficiencies have been reported for various crops, 
including wheat (Ortiz-Monasterio et al., 1997; Sadras and Lawson, 
2013), maize (Ciampitti and Vyn, 2012), barley (Muurinen et al., 2006; 
Bingham et al., 2012), and cotton (Rochester and Constable, 2015). 
However, the effects of breeding on nutrient use efficiencies vary 
among different species. For example, P and N utilization efficiencies 

significantly increased in cotton cultivars released in Australia from 
1973 to 2006 (Rochester and Constable, 2015), while N utilization 
efficiency did not change with year of release in barley cultivars 
(Muurinen et al., 2006). These inconsistent results suggest that changes 
in nutrient utilization efficiency during cultivar improvement may 
be species-specific.

Understanding changes in nutrient partitioning among plant 
organs could help reduce N and P demands by directing limited 
nutrients to essential organs, such as reproductive organs. For 
example, increased seed biomass accumulation changes the N 
partitioning between other plant organs (Sinclair, 1998). Nutrient 
partitioning is associated with biomass partitioning (Donald and 
Hamblin, 1976; Tamagno et al., 2017). While soybean breeding has 
increased plant biomass (Yang et al., 2022), it remains unclear if dry 
weights and nutrient accumulation have improved in all organs, how 
P and N partitioning among organs has changed, and how P and N 
utilization efficiencies have been affected.

This study investigated changes in the agronomic efficiency of P 
fertilizer (AEp), P and N accumulation and utilization efficiencies, and 
their partitioning to different organs in a historic set of 12 soybean 
cultivars bred for high seed yield. The study was condcuted under two 
P rates [0 (P0) and 35 (P35) kg ha−1 P] at two field sites [Dafang (DF) 
and Shiqian (SQ)] during the 2019 growing season. The hypotheses 
tested were: (1) soybean breeding has increased P and N utilization 
efficiencies with seed yield; (2) enhanced P and N utilization 
efficiencies are associated with high P and N partitioning to pods.

2. Materials and methods

This study evaluated a historic set of 12 soybean cultivars 
(released from 1995 to 2016, Supplementary Table S1) grown by local 
farmers (past and present) at two field sites [Shiqian (SQ) and Dafang 
(DF)] in Guizhou Province, China, in 2019. The cultivars were 
collected from three provinces in southwest China (Sichuan, Yunnan, 
and Guizhou), where soybean breeding focused on increasing seed 
yield. All cultivars can grow in Guizhou province, with maturity 
times ranging from 115 to 121 days after sowing (DAS) for SQ and 
124 to 130 DAS for DF. The soil pH, total P, and plant available soil 
P were 6.8, 0.77 g kg−1 and 33 mg kg−1 for SQ, and 6.7, 0.92 g kg−1 and 
33 mg kg−1 for DF, respectively. The mean temperature and 
precipitation were 849 mm and 20.2°C for SQ and 573 mm and 
23.6°C for DF, respectively (Supplementary Figure S1). The split-plot 
design had two P levels [zero P (P0) and 35 kg ha−1 (P35) applied as 
calcium superphosphate] as the main plots, with cultivars as the 
sub-plots. Each cultivar in each main plot had three replicates, for a 
total of 72 plots at each site. Each plot was 12.8 m2 (3.2 m wide × 4 m 
long), with rows spaced 0.4 m apart. The straight line between the 
two main plots was 2 m. Two days before sowing, N and K fertilizers 
were applied to all plots as urea (75 kg N ha−1) and K2SO4 
(40 kg K ha−1) according to our previous study (Zhang et al., 2022), 
with the same N and K rates used at both experimental sites. The 
fertilizers were broadcast and mixed into the soil using a rotary 
cultivator. The seeds were sown (April 2019) at about 5 cm depth 
with a 40 cm row spacing. After germination, each plot was thinned 
to 18 seedlings per m2. No irrigation was applied. Weeds were 
removed by hand, with pesticides used as needed. The upper 20 cm 
of soil was collected to analyze the basic nutrient status before 
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applying the fertilizer. Weather data were collected from weather 
stations near the field sites (straight-line distance ranged from 
0.5–19.2 km).

