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Non-invasive blood glucose level (BGL) evaluation technology in skin mucus is

a wearable stress-detection means to indicate the health status of live fish for

compensating the drawbacks using traditional invasive biochemical inspection.

Nevertheless, the commonly used methods cannot accurately obtain the BGL

variations owing to the influence of an uncertain glucose exudation rate,

ambient e�ects, and individualized di�erences. Our study proposes a non-invasive

multi-sensor-fusion-based method to evaluate the dynamic BGL variations using

the enhanced gray wolf-optimized backpropagation network (EGWO-BP) to

continuously acquire more accurate trends. Furthermore, the K-means++ (KMPP)

algorithm is utilized to further improve the accuracy of BGL acquisition by

clustering fish with full consideration of its size features. In the verification test,

turbot (Scophthalmus Maximus) was selected as an experimental subject to

perform the continuous BGL monitoring in waterless keep-alive transportation

by acquiring comprehensive biomarker information from di�erent parts of fish

skin mucus, such as fins, body, and tails. The comparison of results indicates that

the KMPP-EGWO-BP can e�ectively acquire more accurate BGL variation than

the traditional gray wolf-optimized backpropagation network (GWO-BP), particle

swarm-optimized backpropagation network (PSO-BP), backpropagation network

(BP), and support vector regression (SVR) by mean absolute percentage error

(MAPE), root mean square error (RMSE), and coe�cient of determination (R2).

Finally, the proposed BGL fusion evaluation model can precisely acquire the live

fish’s physiological stress states to substantially reduce the potential mortality for

the live fish circulation industry.
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stress measurement, non-invasive blood glucose detection, data fusion model, live fish

waterless transportation, clustering
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1. Introduction

Live fish waterless transportation is a newly emerged strategy,
which can effectively reduce the logistic cost with less wastage of
resources, such as wastewater, oxygen, and maintenance energy
(Wang et al., 2020). In this particular condition, fish are constantly
exposed to different natural or artificial stressors during and
after transportation, such as vibration, hypoxia, temperature
anomaly, and package injuries, which may negatively affect fish’s
physiological status (Vanderzwalmen et al., 2020). Overstress
reaction, also known as inappropriate stress, is considered a key
influence that can weaken the fish’s immune defense and reduce its
resistance to pathogens and survival ability (Wang et al., 2021; Li
D. et al., 2022). Therefore, continuously tracking the physiological
stress transition of fish is of great significance to keep it in healthy
condition. However, the continuous detection of the blood stress
biomarkers in fish by the direct use of a biosensor is difficult due
to blood coagulation and coalescing protein on the sensor. To
dynamically and stably acquire the fish stress states, some scholars
designed needle-type sensors to dynamically obtain fish stress levels
by implanting the electrode in the interstitial fluid (IF) of the
fish eye (Wu et al., 2015). These studies also discovered that the
BGL in the IF of fish eyes is highly related to the BGL in fish,
which reasonably supports the dynamic BGL monitoring in the IF
of the fish eye for approximately reflecting the BGL variation in
fish (Endo et al., 2009; Wu et al., 2019a). Notwithstanding, such
sensing technique intrinsically has many defects for carrying out
continuous stress detection, such as it being easy to cause extra
stress, its complex operation, and vulnerability to introduce more
interference. Furthermore, the in situ implantable monitoring often
causes injury to fish bodies, which causes inconsistency with the
actual stress state.

At present, some studies have proposed non-invasive detection
means to measure the fish stress levels, such as glucose, lactate,
or cortisol, as a reflection of the physiological response degree
from fish skin mucus, urine, feces, and aquaculture water aiming
at the drawbacks of the invasive inspections (Aerts et al., 2018;
Fernández-Alacid et al., 2019; Samaras et al., 2021; Feng et al., 2022;
Wang et al., 2022). Inspired by the abovementioned research, the
different levels of stress indicators, such as glucose and cortisol,
in different parts of the fish skin mucus can partially indicate the
stress state and trends in fish. In addition, the fish skin mucus
glucose vs. plasma glucose shows a highly significant strong positive
correlation (Guardiola et al., 2016; Cai et al., 2020). Therefore,
using the data fusion method to establish the estimation model by
coupling the BGL in fish skin mucus and interstitial fluid of fish
eye can more accurately estimate the stress variations of fish. In this
study, the non-invasive accurate BGL estimation strategy by multi-
sensor-fusion-based technique is urgently demanded to precisely
obtain the live fish stress conditions by continuous detections of
skin mucus BGL changes on the whole fish (Sadoul and Geffroy,
2019).

Multi-sensor data fusion has been an information processing
process that uses computer technology to automatically analyze and
synthesize information and data from multi-sensor under specific
criteria to complete required estimates and decisions (Wang and
Zhang, 2019; Lin et al., 2021; Wu et al., 2021; Li J. et al., 2022).
Moreover, more research on dynamic BGL diagnosis happened in

the multi-sensor-based fusion detection in human healthcare fields.
Song et al. (2015) put forward multi-modal spectrum-integrated
circuit assistance by impedance and near-infrared spectroscopy,
which fuses the data with the artificial neural network (ANN)
for non-invasive BGL measurement. Harman-Boehm et al. (2010)
designed a multi-sensor non-invasive BGL sensing device that
integrates a heat conduction sensor, an impedance sensor, and
an ultrasonic sensor and fuses the monitoring results of the
three methods mentioned above by applying the least-squares
method. Cho estimates BGL via a linear model of the human
body’s metabolic parameters using physiological biosensors, such
as temperature, relative humidity, and photoelectric sensors (Cho
et al., 2004). In addition, the BGL estimation models can be
improved by using machine-learning tools, such as ANN, SVR, and
Extreme Gradient Boosting (XGBoost), which have demonstrated
significantly enhanced results for predicting BGL under multiple
inputs (Gupta et al., 2021). Through the above comprehensive
discussion of the non-invasive stress detection and the fusion
technology, it is applicable and feasible to design multi-sensor-
fusion-based monitoring techniques to accurately estimate the live
fish stress variations.

