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The COVID-19 pandemic has severely disrupted the global food supply chain

through various interventions, such as city closures, tra�c restrictions, and silent

management. Limited research has been conducted on the design of emergency

regional food supply chains (ERFSC) and its labor demand forecasting under

government-mandated interventions. This paper applies emergency supply chain

management theory to analyze the business processes of the ERFSC and proposes

a multi-level ERFSC network tailored to di�erent risk levels. Additionally, a food

demand forecasting model and a mathematical model for stochastic labor

demand planning are constructed based on the development trend of regional

epidemics. An empirical analysis is presented using Huaguoyuan, Guiyang, China,

as an example. The results demonstrate that the proposed ERFSC design and

its labor demand forecasting model can achieve secure supply and accurate

distribution of necessities in regions with di�erent risk levels. These findings have

important policy and research implications for the government and practitioners

to take interventions and actions to ensure food supply for residents in the context

of city closure or silent management. This study serves as a pilot study that will be

further extended by the authors from geographical and policy perspectives.
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1. Introduction

During the COVID-19 pandemic, many countries have implemented extensive

lockdowns, economic interventions, and health system measures to mitigate the spread

of the virus (Ivanov and Dolgui, 2020; Hale et al., 2021). Several recent studies have

concluded that the lockdown has posed a threat to food security, leading to reduced

yields, disruptions in food supply chains, restricted trade flows, and reduced dietary choices

(Devereux et al., 2020; Fan et al., 2020). The interventions implemented to contain COVID-

19 have significantly impacted the food value chain, resulting in difficulties in purchasing

necessities and insecurity of basic needs for the population in the outbreak region (Hobbs,

2020; Narayanan et al., 2020). In urban areas that rely on external supplies to meet their

needs, sudden disruptions in food supply and panic buying behavior caused prices to

soar and triggered social panic (Davila et al., 2021). On the supply side, the lockdown
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may lead to a reduction in vegetable production and also lengthen

the food distribution cycle, particularly impacting some perishable

commodities such as fruit, meat products, and fresh vegetables

(Harris et al., 2020; Yu et al., 2020; Huang et al., 2021). On

the demand side, the outbreak of the COVID-19 crisis may

cause social panic and potential hoarding of food, leading to two

extremes of over-buying and under-buying that can impact the

basic livelihood security of people quarantined at home (Goddard,

2020; Nicomedes and Avila, 2020; Zhang et al., 2020).

The pandemic has exposed the vulnerabilities of global food

supply chains and disrupted the flow of food from producers

to consumers (Christiaensen et al., 2021; Yin et al., 2021; Alabi

and Ngwenyama, 2023). The regional food supply chains are

becoming a viable alternative for food security due to easier

access to local food (Cristiano, 2021; Thilmany et al., 2021).

Regional food supply chains are based on local food production

and demand and are characterized by fewer intermediaries, shorter

distribution times, greater agility, and more sustainability in

economic, environmental, and social terms than conventional food

production (Berti and Mulligan, 2016). They are also favored by

consumers for reasons such as fresher, safer, more nutritious food

supplies and support for local economic development (Schnell,

2013; Feldmann and Hamm, 2015). The efforts are underway

to reconfigure and innovate the current food supply chain

and strengthen the urban-rural integration of food supply to

build a more stable, resilient, and sustainable food supply chain

(Mollenkopf et al., 2021; Sharma et al., 2021). The Food and

Agriculture Organization of the United Nations has emphasized

the importance of regional supply chains in countering large-

scale disruptions in food supply chains caused by the COVID-

19 crisis (Food and Organization, 2020; Rosenzweig et al., 2020).

Strengthening regional food supply chains is also being considered

as a viable option for dealing with the impact of uncertainty

(Mahajan and Tomar, 2021). Singh et al. (2021) proposed a

public distribution system consisting of a central warehouse, state

warehouse, district warehouse, and fair price shop to quickly

recover the food supply in the region.

The COVID-19 crisis has resulted in labor shortages in the

food supply chains due to lockdowns, movement restrictions,

quarantines, and illnesses (Hobbs, 2020; Saul et al., 2020). As

labor is a crucial input for the functioning of every supply

chain network, this can lead to increased costs, lower profits

for firms, higher prices for consumers, and unfulfilled demand

(Bhattarai and Reiley, 2020). To cope with sudden labor demands

during an outbreak, redundancy within the supply chain system

or finding new alternatives can be a way forward (Coopmans

et al., 2021). Nagurney (2021) developed a supply chain network

optimization framework that explicitly includes labor as a

variable in the economic activities of supply chain networks,

such as production, transportation, storage, and distribution.

Community organizations are using local information, networks,

and relationships to distribute food to community residents during

the pandemic (Aday and Aday, 2020). In emergency supply

chain management, the establishment of self-organization with

efficient management and transparency of information is crucial

(Zebrowski, 2019; Banerjee et al., 2021; Mutebi et al., 2021). Shareef

et al. (2019) argue that volunteers play an important role in

emergency disaster rescue and provide access to a government-

run network of volunteer requisitioners. Some studies suggest that

an integrated system of simultaneous truck and drone distribution

in high-risk zones can efficiently meet demand distribution

without close contact (Jeong et al., 2019; Das et al., 2020). In

addition, outdoor spaces are being designated in different parts

of the city as alternative locations for traders and farmers to

conduct sales transactions during retail closures (Singh et al.,

2021). Therefore, the rapid recovery or reconstruction of the

food supply chain in the region during public health emergencies

requires the consideration of the population, distribution location,

risk area division, interchange state (IS) setting, operator

requirements and end-delivery strategy, which is a complex

system project.