2.1. Plant sampling at the R6 growth stage 
in 2019

Plant samples were harvested at the R6 stage when the pods 
contained full-sized green beans on one of the four uppermost nodes 
with a completely unrolled leaf (Fehr et al., 1971). For each plot, about 
0.5 m2 of soybean plants were cut just above the soil surface, placed in 
paper bags, transported to the laboratory, divided into pods, leaves, 
and stems, and oven-dried at 60°C for 72 h. After drying, the samples 
were weighed, stored, and later used to determine P and N 
concentrations. After shoot removal, a standard spade was used to 
excavate roots to 20 cm depth (depth of most roots), which were 
washed carefully to remove root-attached soil, oven-dried at 80°C for 
48 h, and weighed. The root samples were stored for later 
determination of P and N concentrations.

2.2. P and N concentrations, accumulation, 
and partitioning

P and N concentrations were measured according to He et al. 
(2019). All samples were ground to a fine powder using an Ultra 
Centrifugal Mill (ZM200, Retsch, GmbH, Düsseldorf, Germany). 
Samples (~0.2 g) were digested with H2SO4-H2O2 to determine total N 
concentration using the Kjeldahl method (SKD-800, Shanghai Peiou 
Analytical Instruments Co. Ltd., Shanghai, China) and total P 
concentration using the molybdenum–stibium anti-
spectrophotometry method (UV-1800 Spectrophotometer, Shanghai 
Meipuda Instrument Co. Ltd., Shanghai, China). P (N) accumulation 
in pods (stems, leaves, roots) was obtained by multiplying pod (stem, 
leaf, root) P (N) concentration by pod (stem, leaf, root) DW. Total P 
(N) accumulation was obtained by summing P (N) accumulation in 
different plant parts. P (N) partitioning to pod (stem, leaf, root) = P 
(N) accumulation in pod (stem, leaf, root)/total P (N) accumulation 
(Feng et al., 2021). The P and N utilization efficiencies calculated as 
(Meng et al., 2022):

P utilization efficiency = seed yield/total P accumulation.
N utilization efficiency = seed yield/total N accumulation.

2.3. Agronomic efficiency of P fertilizer

Two center rows (0.8 m × 4 m = 3.2 m2) in each plot were harvested 
at physiological maturity (He et al., 2017a) before placing the pods 
into bags, transporting them to the laboratory, and oven-drying at 
60°C for 72 h. Dried pods were threshed by hand to remove the seeds, 
which were weighed to calculate seed yield (seed weight/harvest area). 
The agronomic efficiency of P fertilizer (AEp) and yield response to P 
were calculated as:

AEp = (seed yield at P35 − seed yield at P0)/P fertilizer 
application rate.

Yield response to P = (seed yield at P35 − seed yield at P0)/seed 
yield at P0.

2.4. Statistical analyses

A three-way analysis of variance (ANOVA) analyzed the effects 
of genotype, P level, location, and their interactions on P and N 
utilization efficiencies, pod, leaf, stem, and root dry weights, P and 
N concentrations, and P and N accumulation, and P and N 
partitioning to pod, leaves, stems, and roots using the GenStat 19.0 
statistical package (VSN International Ltd., Rothamsted, England). 
Changes in the measured parameters with year of release were fitted 
with a linear model for each site. The linear or sigmoid model was 
used to evaluate the relationships between N utilization efficiency 
and N accumulation and partitioning to pods, leaves, stems, and 
roots and between P utilization efficiency and P accumulation and 
partitioning to pods, leaves, stems, and roots. All data determined in 
the field experiment were combined to perform principle component 
analysis (PCA) with Origin (Pro 2023, Origin Lab, Northampton, 
MA, United States).