The main contribution of this study is to continuously obtain
the accurate stress signal of fish by multi-sensor fusion-based
BGL estimation techniques and provide a more scientific basis for
monitoring fish stress states in adverse conditions. This article is
organized as follows: Section 1 introduces BGL fusion research
and relevant literature discussion. Section 2 uses the Kalman
filtering algorithm against impact interference to preprocess the
measured data. Then, the abnormal BGL values are eliminated
to improve the anti-interference ability. After that, an enhanced
gray wolf optimizer is proposed to optimize the initial threshold,
weight, and structures of the BP neural network to improve the
fusion performance significantly. In Section 3, the comparison
experiments are carried out to verify the effectiveness of the
proposed fusion technologies. In the last section, the conclusion
is stated to clarify the purpose of this study and its potential
application values.

2. Materials and methods

2.1. Non-invasive
multi-sensor-fusion-based BGL monitoring
system

The NMBGLMS is established for the simultaneous and
integrated acquisition of the different parts of skinmucus BGL data.
The scenario of live turbot waterless transportation and dynamic
stress monitoring is shown in Figure 1. Before testing this system,
the experimental subjects should be simulated live fish in waterless
transportation (in waterless and low-temperature conditions) to
quickly deploy the invasive and non-invasive BGL sensors on fish
and perform contrast tests. In this study, the fish were placed
in clean seawater (with circulating purification and oxygenation,
water temperature 15–20◦C) for 1–2 days. Then, cold dormancy
treatment began to be carried out. The seawater is cooled by a
gradient (2◦C per h). When the seawater temperature reaches
4◦C, fish generally enter a cold anesthesia stage (no significant
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FIGURE 1

Scenario of live turbot waterless transportation and dynamic stress monitoring.

response to external interference and stimulation). Afterward, fish
are placed on foam trays to prevent the impact of vibration on
monitoring. Then, the patch-typed BGL sensors are deployed in
the fins, body side, and tails of the fish for non-invasive stress state
detection. Meanwhile, the minimally invasive blood glucose sensor
is implanted in the interstitial fluid of fish sclera to continuously
obtain the BGL trends to evaluate the accuracy of BGL fusion
performance. The BGL trends in IF are the standard reference to
verify the accuracy of the multi-sensor-fusion-based methods.

The portable electrochemical module accurately converts
different parts of the BGL current signals from fish skin mucus to
the BGL data series. All these processes are under waterless and
low-temperature conditions of 4–6◦C. Moreover, the deployment
tasks should be finished within 10–15min to minimize the newly
introduced stress interference during the sensor deployment.
Afterward, the film covers the sensors to keep the skin mucus
less influenced by ambient variations. Ambient temperature and
relative humidity are monitored for the dynamic temperature
compensation and sensitivity calculation of all BGL sensors.
The portable workstation has eight channels to harvest the
skin mucus BGL trends. These data are collected by container-
based MCU (STM32F103, STMicroelectronics, Switzerland) with
wireless communication module Lora (SX1278, Ebyte Electronic
Technology Co., Ltd, China). Next, it relays and transmits these
data to the mobile device (with a built-in Lora transceiver),
which is mounted on a refrigerated truck or in low-temperature
preservation conditions. The acquired stress data series are
continuously sent to the BGL monitoring and fusion modeling
server for data persistence storage, dynamic analysis, data fusion
estimation, and evaluation. In this study, BGL values in IF are
approximately recognized as BGL changes in fish, which merged
with the multi-sensors in skin mucus sensing data to establish

training and test data sets for the subsequent BGL fusion modeling
and verifications. The working procedures of NMBGLMS are
illustrated in Figure 2.

2.2. Sensor preparation and calibration

In this study, flexible patch-typed BGL sensors and relevant
materials and methods were used according to Wang et al. (2019)
and Yu et al. (2021). Three electrodes of the prepared, flexible PET-
based (polyethylene terephthalate) gold electrode are the working
electrode, the reference electrode, and the auxiliary electrode.

We coated the reference electrode with silver paste, placed it on
the heating plate at 50◦C, and heated it for 1 h for later treatment
to obtain the Ag/AgCl reference electrode. The chitosan/carbon
nanotube solution was mixed thoroughly with glucose oxidase
solution [20 mg/mL in phosphate-buffered saline (PBS) of pH
5] in a ratio of 2:1 (volume by volume). Then, 1.6 µL of the
abovementioned glucose oxidase solution was drop-casted on the
Prussian blue-coated PET gold electrode (PGE) surface. After
drying the electrode under ambient conditions, 2.5 µL of 0.5 wt%
Nafion was drop-casted on the BGL sensor and dried at room
temperature. Finally, the PGE glucose sensor was stored at 4◦C
and ready for BGL monitoring. Figure 3 demonstrates the primary
process of preparation of a flexible blood glucose sensor. After
each addition of glucose solution, we blow the solution for ∼30 s
with a pipette gun to make glucose oxidase fully catalyze glucose
oxidation and then conduct the i-t method detection and record
the linear ranges.