By analysing the literature, resilience and sustainability were

found to be the most critical themes, and the application of various

innovative technologies such as digital twins, artificial intelligence,

blockchain and the Internet of Things in the management of

supply chains suffering from sudden disruptions was more studied

(Moosavi et al., 2021, 2022; Montoya-Torres et al., 2023). However,

it was discovered that there has not been sufficient discussion on

how to quickly construct an ERFSC, particularly in the context

of a logistics park outbreak and city-wide silent management.

Although researchers have proposed several ideas for restoring the

food supply chain during a pandemic, the practicality of these

ideas is limited due to different premises considered in previous

studies (Fan et al., 2020; Chitrakar et al., 2021; Dixon et al., 2021;

Huang et al., 2021). This research gap includes the lack of food

supply chain network design, end-delivery services strategies, and

labor demand forecasting models under lockdown conditions. To

address this gap, we present a multi-level regional food supply

chain system solution adapted to different risk levels, which is

being introduced for the first time. Finally, we construct an ERFSC

framework of agricultural suppliers, distribution centres (DCs), ISs,

and residents as an example, focusing on Huaguoyuan in Guiyang

City, China, to achieve secure supply and accurate distribution

of necessities in areas with varying risk levels. This study makes

important contributions to the field, including:

(i) It proposed a more practical strategy for safeguarding

the supply of necessities to regional residents during a regional

pandemic outbreak, namely a regional food supply chain design

based on dynamic demand for essential supplies, labor demand

forecasting and end-delivery strategies to achieve risk management

and emergency response during emergencies such as food supply

chain disruptions.

(ii) It studied the development of a demand forecasting model

for necessities and a labor forecasting model for regional food

supply chain operation requirements and end-delivery services

strategy based on the risk trend of the epidemic in the region under

silent management interventions, which improved the efficiency

and quality of ERFSC management.

(iii) The proposal of an ERFSC labor demand forecasting

algorithm that takes into account uncertain parameters and fully

considers the random distribution properties of these parameters.

Our study serves as an important theoretical foundation for

future research on ERFSC reconfiguration and labor demand

forecasting during emergency situations. Additionally, it provides
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valuable recommendations for government agencies, businesses,

and social organizations involved in emergency response.

2. ERFSC network design

The ERFSC is a temporary alliance formed by the government

in response to emergencies to integrate various advantageous

resources of society. In addition to the characteristics of the

general regional food supply chain, the ERFSC has variations

in the operation items of each activity link in the supply chain

and temporary cooperation and coordination among them. This

is also the key factor determining the operational efficiency of

the ERFSC (Shah Alam Khan, 2008; Dwivedi et al., 2018). An

effective emergency regional supply chain should be able to make

rapid assessments and decisions based on actual dynamic demand

(Dwivedi et al., 2018).

There are several issues in emergency supply chain operations,

such as mapping existing emergency supply chains, demand

forecasting and assessment, procurement, inventory management,

logistics management, and relief distribution (Wang and Zhang,

2016). Therefore, it is necessary for the government to set up a

supply assurance team to optimize the distribution of resources

to transport agricultural products to designated farmers’ markets,

retailers, or sell them directly to residents.

Generally, food supply chains consist of a three-tier structure of

supplier-DC-retailer, and the farmer-consumer model is also more

common in regional food supply chains (Thilmany et al., 2021).

During an outbreak in an urban area, interventions such as city

closures, movement restrictions, and home quarantines can lead

to the city being divided into smaller zones for management, such

as administrative boundaries, communities, and neighborhoods.

In such cases, DCs become the main source of supplies for the

city’s residents. To achieve full coverage and precise distribution

of food while complying with epidemic prevention policies that

reduce movement, we propose an ERFSC network with DCs as the

source, as depicted in Figure 1. Here, each DC is responsible for a

certain range of retailers/ISs, and each retailer/IS is responsible for

supplying food to residents in a designated zone.

During the epidemic, unexpected transport restrictions and

labor shortages disrupted the urban food supply chain (Hobbs,

2020; Sukhwani et al., 2020). Availability of labor, including loading

and unloading, delivery, sorting, and processing labor, as well as

smooth logistics, became the crucial factors in maintaining the

food supply chain. For some companies, the inability of employees

to return to work became a bottleneck (Singh et al., 2021; Tarra

et al., 2021). Therefore, the goal of the ERFSC is to distribute the

necessary supplies in infected areas with minimum labor, within a

reasonable time and cost.

2.1. Description and analysis of the ERFSC

To optimize the allocation of labor in the ERFSC, we have

developed a scenario as shown in Figure 2. Our analysis focuses

on the optimal allocation of labor in the ERFSC in urban areas,

specifically from the DCs to the residents. The DCs receive goods

from outside, distribute them based on the downstream retailers’

demand, and arrange vehicles or engage third-party logistics to

transport them to each retailer. The retailers receive shipments

from DCs, sort and prepack the food according to customer

requirements, and hand them over to riders or carriers for delivery

to residents. Residents get their food via self-purchase, pick-up or

home delivery, depending on the risk level of their zone, as shown

in Figure 3.

2.1.1. Market demand forecast
Forecasting models play a crucial role in precision marketing,

aiding in the comprehension and fulfillment of customer

needs and expectations (You et al., 2015). Various statistical

analysis techniques, such as time-series analysis and regression

analysis, have been employed for demand forecasting in supply

chain management (Wang et al., 2016). The utilization of AI

techniques, such as artificial neural networks and evolutionary

computation, has become prevalent in demand forecasting due to

the advancements in computing technologies (Lin et al., 2018). In

addition, big data analysis in supply chain management is receiving

increasing attention (Ali et al., 2017; Nguyen et al., 2018). As data

for the parameters in the model were readily available, we chose to

use statistical analysis to forecast food demand.

Normally, the total food demand in a region is mainly

determined by the number of people and remains relatively stable

when the population changes little. However, during an outbreak,

the total food demand in the region fluctuates due to changes in the

risk zones. LetN0 denote the number of permanent residents in the

region and d0 denote the normal daily per capita food requirement.

