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An intelligent wine detection and traceability method based on infrared spec-
troscopy and machine learning is proposed, in order to meet the needs of online 
rapid nondestructive testing of wine. On the basis of extracting infrared spectrum 
of wine, the principal component analysis (PCA) – support vector machine 
(SVM) model was modified by chemometrics. A total of 300 grape wine samples 
were collected from six production areas. The composition of the samples was 
analyzed by ultra performance liquid chromatography-quadrupole time-of-
flight mass spectrometry (UPLC-Q-TOF-MS). According to the experimental 
results, indole, sulfacetamide and caffeine were selected as characteristics 
of different origins. Near infrared spectral wavelengths of wine samples were 
compressed between 900 and 2,500 nm. The ranges of 1,000 nm ~ 1,400 nm and 
1,500 nm ~ 1800 nm were selected for PCA principal component analysis and key 
spectral wavelengths were extracted. The unsupervised learning model of SVM is 
used to classify and identify key spectral wavelengths. The experimental results 
show that the algorithm has higher classification accuracy than traditional PCA-
LDA, PCA and other algorithms. The classification accuracy of the algorithm is 
improved from 98.3 to 99.75%. The improved PCA-SVM algorithm can achieve 
fast and loss-less source tracing of wine.
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1. Introduction

Wines with unique geographic markers are favored by consumers and recognized by the 
market. Wine tracing technology is increasingly concerned with the improvement of people’s 
living standards (Tomic et al., 2017). However, traditional wine traceability detection has some 
problems, such as high price, complex operation and time-consuming analysis. Therefore, the 
development of the wine industry urgently needs to find a convenient and high-precision 
method to detect wine.

At present, the technology of wine origin tracing mainly depends on the chemical detection 
method. Based on the results of the characteristic components detected by gas chromatography 
or liquid chromatography, the statistical relationship between the origin and the characteristic 
components is established, in order to realize the wine origin identification (Souza Gonzaga 
et al., 2020). For example, Sudol et al. (2022) used two-dimensional gas chromatography-time-
of-flight mass spectrometry to analyze the volatile components of five white ‘Grillo’ wines 
originating in Sicily, found the characteristic components that can characterize the geographical 
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differences, and traced their origins. Šorgić et  al. (2022) analyzed 
principal components of volatile compounds in Cabernet Sauvignon 
and Merlot wine samples and found that these compounds can 
be  used for wine region identification. Pan et  al. (2022) used the 
UPLC-QTOF-MS method to screen a total of 86 metabolites in 
positive and negative ion modes as markers for wine origin 
differentiation. Wang et  al. (2023) used LC-IM-QTOF-MS and 
multivariate chemometrics methods to analyze the difference 
components in 114 Chinese production areas and wine samples for 
the division of origin and year.

The above chemometric methods have rigorous experimental 
conditions and are not suitable for large-scale range and sample 
detection. With the continuous development of spectral technology, 
the purpose of fast and convenient origin tracing can be achieved, by 
collecting spectra of grapes from different origins and finding the 
characteristic peaks of grapes from different origins (Kljusurić et al., 
2022). In this respect, Daniel et al. (2015) established a discriminant 
model for 64 white wine samples from Australia and New Zealand by 
spectroscopy, with an accuracy of 86%. Hu et al. (2019) traced the 
origin of Cabernet Sauvignon wine by principal component analysis, 
SIMCA spectral modeling and discriminant analysis of infrared 
spectrum data from Australia, Chile and China.