In addition, we prepare a batch of glucose sensors and store
them in a refrigerator at 4◦C. We also take three of these sensors
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FIGURE 2

Working procedures of NMFBGLMS for BGL monitoring of fish skin mucus and IF of the fish eye.

to test the glucose solution (2.2 mmol/L) using the i-t method and
record the steady-state current value each time to test the stability
for 2 weeks (three times each week). Then, the same sensors are
used to measure glucose standard solution (2.2 mmol/L) five times
continuously and calculate its reproducibility. The specifications of
the flexible BGL sensors are shown in Table 1.

The calibration process of the BGL sensor is to convert the
measured current signal into the estimated BGL values (Wu
et al., 2019b). The single-point technology is a popular calibration
method expressed in Equation (1).

{

S = Ic/GF

G (t) = I (t) /S
(1)

where S represents the sensitivity of the sensor. Ic and GF are the
measuring current and reference BGL at the calibration time t.G (t)

and I (t) are the BGL and the output current of the sensor at the
time t.

Due to the influence of temperature on the instantaneous
concentration of glucose, enzyme catalytic activity, and
physiologically stable surroundings, the different temperatures
of the fish body will affect the output current value during its
stress monitoring. Assuming that the current before temperature

compensation is I (t), the current after temperature compensation
is İ (t), the monitored temperature changes 1T◦C compared with
the standard temperature, and the compensation coefficient is
a, the temperature compensation function of the sensor output
current is shown in Equation (2).

İ (t) = I (t) · (1+ a · 1T) (2)

The BGL sensor calibrated and compensated by the above
method is illustrated as shown in Equation (3):

G (t) = İ (t)/S = [I (t) · (1+ a · 1T)]/(Ic/GF) (3)

2.3. Data fusion preprocessing

BGL sensors are easily affected by abnormal ambient

variations, which may cause particular impact interference. The

acquired raw BGL data are usually mixed with measurement

noise and various interference signals to hinder the accuracy
and effectiveness of fusion calculations. Therefore, fusion
data preprocessing is generally divided into two stages to
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FIGURE 3

Primary process of preparation of flexible BGL sensor.

TABLE 1 Specifications of the flexible BGL sensor in di�erent temperatures.

Temperature
(◦C)

Range
(mmol/L)

Sensitivity

(µA·mM−1·cm−2)

Stability (%) Reproducibility (standard
deviation, SD)

4 1.8–7.7 3.67 2.8 1.2

5 1.7–7.6 3.14 3.0 1.3

6 1.6–7.7 3.93 3.1 1.4

improve the quality of the obtained BGL data series. One is
eliminating the large BGL monitoring deviations generated
by abnormal sensing acquisitions. Another is to decrease the
noise to improve the fusion performance by using a series
of advanced signal noise reduction methods (Feng et al.,
2022).

2.3.1. Large deviation elimination
Before fusing the original data of multi-sensor measurement,

the abnormal data can be found and eliminated by using the
data distribution map method in data detection technology

(Hubert and Vandervieren, 2008). The main parameters reflecting
the data distribution structure in the distribution chart are

median TM , upper quantile FU , lower quantile FL, and quantile

dispersion dF . N sensors are used to detect the fish BGL
variations independently. The monitoring tasks are arranged in

the order of measuring parameters from small to large to obtain

a group of detection sequences: T1,T2, · · · ,Tn−1,Tn. Here, T1

is a lower limit of the detection sequence and Tn an upper
limit of the detection sequence. The median TM is defined as
Equation (4):

TM =
Tn/2 + Tn/2+1

2
(4)

The upper quintile FU is the interval median
[TM , TN] and the lower quintile FL is the median

of [T1, TM]. Quantile dispersion is expressed as
Equation (5):

dF = FU − FL (5)

The data whose distance from the median is set to be greater
than α · dF are abnormal data; that is, the judgment interval of
invalid data is shown in the following Equation (6).

|Ti − TM| > α · dF (6)

where α is a constant, generally 0.5, 1.0, 2.0, and so on. The value
of i is 1, 2, 3, . . . , n− 1, n. When the abnormal data of the detection
sequence is detected and eliminated, the remaining data is prepared
for further data-level fusion processing.

2.3.2. Kalman filtering
The Kalman filtering algorithm can entirely suppress the noise

on actual data and provide more valuable data for more advanced
data fusion processing (Guo et al., 2014). In this study, the first level
fusion process will use Kalman filtering technology to decrease the
noise in the acquired BGL series. The main steps of the Kalman
filtering algorithm are as follows:

• The predictive equation of state is expressed as
the following equation.

Xk/k−1 = FkXk−1/k−1 + BkUk (7)
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FIGURE 4

Test design for the non-invasive multi-sensor-fusion-based BGL estimation modeling and verifications.

• Where, Xk/k−1 is the current state results predicted at time
K-1; Xk−1/k−1 is the time optimal value at t-1. Fk is the state
transition matrix; Hk is the control variable matrix; and Rk is
the control gain in the current state.