If the number of people classified as high and medium risk zones

is nhr and nmr , respectively, then the total food demand D(t) in the

region during an outbreak can be expressed as

D(t) = [α · nhr + β · nmr + (N0 − nhr − nmr)] · d0 (1)

= [N0 + (α − 1) · nhr + (β − 1) · nmr] · d0,α > β > 1

Here, α and β are the perturbation factors for the demand for food

by people in high and medium risk zones, respectively, which can

be interpreted as the shopping cycle.

2.1.2. E�ciency of end-delivery services
Convenience plays a crucial role in consumers’ food purchasing

choices (Morganosky and Cude, 2000). Traditional grocery stores

have implemented various methods to offer convenient delivery

options to their customers, such as online shopping, door-

step home deliveries, and drive-through pick-ups (Raison and

Jones, 2020). Additionally, studies have shown that consumers

are willing to pay a small fee for enhanced convenience, like

home delivery services (Anesbury et al., 2015). During an

epidemic, it is crucial for ERFSCs to devise a delivery strategy

that ensures residents have access to food while minimizing the

risk of mutual exposure. To achieve an efficient and safe end-

delivery strategy, we propose a differentiated approach based

on the level of risk zones, which is depicted in Figure 3. In
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FIGURE 1

The ERFSC network.

FIGURE 2

The description and analysis of the ERFSC.

low-risk zones, residents can opt for offline shopping, visiting

physical stores to purchase their food. For those in medium-

risk zones, a convenient option would be to have their food

delivered to designated locations where they can pick it up in

an orderly manner. Finally, residents in high-risk zones should

receive home delivery, ensuring minimal contact and maximum
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FIGURE 3

The shopping process for residents in di�erent risk zones.

safety. The efficiency of the end-delivery service is defined as

the weight of goods delivered per unit time from retailers/ISs to

residents according to the demand list. Generally, the delivery

time for high-risk zones is longer than for medium-risk zones.

Therefore, the end-delivery service efficiency can be expressed

as

EDEhr =
AW

thr
(2)

EDEmr =
AW

tmr
(3)

where AW is the average weight of goods per delivery and

follows a uniform distribution U(a, b); thr and tmr are the

time required to deliver a batch of goods to high-risk and

medium-risk zones, respectively, and follow normal distributions

N(µ, δ2).

2.1.3. Labor e�ciency and transport e�ciency
labor is a crucial element in the functioning of any supply

chain network, and the efficiency of work directly affects the overall

effectiveness of the network (Jaillet et al., 2019; Bhattarai and

Reiley, 2020). In general, labor efficiency can be represented by the

time required for each task and the number of tasks completed

within a certain period of time. During an epidemic, it becomes

imperative to choose the appropriate type and size of vehicles

to achieve transport efficiency and meet supply chain objectives.

Larger vehicles may decrease the frequency of transportation, but

they also have a lower turnover rate for perishable goods, which

can lead to increased spoilage. On the other hand, smaller trucks

have a lesser carrying capacity but are more agile, making them

suitable for emergency situations where quick transport dispatch is

essential (Marusak, 2021). Assuming that the time required for each

task follows a normal distribution, we can derive the average and

standard deviation of labor efficiency for each task from historical

data. Therefore, we can represent the average labor efficiency of

unloading, prepacking, loading and transportation tasks of goods

in the food supply chain byUL, Prep, L, Tr and follow some random

distribution.

2.1.4. Supply chain delivery window
The supply chain delivery window is the time required from

the supply side of raw materials to delivery to the consumer. It has

received a lot of focus from researchers, particularly in the areas of

production planning and delivery routing optimisation (da Silveira

and Arkader, 2007; Benjamin and Beasley, 2010; Yeung et al., 2011).

Uniquely, this paper aims to study the issue of supply chain delivery

windows from a different perspective, with a particular focus on the

allocation of labor in the food supply chain. Generally, the relief

supplies dispatch centres cannot distribute all the relief supplies

to the affected areas at once, and successive multi-batch are a
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time-saving supply method, as depicted in Figure 4. Suppose there

are n nodes in the supply chain, each with an operating time ti,

and let tes(j,i) denote the earliest start time of batch j at node i.

Then we can calculate the earliest start time of batch j at node i

as follows

tes(j,i) = max(tes(j,i−1) + ti−1, tes(j−1,i) + ti), i (4)

= 1, 2, · · · , n; j = 1, 2, · · ·

Recursively, the supply chain delivery window for successive j

batches are

tjq = max tes(j,n) + tn = (j− 1)ti_max +

n∑

i=1

ti (5)

Here, ti_max is the maximum value in the sequence ti.

3. Mathematical modeling of labor
demand forecasting

Humanitarian relief efforts are critical during disasters, such

as providing food, water, and medical care. It is essential to

distribute relief supplies quickly, fairly, and accurately to rescue

scenes (Starr and Van Wassenhove, 2014; Çankaya et al., 2019).

The COVID-19 pandemic and quarantine interventions have

disrupted the labor market and made it difficult for existing

food supply chains to operate effectively. Despite labor being

a key input in the food industry, it is often overlooked

in food supply chain assessments (Wijnands and Ondersteijn,

2006). However, forecasting the workforce required for the

operation of the ERFSC is crucial, as it is a vital input

to the operation. In an ERFSC scenario that involves labor

changes in the DCs, Details, and Deliveries, a mathematical

model has been developed to optimize the allocation of the

labor force, ensuring that the dispatch and distribution of the

demanded food quantity are completed within the specified time

period.

3.1. Assumptions

Considering the complexity of the model, the following

assumptions were made:

(1) Only a few essential foodstuffs (rice, pulses, non-perishable

vegetables, etc.) were studied and were well stocked.

(2) The total demand of the population is based on the resident

population and is calculated according to the healthy dietary

provisions per capita.