In the above studies, although the spectral detection method is 
simple and easy to operate, it is still a difficult point to find the 
characteristic peaks from the massive spectral data. The detection 
accuracy is easily affected by environmental noise and cannot 
be improved. For this reason, an improved PCA-SVM algorithm is 
proposed based on a large number of experiments. First, the algorithm 
analyzes the near infrared spectral data collected from 900 to 
2,500 nm. Then, the major chemical components corresponding to the 
spectral differences were found. Finally, the final confirmation was 
carried out using Ultra High Performance Liquid Chromatography-
Quadrupole Time of Flight Mass Spectrometry (UPLC-Q-TOF-MS, 
Q-TOF) chemometrics. Based on the results of Q-TOF experiment, 
the input spectral range is compressed, the sensitive bands of the 
spectrum are selected for spectral eigenvector extraction, and the 
origin trace principal component spectrum is formed. The wine origin 
can be traced to a lower cost, more practical and more accurate source, 
by clustering the characteristic spectra of the principal components in 
the feature space.

2. Establishment of improved 
PCA-SVM spectral analysis model

The improved PCA-SVM model for feature extraction and origin 
traceability analysis of the collected near-infrared spectra of wine is 
shown in Figure 1.

The model uses the Principal Component Analysis (PCA) 
algorithm (Kandi and Linton, 2020) to filter the characteristic bands 
of near infrared spectral data. The goal of the PCA algorithm is to find 
components that reflect the main characteristics of things, compress 
the size of the original data matrix, reduce the dimensionality of the 
eigenvectors, and select the smallest dimension to summarize the 
most important features. The data space is compressed, and the 
features of multivariate data are visually represented in 
low-dimensional space, by principal component analysis. It can 
remove noise and redundancy, extract the main feature information 

from the data, and realize data dimension reduction (Usman Ali et al., 
2017). PCA algorithm mainly includes standardization, covariance 
matrix, feature vector extraction, etc. The algorithm normalizes the 
input spectral data. The eigenvectors of the normalized data covariance 
matrix are calculated, and the n-dimensional eigenvectors are mapped 
to a brand new m-dimensional eigenvector with orthogonal 
properties. Keep the k eigenvectors that contribute the most to the 
m-dimensional eigenvectors to reduce the dimension of 
multidimensional data (Han et al., 2022). The main calculation steps 
of the algorithm are as follows:

 1. Matrix standardization, calculating the eigenvectors and 
eigenvalues of co-variance matrix S;

 2. Projecting data into the space generated by the eigenvectors to 
find the principal components.

The dimension-reduced feature data from PCA is used as a new 
input and fed into the Support Vector Machines (SVM) model for 
classification (Maldonado et al., 2018). SVM belongs to supervised 
machine learning, which can transform the non-linear data of 
principal component analysis into a linear classification in the feature 
space. Using a non-linear mapping, the data is mapped to the feature 
space, a linear learner is used in the feature space, and the classification 
function is distorted as formula (1):
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The mapping of φ from the input space to a characteristic space 
in the formula; Then a linear learner is used to classify (Bzdok et al., 
2018) in the feature space. The kernel function of the whole algorithm 
is trained using Gaussian kernel (box constraint level: 0.25, kernel 
scale mode: 998.67, standardize data: false), formula (2) as 
SVM algorithm.
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(2)

Vector x  denotes the samples in the original space, and ϕ x( ) 
denotes the new vector after x is mapped to the eigenvalue space. Then 
the segmented hyperplane corresponding to the non-linear 
SVM is: f x x b( ) = ( ) +ωϕ .

In order to ensure the accuracy of the final results, the algorithm 
uses k-fold cross-validation. The training set samples are divided into 
k groups on average. Each k-1 fold training is performed, and the 
other fold is used for validation. Each set of data is used as validation 
data to validate the recognition rate of the model and make up for the 
shortage of small sample training data (Veluchamy and 
Karlmarx, 2017).

On this basis, the model input is corrected by chemometrics, and 
the near infrared spectral data collected from 900 to 2,500 nm are 
analyzed. The main components corresponding to the spectral 
differences are found, and their corresponding spectral positions are 
confirmed by ultra-high performance liquid chromatography-
quadrupole time-of-flight mass spectrometry (Q-TOF), and the whole 
spectrum is clipped. Near infrared spectroscopy data are collected for 
the wine samples to be  measured according to their origin. The 
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characteristic wavelength range is reduced, the weights of the analyzed 
spectral signals are strengthened, the proportion of useful signals is 
increased, and the improved PCA-SVM model based on the wine near 
infrared spectroscopy is implemented for origin identification.