• Update the optimal value equation (output of Kalman filter)

Pk/k−1 = FkPk−1/k−1F
T
k + Qk (8)

• Kalman gain equation

Kg =
Pk/k−1H

T
k

Rk +HkPk/k−1H
T
k

(9)

Kg is the Kalman gain; Hk denotes the prediction matrix; Rk is
the covariance of measurement noise.

• Update the optimal value equation (output of Kalman filter)

Xk/k = Xk/k−1 + Kg
(

Zk −HkXk/k−1
)

(10)

Xk/k−1 is the optimal estimate of the state variable at time k.
Zk is the measurement matrix of the sensors.

• To enable the Kalman filter algorithm to run iteratively, it is
also necessary to update the covariance Xk/k at the current
time K during each iteration. I is a unit matrix.

Pk/k =
(

I − KgHk

)

Pk/k−1 (11)

According to the description of the above equation, Kalman
filtering can be divided into the prediction process and the
correction process. The prediction process is to predict the current
state according to the estimated value at the previous time. The

FIGURE 5

Structure of the three-layer BP neural network.

correction process is to combine the observations and estimates
at the current time to obtain the optimal estimate closer to the
actual value.

2.4. Multi-sensor-based BGL fusion
estimation modeling

2.4.1. Experimental setup
Without loss of generalization, 50 tails of turbot were used in

BGL data harvesting and statistics in this experiment, which was
classified according to their size features by using the clustering
algorithm K-means++ (Xu et al., 2014). In each group, three
tails of fish that size near the center of clusters were selected to
evaluate the accuracy of BGL estimations under the conditions 4–
6◦C. Before the BGL fusion estimation test, the patch-type BGL
sensor is calibrated and compensated to acquire the precise BGL
trends in different parts of fish skin mucus, body sides, fins, and
tails to carry out the BGL acquisitions. Meanwhile, the continuous
minimally invasive BGL monitoring device (AiDEX, MicroTech
Medical, China) was implanted into the IF of the fish sclera to
acquire the BGL data series.
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FIGURE 6

Model of KMPP-EGWO-BP-based BGL fusion estimation.

Furthermore, the acquired BGL series is constructed and
separated into two parts. One part that counts for 80% is used as the
training dataset for fusion algorithms’ training and optimization.
Another aspect of the BGL data series accounts for 20% of verifying
the performances of multi-sensor-based BGL fusion estimation.
Figure 4 illustrates the specific conceiving and procedures of the
verification experiments.

2.4.2. BP fusion process
This study uses multi-sensors attached to different fish

parts for comprehensive and accurate BGL estimation using the
backpropagation network (BP) (Wang, 2020). Multi-sensor data
fusion technology organically combines the signals collected by
sensors in various places to make the indexes more clearly
measured, enhancing the reliability and accuracy of the monitored
results (Zou et al., 2020). Through training data samples, the
weights and thresholds of the network are constantly revised
to make the error function decline along the negative gradient
direction and approach the expected output. However, the BP
network also has shortcomings, such as the slow convergence speed
of the network and the training being prone to local minima.
For this reason, the enhanced gray wolf optimizer (EGWO)

with fast running speed and good global optimization ability
is introduced to solve the problems that the BP network is
easy to fall into slow convergence speed, and local minima are
easy to occur.

The structure of the BP network is optimally configured
as per the following rules. The input layer is the BGL data
series from different positions, such as fins, bodies, and
tails, collected by eight sensors for one fish. The number
range of hidden layer neuron nodes can be determined
according to the empirical formula (12). The output layer
is the BGL series of the interstitial fluid in the fish eye.
Figure 5 illustrates the structure of the three-layer BP
neural network.

q =
√
M + L+ a (12)

where q is the number of neurons in the hidden layer;
M is the number of neurons in the input layer; L is the
number of neurons in the output layer; and a is a fixed
constant a ∈ (0, 10).

The activation function of the hidden layer in the BP neural
network is sigmoid, and the transfer function of the output layer is
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FIGURE 7

Experiment description of BGL fusion estimation modeling and verification.

TABLE 2 Comparison of sensor output current under the film-covered

and uncovered conditions.

Temperature
and relative
humidity (◦C,

%)

Standard
output
(nA)

Film-
covered
sensor
(nA)

Film-
uncovered
sensor (nA)

4, 69 143.7 159.5 173.9

5, 74 152.2 136.3 102.7

6, 73 161.4 172.5 118.1

pure line, which is expressed by the following two Equations (13)
and (14):

Sigmoid (x) =
1

1+ e−x
(13)

Pureline (x) =

{

x, x ≥ 0
0, x < 0

(14)

2.4.3. Optimization of BP fusion process
The gray wolf optimizer (GWO) is designed to accurately

approach the target by imitating the leadership level of the gray
wolf population in nature and the way of group hunting (Liu et al.,
2021). Mirjalili verified through a series of standard test functions
that GWO has faster convergence speed and stronger stability than
particle swarm optimization (PSO) and genetic algorithms (GAs)

(Faris et al., 2018). The algorithm divides individuals into four
classes according to fitness values: α, β , δ, and ω. α is the optimal
solution. β and δ are the second and third optimal solutions,
and the candidate solution is ω. The mathematical model of the
algorithm is shown in Equation (15):

{

D =
∣

∣C · Xp (t) − X (t)
∣

∣

X (t + 1) = Xp (t) − A · D
(15)

where D is a distance vector between gray wolf individuals and
prey. t is the current iteration number. Xp (t) is the position vector
of prey. X (t) is the gray wolf individual position vector. The
convergence factor A = 2a · r1 − a. C = 2r2 is a random vector
of [0,1], and a is the control parameter.