3. Results

3.1. P and N utilization efficiencies and the 
agronomic efficiency of P fertilizer

Soybean genotype and experimental site significantly affected P 
and N utilization efficiencies, while P level only affected P utilization 
efficiency (Supplementary Table S2). Genetic variation in P and N 
utilization among the 12 soybean cultivars occurred (p < 0.001). The 
P utilization efficiencies at Shiqian (SQ) ranged from 92–150 g g−1 
(average 121 g g−1) under 35 kg P ha−1 (P35) supply and 115–152 g g−1 
(average 137 g g−1) under 0 kg P ha−1 (P0) supply, and at Dafang (DF) 
ranged from 73–117 g g−1 (average 100 g g−1) under P35 and 
90–138 g g−1 (average 116 g g−1) under P0 (Figure  1). P supply 
significantly decreased P utilization efficiency at SQ (19%; p < 0.001) 
and DF (16%; p < 0.001; Supplementary Table S2; Figures 1A,B). The 
yield response to P application ranged from 5.5–32.7 at SQ and 
7.8–39.5 at DF (Figure 1).

3.2. P and N concentrations, accumulation, 
and partitioning to different plant parts

Soybean genotype, P level, experimental site, and their interactions 
significantly affected P and N concentrations in pods, leaves, stems, 
and roots, genotype and P level significantly affected leaf and pod dry 
weights, and genotype and experimental site significantly affected root 
and stem dry weights. For genotypes, root dry weights ranged from 
0.95 to 2.78 g plant−1 (p < 0.001), and stem dry weights ranged from 
5.77 to 9.45 g plant−1 (p < 0.001). Average root dry weights were 1.8 g 
plant−1 at SQ and 1.6 g plant−1 at DF (p < 0.001), and average stem dry 
weights were 6.7 g plant−1 at SQ and 7.2 g plant−1 at DF (p < 0.05; 
Supplementary Table S2). P supply significantly increased pod (18%, 
p < 0.001) and leaf (16%, p < 0.001) dry weights but did not affect stem 
or root dry weights (Supplementary Table S2; Figure 2). Only soybean 
genotype and P level affected pod and leaf P accumulation 
(Supplementary Table S2). P supply increased P accumulation in pods 
(25%, p < 0.001), leaves (31%, p < 0.001), and stems (69%, p < 0.001; 
Supplementary Table S2; Figures 3A,C,E).
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Genetic variations in nutrient partitioning to different plant 
parts occurred (p < 0.001), which were significantly affected by 
soybean genotype, P level, experimental site, and their interactions 
(Supplementary Table S2). Pods had the highest P and N 
partitioning (average 47% for P, 51% for N), while roots had the 
lowest (3.5% for P, 1.3% for N; Figure 4). P supply decreased P and 
N partitioning to pods (9.4% for P, p < 0.001; 6.9% for N, p < 0.001) 
but increased P partitioning to stems (18.5% for P, p < 0.001; 5.9% 
for N, p < 0.05) (Supplementary Table S1; Figures 4A,E). SQ had 
significantly higher N partitioning to pods than DF (p < 0.001), and 
the reverse was true for N partitioning to stems (p < 0.001; 
Figures 4B,F).

3.3. Correlation analysis

P utilization efficiency positively correlated with pod P 
accumulation (r = 0.44, p = 0.009) but negatively correlated with 
leaf (r = −0.52, p < 0.001) and stem (r = −0.62, p < 0.001) P 
accumulation (Figure  5). N utilization efficiency positively 
correlated with pod N accumulation (r = 0.55, p < 0.001) but 
negatively correlated with stem P accumulation (r = −0.58, 
p < 0.001; Figure  6). P and N utilization efficiencies positively 

correlated with pod P (r = 0.59, p < 0.001) and N (r = 0.51, p < 0.001) 
partitioning but negatively correlated with stem P (r = −0.50, 
p < 0.001) and N (r = −0.50, p < 0.001) partitioning, respectively 
(Figures 5, 6). The principal component analysis showed a clear 
separation into two groups related to P rate (Figure 7). PC1 and 
PC2 represent 52.7% of the variation, with P and N utilization 
efficiencies, pod and root P and N partitioning, pod N 
concentration, and root dry weight tending to increase under P0. 
In contrast, P and N accumulation, leaf and pod dry weights, and 
leaf and pod P and N accumulation tend to increase under P35.