3. Materials and methods

3.1. Wine sample collection

In order to verify the classification accuracy of the improved 
PCA-SVM model, wines from different origins are selected for 
relevant experiments and results analysis. In order to ensure that the 
results of the experiment are as free as possible from external factors, 
the wine samples used in the experiment are finished wines made 

from Cabernet Sauvignon and aged in oak barrels through 
temperature controlled fermentation. The selected wine samples are 
from six regions where it is difficult to trace the origin through tasting. 
The samples shown in Figure 2 are from six different production areas, 
namely, Chile and Turpan (Xinjiang), eastern foot of Helan mountain 
in Ningxia (Hongsibu and Zhenbeibu), Changli (Hebei), and Yantai 
(Shandong). There are 50 samples in each production area, totaling 
300 samples.

3.2. Wine near infrared spectrum collection 
device

The NIR test platform is composed of NIR2500 (Ideaoptics 
Instruments Co., Ltd., China), HL2000-12 halogen light source, 

FIGURE 1

Improved PCA-SVM model.

FIGURE 2

Schematic diagram of wine sample source. (A) Wine region map of China (Shandong, Hebei, Xinjiang and Ningxia). (B) Wine region map of abroad 
(Chile).
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RIB-600-NIR direct optical fiber, R4 color dish spectral measuring 
stand and Morpho spectral acquisition software. The RIB-600-NIR 
direct optical fiber is used for optical transmission. The wave-length 
range of the spectrometer is 900 nm ~ 2,500 nm, the signal-to-noise 
ratio is 7,500:1, and the integration time is 1 ms ~ 120 s.

The experiment is carried out in a constant temperature and 
humidity environment. The wine samples are opened after 10 min’ 
rest, placed in a 10 mm quartz cell, and the wine samples are collected 
using a near-infrared spectroscope. The wavelength range of the near-
infrared spectrum collected by the wine samples ranged from 900 nm 
to 2,500 nm, and the acquisition time of each spectral scan is 10 s. The 
spectrum collection time of all samples is 50 min in total.

3.3. UPLC-Q-TOF-MS experimental method

The Q-TOF equipment used in the experiment is Agilent High 
Resolution Liquid Mass Spectrometry (HRLC-MS) system (Agilent 
Technologies, Santa Clara, CA, United States). The main components 
of wine are extracted and analyzed by MassHunter B.06.00 (Agilent 
Technologies, Inc. 2006–2019, Santa Clara, CA, United States) and 
Mass Profiler Professional 12.5 software (Agilent Technologies, Santa 
Clara, CA, United States). The experiment uses the same bottle for all 
the samples according to the same protocol and collects the spectrum 
in the same environment.

The experimental methods are as follows: Firstly, 1 mL sample is 
accurately measured in a 1.5 mL centrifugal tube, centrifuged at 4°C 
for 10 min at 10,000 rpm, and passed through 0.22 μM Microporous 
filter, on-machine detection. The chromatographic column is Agilent 
Eclipse Plus C18 (3 × 150 mm, 1.8 μM). Column temperature: 40°C; 
Automatic sampler temperature: 4°C; Input: 2 μL; Flow rate: 0.3 mL/
min; Column balance time: 0.5 mL/min; Analysis time: 20 min. The 
mobile phase is 5 mmol/L ammonium formate aqueous phase and 
methanol phase.

In each data collection cycle, parent ions with an intensity greater 
than 5,000 are screened. TOF-MS scan time is 150 ms, quality 
detection range is 50–1,000 Da, collected in HighSensitivity mode.

3.4. Statistical method

Statistical analysis was performed using SPSS software 
(Version19.0, SPSS Inc., Chicago, IL, United States). On the basis of 
normal distribution test and variance homogeneity analysis of the 
data, independent sample t-test is carried out to show the significance 
of the results. When the value of p is less than 0.05, it is considered to 
be statistically significant.