Through the above hunting strategy, the gray wolf population
can identify its prey’s location and surround it. In the mathematical
abstract search space, the position vector of ω is updated by
calculating the position vector of α, β , δ, which is expressed in
Equation (16).











Dα = |C1 · Xα − X|
Dβ =

∣

∣C2 · Xβ − X
∣

∣

Dδ = |C3 · Xδ − X|
(16)

where X indicates the current position of the gray wolf. C1, C2,
and C3 are the random disturbance vector. Xα , Xβ , and Xδ are the
positions of α, β , and δ.Dα ,Dβ , andDδ are the distance between the
current gray wolf individual and α, β , and γ , respectively. X (t + 1)
is the final position vector of the wolf ω in this round of updates,
which is denoted in Equation (17):
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{

X (t + 1) = X1+X2+X3
3

X1 = Xα − A1 · Dα ,X2 = Xβ − A2 · Dβ ,X3 = Xδ − A3 · Dδ

(17)

However, the above-average hunting position calculation shows
a shortage of search performance. Two strategies are applied to
enhance the optimization ability of the original gray wolf algorithm.
One is to improve the calculation method of non-linear control
parameters. Another is the upgrading of the dynamic weight
position update strategy.

• The improved non-linear control parameters.
The GWO algorithm has a self-adaptive convergence

factor and control parameter mechanism (Tian et al., 2020;
Zhang et al., 2023). The linear decrease causes the convergence
factor A to change within the interval [−a,+a]. When |A|>1,
the wolves scatter for global search. When |A|<1, the wolf
pack is close to the optimal solution. The control parameter
affects the convergence factor A’s convergence and then affects
the global or local search of the wolf pack. The control
parameter decreases linearly from 2 to 0 with the increase a.
Because the actual optimization process of GWO is complex
and non-linear, the linear reduction cannot wholly balance
the searchability of global and local optimization. Therefore,
this study proposes a non-linear control parameter strategy
based on the exponential function to improve convergence
performance. The Equation (18) is as follows:

a = amax −
{

(amax − amin) ×
[

exp

(

In2 ·
t

tmax

)

− 1

]}

(18)

where tmax is themaximumnumber of iterations. amax = 2 and amin

= 0.
The improved control parameter a becomes non-linear

decreasing trends. Compared with the linear reducing strategy,
at the beginning of the algorithm, the decreasing speed a is
lower, which increases the global search ability. At the later stage
of the algorithm, the decreasing speed is more considerable,
which improves the algorithm’s convergence rate for local
optimization problems.

• Dynamic weight position update strategy.

The GWO algorithm updates the position under the
leadership of α, β , and δ wolf, but Equation (16) shows
that α, β , and δ have the same influence. However, these
leader wolves have different characteristics and leadership
influences. This study proposes a dynamic weight position
update strategy based on fitness value and step Euclidean
distance in combination with the dynamic weight update
strategy in Equation (19).



















Wi = |Xi|/
3
∑

j=1

∣

∣Xj

∣

∣ , i = 1, 2, 3

wα = Fα

Fα+Fβ+Fδ
,wβ = Fβ

Fα+Fβ+Fδ
,wδ = Fδ

Fα+Fβ+Fδ

X (t + 1) = wα ·W1·X1+wβ ·W2·X2+wδ ·W3·X3
3

(19)

where Fα , Fβ , and Fδ are fitness values. W1, W2, and W3 are
the learning rates of the gray wolf population for α, β , and δ,
respectively. Wolf ω updates the position X (t + 1) in each round.
By carefully considering fitness weight w and learning rate W, we
dynamically adjust the proportion of influence weight on updating
individuals. In this way, the ratio of influence of α, β , and δ on gray
wolf individuals can be more prominent. At the same time, it can
better balance this algorithm’s learning and searching ability.

2.4.4. KMPP-EGWO-BP-based BGL fusion
estimation

The basic idea in this research is to use EGWO to optimize
the BP neural network, which takes the position information of
the improved gray wolf algorithm as the weight and threshold of
the BP neural network (Zhao et al., 2019; Du et al., 2021). With
the continuous change of the gray wolf ’s position, the weights
and thresholds of BP are also constantly adjusted and optimized.
Through optimizing the EGWO algorithm, the effect of BP neural
network fusion performance is further improved. At the same time,
the convergence speed and accuracy of the BP neural network are
further enhanced. Figure 6 illustrates the model of the proposed
KMPP-EGWO-BP-based BGL fusion calculation’s inaccurate BGL
estimation. Before BGL data fusion calculation, the subjects are
classified into one group. The optimized BP fusion models and
key configured parameters are constructed and recorded according
to the clustered groups. Afterward, an optimized BP model is
specified by fish size features for the forthcoming BGL data fusion
estimations. The specific computing process is described and
discussed in the following sections.

TABLE 3 Sensors’ output for fish skin mucus BGL monitoring before and after sensors’ calibration and compensation.