(3) Prepackaging processing and preserving residents’ food

demand orders to be delivered by weight.

(4) Government-authorized green passes are given to vehicles,

and there are no restrictions on vehicle transport.

(5) Logistics vehicles and drivers are adequate and have

uniform vehicle sizes.

(6) The completion time of the labor force is subject to a certain

random distribution.

(7) Successive operations at each activity node are achieved

through shift changes.

(8) The food supply chain is designed using lean logistics ideas,

i.e. inventory is not considered here.

To facilitate the narrative, the symbols and their descriptions

are presented as follows.

D(t): Total daily food demand in the region (kg).

d0: Daily average food requirement per capita (kg).

na0: Number of available workforce per shift in the DC.

nr0: Number of available workforce per shift in retail stores.

nd0: Number of available workforce per shift in end-delivery.

nhr : Number of people in high-risk areas within the supply

range.

nmr : Number of people in medium-risk areas within the supply

range.

α: Perturbation factor for food demand in high-risk areas.

β : Perturbation factor for food demand in medium-risk areas.

V : Maximum capacity of logistics vehicles (kg).

ρ: Transportation batch.

EDEhr : End-delivery efficiency in high-risk areas (kg/h).

EDEmr : End-delivery efficiency in medium-risk areas (kg/h).

UL: Unloading efficiency (kg/h).

Prep: Pre-packing efficiency (kg/h).

L: Loading efficiency (kg/h).

Tr: Transportation efficiency (kg/h).

T0: Demand cycle (h).

na: Number of personnel required in the DC.

nr : Number of personnel required in retail stores.

nd: Number of personnel required in end-delivery.

3.2. Modeling

Min na + nr + nd (6)

s.t.
V

na
(
1

UL
+

1

L
)+

V

Tr
+

V

UL · nr
(
1

UL
+

1

Prep
+

1

L
)

+ (
α · nhr · d0

EDEhr · nd
+

β · nmr · d0

EDEmr · nd
) ·

1

ρ
+ (ρ − 1) · ti_max ≤ T0

(6-1)

D(t) = [N0 + (α − 1)nhr + (β − 1)nmr] · d0 (6-2)

ρ = ⌈
D(t)

V
⌉ (6-3)

ti_max = max{
V

na
(
1

UL
+

1

L
),
V

Tr
,

V

UL · nr
(
1

UL
+

1

Prep
+

1

L
),

(
α · nhr · d0

EDEhr · nd
+

β · nmr · d0

EDEmr · nd
) ·

1

ρ
} (6-4)

0 ≤ na ≤ na0 (6-5)

0 ≤ nr ≤ nr0 (6-6)

0 ≤ nd ≤ nd0 (6-7)

na, nr , nd is integer

In the model, the objective function (6) is the minimum labor

demand to ensure the normal operation of the ERFSC; constraint
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FIGURE 4

Successive multi-batch supply.

FIGURE 5

The solution design technology roadmap.

(6-1) is the time to complete the full supply of regional food within

a specified period of time; constraint (6-2) is the total dynamic

demand for regional food; constraint (6-3) is the determination of

transport batches based on total food demand and logistics vehicle

capacity; Constraint (6-4) is the longest time spent by a node in

the ERFSC; and constraints (6-5), (6-6), and (6-7) are the labor

constraints at each activity node of the ERFSC.

3.3. Scenario design

The decrease in operators and increase in demand for food

distribution following a regional outbreak has created difficulties

in the operation of the ERFSC. Based on an analysis of the ERFSC

operation description, it was found that DCs and retailers require

workers with higher skills, while end-delivery services requires

fewer skills. Therefore, to alleviate the labor shortage problem,

volunteers can be recruited for end-delivery services work, thus

shifting the bottleneck factor of labor shortage to the end-delivery

services. In other words, when all available personnel are involved

in the supply chain operation but the task cannot be completed, we

lift the restriction on the number of end-delivery services workers

and, in practice, solve the staff shortage by recruiting volunteers or

community residents. The solution design technology roadmap is

shown in Figure 5.

3.4. Solution

In optimising food supply chains, the main objectives generally

include minimum transportation cost, minimum wastage rate,

and minimum cycle time. To achieve this, the problem is

usually modelled and solved using different machine learning

techniques, including genetic algorithms, simulated annealing

algorithms, ant colony algorithms, neural network algorithms,

and mixed integer programming (Tarhan and Grossmann, 2008;

Peidro et al., 2009; Govindan and Cheng, 2018; Chan et al.,

2020; Altun et al., 2022). However, the complexity of the

optimisation problem increases with the spatial and temporal

scale of the supply chain, involving numerous participants

and different operation cycles, as well as uncertainties such as

policies, natural disasters, wars, and epidemics. To address this,

complex supply chain design and optimisation have been made

possible by the development of computing performance and

various optimisation algorithms (Conti et al., 2009; Scott et al.,

2013).

The mathematical model presented in Equation (6) reflects

the changes in total demand and distribution schedules

due to changes in personnel at risk in the region. The

optimal matching of the number of laborers at each node

of the food supply chain is required in order to meet the

supply of basic household goods to the residents of the
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region within a specified time frame, which is a dynamic

integer non-linear programming problem that can be

solved by Algorithm 1.