4. Results

The near infrared spectrum of the wine collected is shown in 
Figure 3. The original spectral data is normalized, and the singular 
value decomposition is used for principal component analysis. The 
components with the largest variance and the largest amount of 
information are retained, and the contribution ratio is calculated. 
For dimension reduction of PCA data, the modeling accuracy is 
judged by the model determination factor Rc2. The closer the 
model determination factor approaches 1, the better the model fits. 
The selection of principal components is mainly based on the 
contribution ratio of each component (Clary et al., 2021). At the 
same time, the correlation coefficient is used to filter the sensitive 
spectral bands, eliminating the collinearity between 
spectral variables.

The NIR data of grape wine are collected in 256 dimensions. After 
principal component analysis, 9 principal components with 93.37% 
contribution are selected, and the coefficient of determination is 0.824. 
The cumulative contribution of principal component 1 (PC1), 2 (PC2) 
and 3 (PC3) is 88.72% when the spectral data are reduced by PCA. The 
greater the dispersion of sample data points, the greater the difference 
of near infrared spectra among different wine producing areas. As 
shown in Figure 4, the near infrared spectral data of grapes from 
different regions are significantly clustered. Wines from foreign and 
domestic regions are distributed in different regions, indicating that 
the near infrared spectra of different wines from different regions 
are different.

FIGURE 3

NIR spectroscopy of wine samples. (A) Near infrared spectroscopy of all wine samples. (B) Average spectral diagram of wine samples from each 
production area.
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In order to further improve the accuracy, a SVM algorithm with 
Gaussian kernel as the kernel function is selected for the origin 
classification. Considering both computational efficiency and 
recognition accuracy, the cross-validation value k in SVM algorithm 
is set to 7. The model takes 4.35 s and the spectral recognition accuracy 
can reach 98.3%. The accuracy of PCA-SVM model has reached more 
than 95%, but the reliability of model classification accuracy has not 
been verified. Therefore, it is necessary to verify the reliability of the 
model through the Q-TOF experimental results and on this basis, in 
order to refine the PCA-SVM model further.

In Section 3.3, in accordance with the Q-TOF method described, 
the chemical composition of the precipitated grape wine samples from 
six producing areas is analyzed differently. The main differential 
metabolite analysis results are shown in Table 1. The results of Q-TOF 
experiments show that the three characteristic sub-stances that can 
distinguish the wine producing areas of the experimental samples are 
indole, sulfacetamide and caffeine. SPSS 19.0 software is used to 
perform t-test on the extracted substances. When the value of p is less 
than 0.05, there is a significant difference. The p-values of indole, 
sulfonamide and caffeine are 0.03, 0.02 and 0.05, respectively. The 
results show that these three substances can be used as characteristic 
components of experimental wine samples.

In order to further narrow the range of characteristic wavelength, 
three characteristic components obtained from Q-TOF experiments 
are analyzed in this paper. Among them, indole is an aromatic 
heterocyclic organic compound, which has a bicyclic structure in the 
chemical structure formula, including a six-membered benzene ring 
and a five-membered pyrrole ring containing nitrogen (Mir et al., 

2021). Because the lone pairs of electrons of nitrogen participate in the 
formation of aromatic rings, indole is an imine with weak alkalinity. 
Therefore, it is possible that the substance exists in the range of 1,000 
to 1,400 nm according to the IR major functional group control table. 
Based on the analysis of the IR major functional group control table, 
it is known that sulfacetamide may exist in the band (Agbonkonkon 
et  al., 2021) from 1,000 nm to 1,400 nm. Caffeine is an alkaloid 
compound of methylxanthine with a spectrum ranging from 1,500 nm 
to 1,800 nm.