Standard
glucose
solution
(mmol/L)

Original
current (nA)

Current after
compensation

(nA)

BGL
measurement

before
compensation

(mmol/L)

BGL
measurement

After
compensation

(mmol/L)

BGL
measurement
error before

compensation
(%)

BGL
measurement
error after

compensation
(%)

5.2 179.93 183.51 4.54 5.13 12.7 1.34

4.2 139.17 146.78 3.98 4.13 5.23 1.67

3.5 113.46 127.84 3.32 3.46 5.14 1.14

2.2 89.47 97.52 1.87 2.23 15.0 1.36
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FIGURE 8

Data preprocessing e�ect after the significant deviation removal and noise elimination by Kalman filtering (sensor number: fins 1–4; body 1–2; tails

1–2, α = 0.5).

The specific working steps of the KMPP-EGWO-BP network
are described as follows:

Step 1: The experimental subjects are clustered according to
their size features. For each cluster, the system constructs the
following multi-sensor-fusion-based BGL evaluation model.

Step 2: The first is to set the initial threshold and
weight of BP and to determine the number of nodes in
the network’s hidden layer according to the empirical
formula (11).

Step 3: GWO initializes its basic parameters, such as gray
wolf population, positions, and population size calculation. It
also initializes the critical parameters A, a, and K according to
the network structure and determines the maximum number
of iterations.

Step 4: BP determines the neural network’s fitness and the
output node’s activation functions.

Step 5: The hybrid fusion method calculates the individual
fitness value of the wolf and finds out the optimal solution of the
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TABLE 4 Data pretreatment evaluation after the large error removal and Kalman filtering.

Pretreatment of acquired BGL series for
significant error and noise

Di�erent BGL
monitoring position

Average
range

Average
variance

Average
coe�cient of

variation

Without pretreatment Fin 1–4 0.581 0.0265 0.122

Body1–2 0.539 0.0249 0.135

Tail 1–2 0.517 0.0270 0.123

Pretreatment Fin1–4 0.207 0.0052 0.0579

Body 1–2 0.232 0.0069 0.0621

Tail 1–2 0.245 0.0056 0.0677

TABLE 5 Mean absolute error between the output value and the real

value of BP with the number of neurons in hidden layers.

Number of
neurons in
hidden layer
of BP neural
network

MAE of
BGL (fins)

MAE of
BGL
(body)

MAE of
BGL (tails)

7 0.28 0.26 0.24

8 0.22 0.23 0.24

9 0.24 0.25 0.27

10 0.28 0.26 0.29

11 0.29 0.30 0.28

fitness value (the positionXα of the wolf α), the suboptimal solution
(the position Xβ of the wolf β), and the third optimal solution (the
position Xδ of the wolf δ). It also updates the location information
of the remaining gray wolf ω according to Equation (18) and the
values of parameters A, C, and a.

Step 6: The training and testing samples for experiments
are selected and the error and its corresponding
optimal solution (the position of Xα the wolf α)
are recorded.

Step 7: Whether the maximum number of iterations has been
reached needs to be judged or whether the set error threshold
has been satisfied. If the conditions are met, the loop operations
need to be terminated; otherwise, step (4) to step (6) need to
be repeated.

Step 8: Finally, the returned results are the location of the wolf
α, that is, the location of the optimal solution. It also includes
the location of α in each iteration of the training process, the
minimum error of the location α, and the error of training and
test samples.

Through EGWO, feasible initial weights and threshold values
of the BP neural network are generated to correctly solve the
problems of local minimum and slow convergence problems.
Finally, the BGL fusion evaluation models are established and
saved for the one clustered fish group with similar size features.
The application of the proposed fusion model is to compute the
minimum distance of fish size features with one clustered center
and use the corresponding model to finish the accurate fusion
BGL estimation.

3. Results and discussion

In this study, MATLAB (2020) was used to implement the
data filtering preprocessing and multi-sensor-fusion-based KMPP-
EGWO-BP algorithm. In the following sections, the BGL data
fusion algorithm was validated, analyzed, and evaluated from five
aspects: BGL fusion estimation discussion, optimization of neural
network structure, data fusion error, and comprehensive evaluation
of fusion performance.

Through the experiment schemes, the turbot size was classified
according to its body size features (weight, width, and length).
Three groups were classified according to their size features by
using the K-means++ for comprehensively analyzing the BGL
fusion performance. After the clustering process, the centers of
the three groups were as follows: cluster 1: (center 1: weight =
970.2 g, length = 35.9 cm, and width = 26.8 cm), cluster 2: (center
2, weight = 973.1 g, length = 36.9 cm, and width = 27.4 cm),
and cluster 3: (Center 3, weight = 977.4 g, length = 37.5 cm, and
width = 27.9 cm). Three tails of turbot were selected and tested
for more accurate BGL estimation modeling and evaluation, which
had closed sizes with similar physiological stress variations, such
as approximate BGL, heart rate, and respiratory characteristics, to
the center in each group. These BGL data series were harvested
and fused in the mobile device. In addition, the EGWO-BP fusion
model was optimized, and its critical parameters were recorded
according to fish size features, which utilized the K-means++
algorithm to classify the fish for upgrading the efficiency of the
fusion performance. As can be seen from Figure 7, the established
KMPP-EGWO-BP-based BGL fused estimation modeling and
assessment were compared to verify the accuracy under waterless
and low-temperature transport conditions.