The primary objective of this algorithm is to ensure the

smooth operation of the emergency regional food supply

chain, particularly during public health emergencies. It aims

1: input:

2: - C1: the maximum capacity of the transported

vehicles

3: - C2: the number of repeating calculations

4: - C3: the total number of individuals in the

region

5: - µ1, σ1: mean and standard deviation for UL

6: - µ2, σ2: mean and standard deviation for L

7: - µ3, σ3: mean and standard deviation for Prep

8: - Tr1,Tr2, ...: list of values for Tr

9: - d01, d02, d03, d04, ...: list of values for d0

10: - µ4, σ4: mean and standard deviation for EDEhr

11: - µ5, σ5: mean and standard deviation for EDEmr

12: - Nhr1 ,Nhr2 , ...,Nhrn: list of values for Nhr

13: - Nmr1 ,Nmr2 , ...,Nmrn: list of values for Nmr

14: - n: research duration (days)

15: - α,β: coefficients for calculating Dt (where Dt

is the total number of people in the study area)

16: output:

17: - avgdd: average value of the objectives

18: −obj1, obj2, obj3: separate grouping of the C2

repetitive calculation solutions for each

objective

19: −mx1,mx2,mx3: maximum values of each objective

20: - mn1,mn2,mn3: minimum values of each objective

21: procedure DEFINE SUB-FUNCTION

22: function f = fun1(x)

23: f ←
∑3

i=1 xi

24: end function

25: function [g, h] = fun2(x)

26: t_max ← max[V × ( 1
UL +

1
L )/x[1],V/Tr,V × ( 1

UL +
1

Prep +

1
L )/x[2], d0/rou× ( α×n_hrt

TDE_hr +
β×n_mrt
TDE_mr )/x[3]]

27: g ← V× ( 1
UL +

1
L )/x[1]+V/Tr+V× ( 1

UL +
1

Prep +
1
L )/x[2]+d0/ρ×

( α×n_hrt
TDE_hr +

β×n_mrt
TDE_mr )/x[3]− 24+ (ρ − 1)× t_max

28: h← []

29: end function

30: end procedure

31: procedure GLOBAL VARIABLES AND INITIALIZATION

32: [V ,UL, L, Prep] ← [C1,ceil

(normrnd(µ1, σ1)),ceil(normrnd(µ2, σ2)),ceil(normrnd(µ3, σ3))]

33: [Tr, d0,EDE_hr,EDE_mr] ←

[randsrc(1, 1, [Tr1,Tr2, ...]),randsrc(1, 1, [d01, d02, d03, d04, ...]),

ceil(normrnd(µ4, σ4)),ceil(normrnd(µ5, σ5))]

34: [Nhr ,Nmr]← [[Nhr1 ,Nhr2 , ...,Nhrn ], [Nmr1 ,Nmr2 , ...,Nmrn ]]

35: [ρ, t]← [zeros(1, n), zeros(3, n)]

36: [value, x0, sumdd]← [zeros(1, n),rand(1, 3), zeros(3, n)]

37: end procedure

38: procedure CALCULATE OPTIMIZATION OBJECTIVES

39: for i← 1 to C2 do

40: for j← 1 to n do

41: [nhr , nmr]← [Nhr(j),Nmr(j)]

42: Dt← C3+ α · nhr + β · nmr

43: ρ ← ceil(Dt/V)

44: [x, y] ← fmincon(′fun1′, x0, [], [], [], [], [0, 0, 0], [inf,inf,

inf],′ fun2′)

45: [t(:, j), value(j)]← [x, y]

46: end for

47: [dd(i, 1), vv(i, 1), sumdd]← [t, value, sumdd + dd(i, 1)]

48: end for

49: end procedure

50: procedure CALCULATE AVERAGE AND EXTREMES

51: avgdd← sumdd/C2

52: [obj1, obj2, obj3]← [zeros(C2, n), zeros(C2, n), zeros(C2, n)]

53: for h← 1 to C2 do

54: obj1(h, :)← dd(h, 1)(1, :)

55: obj2(h, :)← dd(h, 1)(2, :)

56: obj3(h, :)← dd(h, 1)(3, :)

57: end for

58: [mx1,mx2,mx3]← [max(obj1),max(obj2),max(obj3)]

59: [mn1,mn2,mn3]← [min(obj1),min(obj2),min(obj3)]

60: end procedure

Algorithm 1. The ERFSC labor demand forecasting algorithm.

to determine the minimum labor force required for essential

stages such as DC, retail, and end-delivery. The input parameters

encompass personnel count, changes in the number of at-

risk individuals, vehicle capacity, labor efficiency, transportation

efficiency, and delivery efficiency. These data can be derived

from historical and dynamically updated data analysis, making

the algorithm user-friendly. The primary output is the labor

demand for each operational node, which varies due to the

random distribution of input parameters. To address this issue,

we employ multiple iterations and average calculations to forecast

labor requirements.

The fmincon function is a powerful optimization tool

widely used for nonlinear constrained optimization problems. Its

flexibility and versatility enable users to customize settings based on

specific problem characteristics, resulting in effective optimization

outcomes (Chuan et al., 2014). However, due to the limited research

on labor demand forecasting in ERFSC, further data is needed to

verify the validity of our proposed model across different scenarios.

In summary, the algorithm presents a viable solution for
forecasting the minimum labor requirements in the main stages
of ERFSC. Its readily available input parameters contribute to its
broad applicability. Moreover, the algorithm can be customized

for various scenarios, such as forecasting quantities for additional

stages by including corresponding constraints in the model.
However, the algorithm’s repeated use of nested loops increases

time and space complexity, signaling areas for further improvement
in future studies. Additionally, reliance on the quality and accuracy

of input data is an important consideration. Implementing
techniques like data cleaning, preprocessing, multi-source data
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fusion, domain expertise application, error handling, and fault

tolerance mechanisms can enhance the algorithm’s reliability and

robustness.

4. Case study

4.1. Background of the case

The Huaguoyuan region of Guiyang, China, which is known as

the Asia’s largest community, covers over 6,000 acres of land, with

12 main municipal roads, 10 shopping malls, and 27 subdivisions

with 220 high-rise buildings. The area has a population of 430,000

residents and 1 million daily transients. In September 2022, an

outbreak occurred between September 1 and September 30, 2022,

making the Huaguoyuan region a representative and significant

case study.