3.4. Changes in AEp and P and N 
accumulation, partitioning, and utilization 
efficiencies with year of release

P and N utilization efficiencies significantly (p < 0.05) increased 
from 1995 to 2016 under both P levels at both sites 
(Supplementary Table S2; Figures 1A,B). The yield response to P 
fertilizer significantly increased with year of release (p = 0.04) at SQ 
(Figure 1C). The agronomic efficiency of P fertilizer (AEp) also 
significantly increased (p = 0.04 for DF and p = 0.016 for SQ) during 
soybean breeding from 1995–2016 (Figure  1D), ranging from 

FIGURE 1

Changes in soybean (A) P and (B) N utilization efficiencies with year of release under 0 (P0) and 35 (P35) kg  ha−1 P supply and changes in (C) yield 
response to P and (D) agronomy efficiency of P with year of release at Shiqian (SQ) and Dafang (DF). *p  <  0.05, **p  <  0.01, and ***p  <  0.001.
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2.4–23.4 at SQ and 3.3–21.3 at DF. Pod dry weight significantly 
increased (p < 0.05) with year of release at SQ and DF under P35 
and P0, while leaf, stem, and root dry weights did not change 
(Figure 2). P and N concentrations in pods, leaves, stems, and roots 
did not change with year of release (Figure 2). Pod P (p < 0.01) and 
N (p < 0.05) accumulation significantly increased with year of 
release (Figure  3). Leaf P accumulation significantly increased 
(p < 0.05) with year of release; leaf N accumulation had a weak 
positive correlation (p = 0.07) with year of release under P35 
(Figures  3C,D). Stem and root P and N accumulation did not 

change with year of release (Figures 3E–H). P and N partitioning 
significantly increased to pods (p < 0.05) but decreased to stems 
(p < 0.05) with year of release (Figure 4). P and N partitioning to 
leaves and roots did not change with year of release (Figure 4).

4. Discussion

The newer soybean cultivars exhibited higher seed yields and 
greater yield responses to P application than older cultivars. The 

FIGURE 2

Changes in soybean (A) pod, (B) leaf, (C) stem, and (D) root dry weights and (E), (I) pod, (F), (J) leaf, (G), (K) stem, and (H), (L) root P and N 
concentrations with year of release under 0 (P0) and 35 (P35) kg  ha−1 P supply at Shiqian (SQ) and Dafang (DF). **p  <  0.01 and ***p  <  0.001.
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higher seed yields of newer cultivars are the result of soybean 
breeding efforts worldwide (Jin et al., 2010; Todeschini et al., 2019; 
de Felipe et  al., 2020; Yang et  al., 2020, 2022). The greater yield 
response to P application in the newer cultivars can be attributed to 
the significant yield improvements compared to older cultivars under 
P supply, leading to improved agronomic efficiency of P fertilizer 
(AEp). In maize, increased yield with N fertilizer supply was 
associated with increased grain numbers (Liu et al., 2022), indicating 
the important role of yield components in the yield response to 
fertilizer supply, such as seed number and seed size (Kumudini et al., 

2001; de Felipe et al., 2016; Wang et al., 2016; Qin et al., 2017; Zhang 
et al., 2022). Understanding the underlying mechanisms responsible 
for soybean’s high response to P supply, particularly related to yield 
components, would be valuable for future research.

Soybean breeding simultaneously increased yield and P and N 
accumulation, consistent with similar studies in Argentina (de Felipe 
et  al., 2020) and United  States (Donahue et  al., 2020). High N 
accumulation positively correlated with leaf and pod biomass 
(Figure 7), indicating that increased soil N uptake sustains leaf and 
seed development (He et al., 2019; Jin et al., 2022). Similarly, high P 

FIGURE 3

Changes in soybean (A), (B) pod, (C), (D) leaf, (E), (F) stem, and (G), (H) root P and N accumulation with year of release under 0 (P0) and 35 (P35) kg  ha−1 
P supply at Shiqian (SQ) and Dafang (DF). *p  <  0.05, **p  <  0.01, and ***p  <  0.001.
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accumulation may be associated with root traits associated with P 
acquisition (He et  al., 2017b, 2021; Lynch, 2019). While soybean 
breeding did not change root dry weights, which did not correlate 
with P or N accumulation (Figure 7), other root traits, such as shallow 
root growth angle, could improve P uptake (Lynch, 2019) and 
contribute to P and N accumulation.