On this basis, the near-infrared spectral wavelength ranges of 
wine samples are further compressed. As shown in Figure 5, the near-
infrared spectral wavelength ranges are set as characteristic region 1 
(1,000 nm ~ 1,400 nm) and characteristic region 2 
(1,500 nm ~ 1,800 nm). The classification accuracy of the input spectral 
data is compared among the four models. When the input range of the 
model is reset and the dimensionality of PCA data is reduced again, 
the model determinant increases from 0.824 to 0.928. This method 
improves the accuracy of the model while making it more suitable for 
the identification and classification of near infrared spectra of wine 
samples. Moreover, the corrected model accuracy has been improved.

Figure  6 shows that when the input spectrum is in the same 
wavelength range, the improvement of model accuracy by PCA 
dimension reduction fluctuates from 0.1 to 7.8%. When the 
characteristic wavelength is used as the model input data, the same 
model accuracy is improved by 1.45 to 16.65%. Therefore, the 
classification accuracy of the model modified by chemometrics 
method is doubled compared with the model processed by traditional 
PCA method. Through in-depth analysis of the different input spectra, 
it is found that when full spectral data is input, several origin tracing 
accuracy is not high when using LDA and SVM models alone. Using 
principal component analysis, the accuracy of the model is 
significantly improved, with the recognition accuracy of PCA-LDA 
model increased by 7.8%, and that of PCA-SVM model increased by 
0.5%, as shown in Table  2. The spectral characteristic bands are 
selected by Q-TOF experimental results, and the recognition accuracy 
of the whole model is improved significantly. The classification 
accuracy of LDA increased by 16.65% and that of PCA-LDA model by 
8.85%. The PCA-SVM model can increase the recognition accuracy 
to 99.75%. It is able to distinguish wines from these six regions 
accurately and conveniently using near-infrared spectral data of 
short wavelengths.

The above experimental results show that the improved algorithm 
of chemo-metric method and PCA-SVM model fusion. Not only can 
the accuracy of classification and recognition be improved, but also 
the detection range can be reduced, thus shortening the running time 
of the algorithm and improving the detection efficiency. Origin 
tracing based on the near infrared spectral characteristics of wine can 
be  achieved using an improved PCA-SVM model with 
fused chemometrics.

TABLE 1 Mass spectral peak areas of wine metabolites from different origins.

Compounds Zhenbeibu Hongsibu Hebei Xinjiang Yantai Chile

Indole (Arevalo-Villena et al., 2010) 87.66 87.54 73.66 80.90 84.16 86.66

Sulfacetamide 75.28 72.58 82.17 88.97 82.32 73.91

Caffeine (Sudol et al., 2022) 91.49 92.34 92.21 94.61 93.46 95.13

FIGURE 4

Principal component analysis diagram. Among them, Ningxia 
represents the wine samples of Hongsibu and Zhenbeibu production 
areas; other include the wine samples of Hebei, Shandong and 
Xinjiang production areas.
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5. Discussion

Wine origin tracing technology is of great importance. Effective 
Traceability Technology and detection method can not only improve 
the quality of wine, but also improve economic efficiency. Therefore, 
the application of information technology in this field can simplify the 
operation of traditional traceability technology, and the incorporation 
of chemometrics schools can compensate for the low accuracy of 
models. With the continuous development of information technology 
and chemical detection methods, many scholars have made more and 
more in-depth research on these two aspects. In terms of information 
technology based detection, Basalekou et al. (2020) used FT-IR to 
trace the origin of wine, in which PCA and statistical methods were 
used to analyze the differences between different production zones. 
Although the origin of wine has been distinguished from the 

perspective of information technology, further analysis has not been 
conducted based on the differential components of the wine itself. In 
traditional chemical methods, Vitali Čepo et al. (2022) used isotope 
analysis to effectively distinguish wines from different regions. 
Although chemical analysis can obtain accurate classification results, 
the real-time and convenience of this method are not good, which 
restricts the large-scale application of this technology. In recent years, 
the technology of chemical detection has been continuously improved, 
and more differential substances can be detected. But the detection 
technology has not significantly improved in terms of time and price 
costs. The emergence of near-infrared technology has greatly saved 
detection time and reduced detection costs, but its accuracy has been 
questioned by professionals. In this context, a new method for fusing 
the advantages of spectral techniques and chemical detection is 
presented in this paper.