4.2. ERFSC network design

To address the challenge of supplying necessities to the

residents of Huaguoyuan, a “multi-level distribution and pick-

up” strategy was proposed. The strategy involves establishing a

temporary DC inHuaguoyuan, adding additional ISs based on zone

division and retailer operation status, and setting up buffer areas

by buildings to form a straight-through organizational structure

for the ERFSC. The DC location plays a crucial role in supply

chain efficiency for aggregating and distributing products (Ge et al.,

2022). The agricultural products DC is positioned on the primary

traffic road and in the centre of Huaguoyuan to facilitate the flow

of goods and allow only government-authorized vehicles and labor

for supply assurance.

The ISs are placed close to the community to reduce the

frequency and distance of residents moving outward. The buffer

areas are situated in the open area directly adjacent to buildings and

are managed by community managers or volunteers for order pick-

up and/or home delivery. Figure 6 shows the design of the ERFSC,

and Figure 7 demonstrates the workflow for the operation of the

regional food distribution network in Huaguoyuan.

4.3. Labor demand forecasting model
development and optimization

4.3.1. Data collection and analysis
Following the outbreak in Huaguoyuan, the local government

implemented silent management and city closure interventions,

and the total population of the region remained relatively constant

at 430,000. The number of people at high and medium risk in the

Huaguoyuan region was collected using various methods, such as

telephone consultations with the community and internet searches,

as shown in Table 1.

Other parameters derived from historical data from DCs,

logistics companies, retailers, and delivery staff are presented in

Table 2.

4.3.2. Mathematical modelling
To develop the labor demand forecasting model, it is important

to consider the surge in demand for necessities during the epidemic,

which led to residents stockpiling food due to the lack of a well-

established food supply chain. The total demand for necessities in

an area is proportional to the resident population, and fluctuations

caused by the epidemic can be eliminated by designing an efficient

food supply chain and delivery cycle. Assuming disturbance

coefficients of 3 and 2 for food demand by residents in high and

medium risk zones, respectively, and a required delivery cycle of 1

time per day, the model is developed as follows.

Min na + nr + nd (7)

s.t.
5000

na
(
1

UL
+

1

L
)+

5000

Tr
+

5000

UL · nr
(
1

UL
+

1

Prep
+

1

L
)

+ (
3 · nhr · d0
EDEhr · nd

+
2 · nmr · d0

EDEmr · nd
) ·

1

ρ
+ (ρ − 1) · ti_max ≤ T0

(7-1)

D(t) = [430000+ 2nhr + nmr] · d0 (7-2)

ρ = ⌈
D(t)

5000
⌉ (7-3)

ti_max = max{
5000

na
(
1

UL
+

1

L
),
5000

Tr
,
5000

UL · nr
(
1

UL

+
1

Prep
+

1

L
),

(
3 · nhr · d0
EDEhr · nd

+
2 · nmr · d0

EDEmr · nd
) ·

1

ρ
} (7-4)

0 ≤ na ≤ 30 (7-5)

0 ≤ nr ≤ 80 (7-6)

0 ≤ nd ≤ 100 (7-7)

na, nr , nd is integer

4.3.3. Model solution
The problem is a stochastic programming problem, and the

optimal solution is characterized by stochasticity and instability due

to the multiple stochastic parameters. To tackle this, it is proposed

to use a sampling average approximation to obtain the expected

value of the optimal solution, which will demonstrate the validity

of the model and forecast the demand for labor at each activity

node. This will provide an auxiliary scientific decision for practical

work. First, by optimising the solution according to the available

labor, i.e. with restrictions on na, nr and nd, which determines

whether volunteers need to be recruited. Secondly, if there is a

shortage of labor, the restriction on nd is removed and the number

of additional volunteers needed is solved optimally. The problem

is solved using Algorithm 1, and a sample of 1000 random optimal

solutions are selected to calculate the mean value. The results are

shown in Tables 3, 4.

4.3.4. Results
4.3.4.1. Content analysis

It can be seen from Tables 3, 4 that the demand for

labor in the DCs, retailers and end-delivery services nodes of
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FIGURE 6

The ERFSC network design for Huaguoyuan.

ERFSC changes with variations in the number of high- and

medium-risk zones in the region. The demand for end-delivery

services labor is particularly more sensitive to such changes, as

illustrated in Figure 8. When there are no high- or medium-

risk zones in the region, there is no need for additional end-

delivery services staff. However, during periods of city-wide silent
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FIGURE 7

The operation process of ERFSC.

TABLE 1 Number of residents in high- and medium-risk zones of Huaguoyuan.

Date nhr nmr Date nhr nmr

1-Sep-22 0 0 16-Sep-22 96,900 155,800

2-Sep-22 0 0 17-Sep-22 96,900 155,800

3-Sep-22 430,000 0 18-Sep-22 76,000 144,400

4-Sep-22 430,000 0 19-Sep-22 85,500 131,100

5-Sep-22 430,000 0 20-Sep-22 76,000 114,000

6-Sep-22 17,100 7,600 21-Sep-22 58,900 74,100

7-Sep-22 17,100 7,600 22-Sep-22 15,200 89,300

8-Sep-22 17,100 7,600 23-Sep-22 15,200 77,900

9-Sep-22 17,100 7,600 24-Sep-22 9,500 66,500

10-Sep-22 17,100 7,600 25-Sep-22 5700 30,400

11-Sep-22 17,100 7,600 26-Sep-22 0 9,500

12-Sep-22 79,800 142,500 27-Sep-22 0 9,500

13-Sep-22 93,100 157,700 28-Sep-22 0 9,500

14-Sep-22 89,300 161,500 29-Sep-22 0 0

15-Sep-22 112,100 140,600 30-Sep-22 0 0

TABLE 2 The parameters data.

d0(kg) na0 nr0 nd0 EDEhr(kg/h) EDEmr(kg/h)

∼ U(0.8, 1.2) ≤ 30 ≤ 80 ≤ 100 ∼ N(50, 52) ∼ N(200, 202)

V(kg) UL(kg/h) Prep(kg/h) L(kg/h) Tr(kg/h)

5000 ∼ N(5, 000, 1002) ∼ N(1, 000, 202) ∼ N(4, 000, 802) [10,000, 15,000, 20,000]
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TABLE 3 Labor demand forecasting for the ERFSC in Huaguoyuan under the constraints of na, nr and nd (persons/shift).