In this study, biomass accumulation increased during soybean 
breeding, consistent with other studies (Jin et al., 2010; Todeschini et al., 
2019; de Felipe et al., 2020; Yang et al., 2022), which could play a role in 
increasing nutrient accumulation. Soybean breeding did not change P 
and N concentrations despite the increase in biomass, suggesting that 
the increase in biomass accumulation primarily drives P and N 

accumulation, which is influenced by factors such as the duration after 
flowering (Yang et al., 2022) and/or high photosynthesis rate (Todeschini 
et al., 2019). However, it is important to consider the role of soil nutrient 
status in nutrient accumulation. For example, DF with high soil-
available P had higher P and N concentrations than SQ with low soil-
available P, which were associated with the high leaf and stem P and N 
accumulation driven by the high stem and leaf biomass. Thus, soil 
nutrient status can increase nutrient accumulation by increasing 
biomass accumulation.

P and N accumulation increased with P supply. In addition, P 
and N accumulation positively correlated with leaf and pod dry 
weights (Figure  7) without diluting P and N concentrations, 

FIGURE 4

Changes in soybean (A), (B) pod, (C), (D) leaf, (E), (F) stem, and (G), (H) root P and N partitioning with year of release under 0 (P0) and 35 (P35) kg  ha−1 P 
supply at Shiqian (SQ) and Dafang (DF). *p  <  0.05, **p  <  0.01, and ***p  <  0.001.
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indicating that biomass accumulation with P supply primarily drove 
pod and leaf P accumulation. Pods had significantly higher genetic 
gains in P and N accumulation (average 26.9 mg m−2  y−1 for P, 
239 mg m−2 y−1 for N) than leaves (11.9 mg m−2 y−1 for P, 91 mg m−2 y−1 
for N), demonstrating that pods contributed more to P and N 
accumulation than leaves. The high genetic gains of pod P and N 
accumulation were also associated with the high demand for P and 
N during seed development; furthermore, the partitioning of P and 
N from leaves to seeds also contributed to pod P and N accumulation 
(Gaspar et al., 2017). Thus, enhanced pod P and N accumulation was 
associated with high seed numbers, a key driver for seed yield 

improvement during soybean breeding (Jin et al., 2010; He et al., 
2019; Yang et al., 2022).

4.1. Nutrient partitioning and utilization 
efficiency

Soybean breeding improved P and N utilization efficiencies, 
supporting our first hypothesis. Seed yield had a higher genetic gain 
(average 2.0% y−1) than P (1.2% y−1) or N accumulation (1.0% y−1), 
contributing to improved P and N utilization efficiencies. Similar 

FIGURE 5

Relationship between P utilization efficiency and (A) pod P accumulation, (B) leaf P accumulation, (C) stem P accumulation, (D) root P accumulation, 
(E) pod P partitioning, (F) leaf P partitioning, (G) stem P partitioning, and (H) root P partitioning under 0 (P0) and 35 (P35) kg  ha−1 P supply at Shiqian 
(SQ) and Dafang (DF).
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improvements in P and N utilization efficiencies have been observed 
in other crops, such as wheat (Ortiz-Monasterio et al., 1997; Sadras 
and Lawson, 2013), cotton (Rochester and Constable, 2015), and rice 
(Meng et  al., 2022). However, it is worth noting that P and N 
utilization efficiencies can vary among cultivars and crops (Dhugga 
and Waines, 1989; Ortiz-Monasterio et al., 1997; Ciampitti and Vyn, 
2012), as observed in the soybean cultivars used in this study. Soybean 
had higher P and N utilization efficiencies (74–152 g g−1 for P, 
15–22 g g−1 for N) than cotton (65–80 g g−1 for P, 12–15 g g−1 for N; 
Rochester and Constable, 2015), but lower P and N utilization 
efficiencies than rice (159–180 g g−1 for P, 45–54 g g−1 for N; Meng 
et al., 2022), indicating room for improvement in soybean. The P 

supply reduced the P utilization efficiency (Figure 7) at both sites, 
possibly because the rate of seed yield improvement (16.8%) with P 
supply was lower than the rate of P accumulation (33.2%). Despite the 
impact of soybean breeding on P utilization efficiency, the PUE was 
significantly affected by the interaction of genotype and P rate 
(p < 0.01). Moreover, SQ with low plant-available soil P had a 
significantly higher P utilization efficiency than DF with high soil-
available P, highlighting the importance of soil P status and P 
management practices in regulating P utilization efficiency. One 
possible explanation for the difference between the two sites is the 
lower average P accumulation at SQ (1.8 g m−2) than DF (2.2 g m−2) but 
similar seed yield.