3.1. Sensor calibration and data
preprocessing

The BGL monitoring error will increase when the non-
invasive BGL sensor is exposed to the low temperature and high
humidity monitoring environment. Before establishing the well-
performed BGL fusion estimation, the large deviations should
also be eliminated. Table 2 summarizes the deviations under
the film-covered and uncovered BGL monitoring at three low
temperatures 4, 5, and 6◦C. Additionally, the output current of BGL
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sensors was recorded as standard output for detecting collected
fish skin mucus with BGL 4.8 mmol/L in sealing electrolysis
cells. Meanwhile, the output of sensors under film-covered and
uncovered conditions was tested at the same BGL concentration
of skin mucus in the simulated low-temperature and waterless
adverse conditions. The deviation comparison showed that the
film-covered sensor can acquire precise BGL variations from
fish skin mucus.

The linear relationship between the sensors’ output current and
fish skin mucus BGL within 4–6◦C was tested and calculated for
precise calibrations. Table 3 illustrates the sensors’ output for skin
mucus BGL monitoring before and after the sensors’ calibration
and compensation.

Figure 8 shows the data preprocessing effect after the
significant deviation removing process and noise elimination
by Kalman filtering. The relevant calibration parameters were
solved to improve the data fusion performances. At 4–6◦C, the
output current of BGL sensors at 4, 5, and 6◦C was measured
every 5min, respectively, and the mean value taken to calculate
the temperature coefficient a = (0.0304 ± 0.00415). Therefore,
the temperature compensation coefficient a = 0.03 was taken to
adjust the sensors’ output. After compensation, the average BGL
measurement deviation decreased by approximately 18.5% within
the BGL range from 2.2 to 5.2, which provided a more precise data
source for the BGL data series for the following advanced data
fusion process.

There are three error criteria, variance, range, and coefficient
of variation, to measure the original skin mucus BGL signals.
Variance measures the degree of dispersion of a group of
data. The range represents the statistical data’s maximum and
minimum variance values. The coefficient of variation is a
relative statistic to measure the degree of data dispersion used
to compare the distribution of different sample data. Table 4
illustrates the data processing demonstration and evaluation for a
different part of the turbot after the significant error removal and
Kalman filtering by range, variance, and coefficient of variation.
Through data series pretreatment, the BGL fusion results of
our proposed algorithm were better than the direct process
of the raw data without pretreatment in terms of the criteria
mentioned above.

3.2. Optimization of EGWO-BP algorithms

The KMPP-EGWO-BP algorithm keeps approaching the
optimal fitness value as the number of iterations increases. It
converges to the optimal fitness value after about 30 iterations.
Through EGWO, feasible initial weights and threshold values of the
BP neural network are generated to correctly solve the problems of
local minimum and slow convergence problems.

Meanwhile, GWO-BP and PSO-BP algorithms reach the
optimal states after 67 and 95 iterations, respectively. The above
results show that the KMPP-EGWO-BP algorithm can expand
the optimization space, effectively avoid optimal local solutions,
and improve the convergence speed of the algorithm when using
adaptive control parameters and dynamic position weights. The
experimental result of Table 5 shows that when the number of
neurons in the hidden layer of the BP neural network is 8 and α = 5,
the mean absolute error (MAE) of the BGL value is the minimum.
In this research, the structure of the BP neural network was set as
10-8-1 according to Equation (12).

3.3. Verification of the EGWO-BP fusion
model

This study used MAPE, RMSE, and R2 to evaluate the fusion
models of KMPP-EGWO-BP, GWO-BP, PSO-BP, BP, and SVR
(Zhang et al., 2020; Yang et al., 2023). The verification criteria were
as follows: Equations (20)–(22):

MAPE =
1

m

m
∑

t=1

∣

∣Yreal− Ypred
∣

∣

Ypred
× 100 (20)

RMSE =

√

√

√

√

1

m

m
∑

t=1

(

Yreal− Ypred
)2

(21)

FIGURE 9

MAPE of BGL fusion estimation.
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FIGURE 10

RMSE of BGL fusion estimation.

FIGURE 11

coe�cient of determination (R2) of BGL fusion estimation.

FIGURE 12

Convergence comparison of the BGL fusion optimization process.
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FIGURE 13

Twenty-four hours BGL detection and evaluation for live turbot skin mucus by di�erent fusion technologies under waterless and low-temperature

adverse conditions (S1: time point at 20h, S2: time point at 22h, S3: time point at 24h; Temperature variation of 4–6◦C).

R2 = 1−

[(

m
∑

t=1

(

Ypred − Yreal
)2

)

/

(

m
∑

t=1

(

Yreal− Yreal
)2
) ]

(22)

where Yreal and Ypred is the actual value and algorithm model
output value of the n-test. Yreal is the average value of the real data
series andm is the total number of tests.

For a complete evaluation of the fusion effect, the error of
BGL fusion estimation was measured in three time points, 20, 22,
and 24 h, which were measured by 10 samples at these detection
time points to evaluate the BGL fusion accuracy. The indexes
of MAPE, RMSE, and R2 were calculated for deviation analysis.
Afterward, every control group was marked by the average value of
evaluation indexes for a more comprehensive analysis of the fusion
efficiency using KMPP-EGWO-BP, GWO-BP, PSO-BP, BP, and
SVR. In addition, the three clusters had different sampling points at
times. Finally, the samples were calculated in each sampling point
to get the average and compare the advantages and disadvantages
by applying the different fusion strategies. Figures 9–11 show
measurement errors after taking the appropriate fusion methods.