Date na nr nd Date nhr nmr nd

1-Sep-22 8 26 0 16-Sep-22 30 80 100

2-Sep-22 8 26 0 17-Sep-22 30 80 100

3-Sep-22 30 80 100 18-Sep-22 30 80 100

4-Sep-22 30 80 100 19-Sep-22 30 80 100

5-Sep-22 30 80 100 20-Sep-22 30 80 100

6-Sep-22 9 30 47 21-Sep-22 30 80 100

7-Sep-22 9 30 47 22-Sep-22 11 36 77

8-Sep-22 9 30 47 23-Sep-22 11 34 72

9-Sep-22 9 30 47 24-Sep-22 10 32 53

10-Sep-22 9 30 47 25-Sep-22 9 30 28

11-Sep-22 9 30 47 26-Sep-22 9 27 5

12-Sep-22 30 80 100 27-Sep-22 9 27 5

13-Sep-22 30 80 100 28-Sep-22 9 27 5

14-Sep-22 30 80 100 29-Sep-22 8 26 0

15-Sep-22 30 80 100 30-Sep-22 8 26 0

TABLE 4 Labor demand forecasting for the ERFSC in Huaguoyuan with the removal of nd restrictions (persons/shift).

Date na nr nd Date nhr nmr nd

1-Sep-22 8 26 0 16-Sep-22 30 80 319

2-Sep-22 8 26 0 17-Sep-22 30 80 319

3-Sep-22 30 80 1430 18-Sep-22 30 80 260

4-Sep-22 30 80 1430 19-Sep-22 30 80 279

5-Sep-22 30 80 1430 20-Sep-22 30 80 247

6-Sep-22 9 30 47 21-Sep-22 30 80 185

7-Sep-22 9 30 47 22-Sep-22 11 36 77

8-Sep-22 9 30 47 23-Sep-22 11 34 72

9-Sep-22 9 30 47 24-Sep-22 10 32 53

10-Sep-22 9 30 47 25-Sep-22 9 30 28

11-Sep-22 9 30 47 26-Sep-22 9 27 5

12-Sep-22 30 80 269 27-Sep-22 9 27 5

13-Sep-22 30 80 310 28-Sep-22 9 27 5

14-Sep-22 30 80 302 29-Sep-22 8 26 0

15-Sep-22 30 80 352 30-Sep-22 8 26 0

management, the demand for labor at each activity node of the

ERFSC reaches its maximum, and the demand for end-delivery

services staff increases dramatically, making it difficult for the

existing end-delivery services system to cope, leading to delayed

deliveries.

As the silent management interventions are lifted, residents in

low-risk zones can shop offline, thereby reducing the demand for

labor at each activity node of the ERFSC. In Table 3, when na, nr
and nd all reach a threshold value, it indicates that the current labor

force cannot complete the required task and must be increased.

Table 4 provides the amount of labor required per shift, which can

serve as a basis for adjusting the total labor demand for multiple

shifts while planning staff requirements. Overall, the results of

the analysis demonstrate the validity of the developed model and

provide a scientific basis for decision-making in practical work.

The use of the sampling average approximation technique enables

the estimation of the expected value of the optimal solution, taking

into account the stochastic nature of the problem and the instability

caused by multiple parameters, thereby providing valuable insights

for the management of labor resources in ERFSC.
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FIGURE 8

The ERFSC labor demand forecasting in the Huaguoyuan region.

TABLE 5 Correlation analysis between risk zones and the number of

personnel in each node of ERFSC.

na nr nd

nhr 0.77 (0.000∗∗∗) 0.971 (0.000∗∗∗) 0.996 (0.000∗∗∗)

nmr 0.309 (0.097∗) 0.215 (0.253) 0.063 (0.742)

nlr −0.835 (0.000∗∗∗) −0.973 (0.000∗∗∗) −0.926 (0.000∗∗∗)

∗∗∗ , ∗Represent 1%, 10% significance levels, respectively.

4.3.4.2. Correlation analysis

To investigate the influence of the number of individuals in

the risk area on the number of staff required at each node of the

ERFSC, this study adopted Pearson correlation analysis combined

with Tables 1, 4 to provide a quantitative description. Pearson

correlation analysis is a statistical method used to measure the

closeness of the linear relationship and the direction of correlation

between two variables (Asuero et al., 2006; Sedgwick, 2012). Based

on the calculations, as shown in Table 5, without controlling for

variables, we found that nhr had correlation coefficients of 0.77,

0.971, and 0.996 with na, nr , and nd, respectively. This indicates a

strong positive correlation between nhr and these three variables, all

of which are statistically significant at a level below 0.01 (p-values:

0.000). Thus, we can reject the null hypothesis and conclude that

there is a strong positive correlation between nhr and na, nr , and nd.

Similarly, we found that nlr had correlation coefficients of -

0.835, -0.973, and -0.926 with na, nr , and nd, respectively. This

suggests a strong negative correlation between nlr and these three

variables, all of which are statistically significant at a level below

0.01 (p-values: 0.000). Therefore, we reject the null hypothesis and

conclude that there is a strong negative correlation between nlr and

na, nr , and nd. However, for the correlation between nmr and na, nr ,

and nd, we found correlation coefficients of 0.309, 0.215, and 0.063

respectively, with corresponding p-values of 0.097, 0.253, and 0.742.