FIGURE 6

Relationship between N utilization efficiency and (A) pod N accumulation, (B) leaf N accumulation, (C) stem N accumulation, (D) root N accumulation, 
(E) pod N partitioning, (F) leaf N partitioning, (G) stem N partitioning, and (H) root N partitioning under 0 (P0) and 35 (P35) kg  ha−1 P supply at Shiqian 
(SQ) and Dafang (DF).
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In this study, P and N partitioning significantly increased to 
pods but decreased to stems during soybean breeding, with this 
trend consistent across the two P rates tested. Decreased nutrient 
partitioning to low-demand organs such as stems and increased 
partitioning to seeds can enhance yield (Weiner, 2019). This 
trade-off between P and N partitioning in pods and stems during 
soybean breeding was important for improving nutrient utilization 
efficiencies (Ciampitti and Vyn, 2012, 2013). The increase in P and 
N partitioning to seeds is likely associated with the increase in seed 
number, the key driver of yield improvement during crop breeding 
(Jin et al., 2010; Qin et al., 2017; Meng et al., 2022; Zhang et al., 
2022). More seeds require increased P and N to support seed 
development and quality, including protein formation. Thus, 
increasing seed yield through higher seed numbers could increase 
P and N partitioning to seeds and subsequently improve P and N 
utilization efficiencies. In addition, nutrient partitioning may 
be related to dry matter partitioning, as indicated by the increased 
harvest index (pod harvest index) and decreased dry matter 
partitioning to stems during soybean breeding (Yang et al., 2022). 
On the other hand, the trade-off between P and N partitioning to 
pods and stems could reduce P and N demand, as supported by the 
lower genetic gains for P (average 1.2% y−1) and N accumulation 
(1.0% y−1) than seed yield (2.0% y−1). Thus P and N partitioning can 
help improve P and N utilization efficiencies, supporting our 
second hypothesis.

5. Conclusion

This study evaluates whether soybean breeding increased P and 
N utilization efficiencies in southwestern China. We confirmed 
that selecting for high seed yield during soybean breeding 
improved P and N utilization efficiencies, attributed to increased P 
and N partitioning to pods while reducing their partitioning to 
stems. The increased P and N accumulation in pods, driven by pod 
biomass, played a significant role in the overall P and N 
accumulation during soybean breeding. We conclude that soybean 
breeding increased P and N utilization efficiencies by regulating P 
and N accumulation and partitioning.
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FIGURE 7

The principle component analysis (PCA) of the measured 
parameters in a historic set of 12 soybean cultivars under 0 (P0) 
and 35 (P35) kg P ha−1 supply in two experiment sites. PUE, P 
utilization efficiency; NUE, N utilization efficiency; PDW, pod dry 
weight; LDW, leaf dry weight; SDW, stem dry weight; RDW, root 
dry weight; PPC, pod P concentration; LPC, leaf P concentration; 
SPC, stem P concentration; RPC, root P concentration; PNC, 
pod N concentration; LNC, leaf N concentration; SNC, stem N 
concentration; RNC, root N concentration; PPA, pod P 
accumulation; LPA, leaf P accumulation; SPA, stem P 
accumulation; RPA, root P accumulation; PA, P accumulation; 
PNA, pod N accumulation; LNA, leaf N accumulation; SNA, stem 
N accumulation; RNA, root N accumulation; NA, P accumulation; 
Pod PP, pod P partition; Leaf PP, leaf P partition; Stem PP, stem P 
partition; Root PP, root P partition; Pod NP, pod N partition; Leaf 
NP, leaf N partition; Stem NP, stem N partition; Root NP, root N 
partition.
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