As for the BGL fusion estimation in the time points of
20, 22, and 24 h, the average MAPE of KMPP-EGWO-BP was
∼1.527%, and such index of GWO-BP was 1.643%, which had
more accuracy than 2.31% of PSO-BP, 6.693% of BP, and 7.397%
of SVR, respectively. With the increased fish size, the MAPE was
generally added by 8.4% in cluster 2 and 12.2% in cluster 3.

TABLE 6 Performance verification of the proposed BGL fusion model.

BGL
sampling
time point
(hours)

BGL in
fish

(mmol/L)

BGL in IF
of the fish
eyeball
(mmol/L)

BGL estimation
by the proposed
fusion method

(mmol/L)

20 h 4.3 3.96 3.92

22 h 4.4 4.19 4.22

24 h 4.6 4.29 4.25

Consequently, morphological characteristics were the critical factor
affecting BGL measurements’ accuracy. Figure 12 is the RMSE of
the BGL fusion estimation that will illustrate the deviation of turbot
BGL measurement in skin mucus from another aspect. In cluster
1, the KMPP-EWGO-BP was about 0.212, while the RMSE was
increased to 0.230 in cluster 3. The whole RMSE changes showed an
upward tendency in the range from cluster 1 to cluster 3. Similarly,
the RMSE of GWO-BP in cluster 3 increased by ∼63.1% from
cluster 1. As for RMSE of PSO-BP, BP, and SVR, the growth was
∼9.9, 1.6, and 4.2%, respectively.

Finally, after verification calculations and analysis, the KMPP-
EGWO-BP, GWO-BP, and PSO-BP fusion models showed better
performance than BP and SVR from the criteria R2. As for the
correlation of the fused BGL series to the real BGL series, R2 of
KMPP-EGWO-BP estimation was approximately 0.949 in cluster
1, which was higher than 0.917 in cluster 3. In contrast, the R2

of GWO-BP in cluster 1 was approximately 0.934. It decreased to
0.917 in cluster 2 and 0.874 in cluster 3. Compared with cluster 1,
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R2 of PSO-BP, BP, and SVR was diminished by ∼2.52, 4.96, 2.81%
in cluster 2, and∼7.79, 8.67, and 11.96% in cluster 3.

After the BGL deviation assessment and analysis, the BGL
trends were classified and collected in fish skin mucus by deploying
the patch-typed biosensors for accurate BGL fusion calculation,
which is clearly illustrated in Figure 13. From this diagram, the
fundamental BGL changes in every cluster are zoomed in by three
subplots S1, S2, and S3. The red polyline in every small picture is the
actual trend, followed by different fused BGL trends using multi-
sensor-based methods (KMPP-EGWO-BP, GWO-BP, PSO-BP, BP,
and SVR). Such measurement ranges illustrate that our prepared
sensors satisfy fish stress dynamic monitoring requirements. As can
be seen from this picture, the EGWO-BP fusion BGL trend is closer
to the actual BGL variations than the other fusion methods.

Despite the test results discussed above, the BGL concentration
in turbot was also sampled in three time points (20, 22, and 24 h)
to verify the high relationship of BGL in fish and IF of the fish
eyeball. The BGL of fish was obtained and tested by cutting off the
tail and taking blood. Meanwhile, the relevant BGL in the IF of
the fish eyeball was also acquired by a continuous GBL monitoring
device (AiDEX) for measuring the estimation performance by
our proposed fusion algorithm (KMPP-EGWO-BP). The average
BGL correlations between IF and blood in turbot reached about
93.5%, which is adequate as the standard reference to indicate the
BGL trends in fish. Moreover, the average correlations between
estimation BGL and blood in fish reached about 93.1% using our
proposed KMPP-EGWO-BP model to prove the effectiveness of
its evaluation performance. The verification of the proposed BGL
fusion model is demonstrated in Table 6.

According to the abovementioned non-invasive monitoring
performance analysis, our proposed hybrid multi-biosensor
fusion technology is advocated for precise BGL detection
modeling. Its application provides practical technical support
for accurately acquiring the live fish stress variations in
adverse conditions.

4. Conclusion

This study proposes a non-invasive multi-sensor-fusion-
based BGL estimation model aimed at accurately detecting
the live fish stress states after fully considering the problems
of individual discrepancy and the intrinsic defects of BGL
biosensors. In this research, the newly designed data fusion
model, KMPP-EGWO-BP, can precisely estimate fish BGL trends
by deploying the non-invasive BGL biosensors. Through the
optimization of the BP network structure, such as the number
of hidden layers, convergence speed, and the weights and
thresholds of the network, the fusion result is reasonably
improved to solve problems of imprecise BGL data series
acquisitions. Furthermore, the optimized structures and critical
parameters of KMPP-EGWO-BP are recorded according to
fish morphological features, which utilizes the K-means++
algorithm for further enhancing the model’s efficiency and
accuracy. Finally, the accurate performance of the KMPP-EGWO-
BP fusion model based on different parts of fish skin mucus
BGL monitoring is generally evaluated higher than GWO-BP,

PSO-BP, BP, and SVR by deviation criteria MAPE, RMSE,
and R2.

In conclusion, the experimental results verify that our
proposed skin mucus BGL evaluation is suitable and applicable
for accurately measuring fish stress states. It significantly
provides the non-invasive stress acquisition means to precisely
evaluate the live fish stress trends under waterless transport
conditions and comprehensively enhance the levels of the live fish
circulation industry.
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