This indicates that in the specific context of this study, we cannot

reject the null hypothesis and conclude that there is no correlation

between nmr and na, nr , and nd. This conclusionmay contradict our

intuition. We speculate that this may be due to the smaller β values

set in the model. However, the setting of β values must align with

the actual situation and cannot be arbitrarily increased. Therefore,

in the specific scenario of this study, our conclusion is valid.

The correlation analysis results mentioned above hold

significant academic implications for studying the impact of

the number of personnel in high-risk areas on the personnel

requirements at various nodes of the emergency food supply

chain. By exploring the strong positive correlation between

nhr and na, nr , and nd, as well as the strong negative

correlation between nlr and na, nr , and nd, we gain a better

understanding of how changes in personnel numbers affect

different nodes of the emergency food supply chain. Additionally,
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although no correlation was found between nmr and na, nr ,

and nd, this provides guidance and inspiration for further

research to delve into the complex relationships among these

variables.

In general, the analysis results confirm the efficacy of the

developed model and provide scientific basis for decision-

making in practical work. Given the stochastic nature of the

problem and the instability caused by multiple parameters,

a sampling average approximation method can be used

to estimate the expected value of the optimal solution

(Kleywegt et al., 2002; Verweij et al., 2003), providing

valuable insights for labor resource management in the

ERFSC.

These research findings hold academic significance as they

demonstrate the potential of the model in managing food supply

chains during emergencies. Moreover, the reliability and accuracy

of the model serve as the foundation for further improvement and

development by researchers. Future research can explore ways to

optimize the parameter settings of the model in order to enhance

its predictive performance and application scope.

5. Discussion

The outbreak of a public health emergency requires the

establishment of an emergency food supply chain to ensure the

basic needs of the population. In this study, we focused on

constructing an ERFSC and distribution network to meet both the

requirements of epidemic prevention and food supply guarantee.

We emphasized the importance of labor force planning and

assignment in the food supply chain, especially during times of

crisis such as the outbreak of a pandemic. The scarcity of labor

force in the food supply chain was identified as a critical challenge

that needed to be addressed (Luckstead et al., 2021; Nagurney,

2021).

To overcome this challenge, we proposed to accurately forecast

labor demand in each activity of the ERFSC by establishing

labor demand forecasting models, which could provide valuable

insights for companies to effectively manage and allocate their labor

resources, ensuring the normal operation of the food supply chain

and guaranteeing food security in society.

Furthermore, we highlighted the need for diversification in

agricultural suppliers and the establishment of long-term strategic

cooperation agreements with agricultural provinces and import

agents. Additionally, involving local farmers and farms as suppliers

can not only ensure regular food supply but also cater to the

demand during emergencies. The role of supply and marketing

cooperatives as local aggregation centers for high-quality locally

grown products was also emphasized to strengthen the link between

urban and rural food supply.

The optimization of layout distribution centers and connection

points was identified as a necessary measure to be taken

in case of disruptions in the existing food supply chain.

Moreover, community engagement and mobilization of residents

to participate in end-delivery were suggested as a practical solution

when there is a shortage of labor force. In the long run,

enhancing the development of the necessities industry chain and

the construction of an information platform will promote the

sharing of emergency material information resources and facilitate

integration with the national emergency platform.

6. Conclusions

In this study, we have presented a comprehensive approach to

address the disruptions in food supply chains during public health

emergencies. Our research focuses on the design of ERFSC and

the forecasting of labor demand, aiming to ensure the provision of

necessities to affected areas.

To achieve this goal, we have proposed a multi-level ERFSC

framework that can effectively adapt to different risk levels. The

framework leverages local manufacturing and nearby sourcing

strategies to enhance the resilience and sustainability of the supply

chain (Alhawari et al., 2021; Boehme et al., 2021; Burgos and

Ivanov, 2021). By utilizing local resources and optimizing logistics

and supply chain infrastructure, the framework enables the rapid

establishment of a coordinated ERFSC network. This network can

dynamically adjust the food supply according to changes in the

regional risk level, ensuring the continuous operation and efficient

distribution of necessities such as food and protective equipment.

To accurately forecast food demand, we have developed a

model that incorporates the trend of regional outbreaks. This

model enables us to forecast the required food quantities for

different risk level regions. By aligning the supply chain operations

with the predicted demand, we can effectively meet the needs of

disaster-affected populations for necessities.

Furthermore, we have formulated a stochastic planning model

to determine the labor demand in the food supply chain during

emergencies. This model allows for the swift allocation of the

required workforce for the distribution of emergency food supplies.

It ensures that the labor force is properly allocated based on the

fluctuating demands, guaranteeing the timely delivery of relief food.

To validate the effectiveness of our proposed approach, we

conducted a case study in the Huaguoyuan area of Guiyang, China.

The results demonstrated that our models and frameworks are

practical and effective in ensuring the provision and accurate

distribution of necessities in regions with varying risk levels.

The significance of this research rests in its contribution to the

field of emergency management by providing a systematic and

practical solution for the construction of ERFSC. By combining

local resources and optimizing supply chain networks, our

approach effectively addresses the challenges of food security and

precise distribution during public health emergencies. Government

agencies and practitioners can utilize our findings as a theoretical

foundation for informed decision-making in developing food

security measures and action plans.

While we have made important strides in this study, there are

areas for future research. One such aspect is the need to further

expand and refine our food demand forecasting model, particularly

by considering additional factors such as geographical variations

and policy frameworks. Moreover, the scalability and adaptability

of our approach should be thoroughly examined in different

geographical contexts and under various emergency scenarios.

In summary, our research provides valuable insights and

practical guidance for designing ERFSC during public health

emergencies. The proposed models and frameworks offer an
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effective means to ensure the continuous provision and efficient

distribution of necessities This study contributes to the existing

body of knowledge in emergency management and holds promise

for practical applications.
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