Among, near infrared spectroscopy reflects the frequency 
doubling and combination of the base frequency vibrations of 
molecules with hydrogen groups as the dominant group (Xu et al., 
2022). Near-infrared scanning of the sample can obtain the near-
infrared absorption intensity of the vibration and combination 
frequencies of each molecule, obtain the characteristic information of 
organic molecules, and analyze the composition of the sample 
(Claudia et al., 2021). Near infrared spectroscopy analysis technology 
is widely used in the field of rapid analysis because of its advantages of 
fast analysis, no chemical pollution to samples, high operability of 
detection de-vices, high accuracy of measurement and low cost of 
analysis (Hernández-Hernández et al., 2020). Taking wine analysis as 
an example, different light, water and soil conditions make the 

FIGURE 6

Comparison of accuracy of different models before and after 
Correction.

TABLE 2 Comparing accuracy of different models.

LDA 
(%)

SVM 
(%)

PCA-
LDA (%)

PCA-
SVM (%)

900 nm ~ 2,500 nm 82.80 97.80 90.60 98.30

1,000 nm ~ 1,400 nm and 

1,500 nm ~ 1,800 nm
99.45 99.15 99.35 99.75

FIGURE 5

Characteristics of near infrared spectra from different origins. (A) Characteristic region 1 spectrogram (1,000 nm ~ 1,400 nm); (B) Characteristic region 2 
spectrogram (1,500 nm ~ 1800 nm).
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components of wine grapes slightly different. This results in different 
substances being produced during the fermentation process. Because 
near infrared spectroscopy can characterize the chemical bond 
information contained in wine components, different spectral 
segments contain different components.

Nevertheless, near infrared spectroscopy still has some drawbacks, 
spectral noise is not good for screening sensitive bands, and data 
redundancy increases the amount of computation. To solve these 
problems, this study first uses unsupervised Principal Component 
Analysis (PCA) to reduce the dimension of the original spectral data. 
On the basis of preserving the original information conditions, the 
model uses the method of dimension reduction to concentrate the data 
characteristics of multiple dimension spaces into the main components. 
The interference in near infrared spectral acquisition is reduced and the 
speed of model calculation is improved. At the same time, the Gaussian 
kernel is chosen as the kernel function of the support vector machine, 
which has only one parameter and saves running time. In addition, the 
model was corrected by high performance liquid chromatography 
quadrupole time-of-flight mass spectrometry chemical detection to 
verify the reliability of the model. The accuracy of the model was 
increased to 0.924, which improved the fitness of the model data and 
further refined the near-infrared input spectral range. The original 
900 nm ~ 2,500 nm spectrum was reduced to 1,000 nm ~ 1,400 nm and 
1,500 nm ~ 1800 nm, removing a large amount of redundant data of near 
infrared spectrum. The modified spectral data as a new input to the 
model can avoid dimension disasters to some extent and enhance the 
robustness of the improved algorithm.

Since the chemometric analysis can be done ahead of time, when 
the whole model is established, the above methods can be used to 
detect the spectrum data of wines from different origins on-line 
nondestructively. This method can be used to identify the origin of 
wine with low data volume and high accuracy, and to establish a rapid 
detection method for the origin of wine to be measured.

6. Conclusion

The results show that spectral detection and chemometric 
methods are combined, near infrared spectral detection technology 
is used to collect spectral data of wine from different production 
areas, and high performance liquid chromatography quadrupole 
time-of-flight mass spectrometry is used to select sensitive data 
segments. This method can help to further improve the accuracy 
of principal component analysis of the model and eliminate the 
small weight data in the whole spectral data. It is easy to extract 

spectral features that have a greater impact on the analysis results. 
The above methods can improve the accuracy of PCA-SVM model 
classification and recognition, and achieve up to 99.75% 
classification accuracy.
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