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Rice is a major world staple food crop, and therefore breeding improved varieties

is of ultimate importance. Genotype-by-environment analyses are essential to

understand the potential performance of the lines over environments. This study

aimed to elucidate the stability, agronomic performance, and grain quality of

elite new plant type (NPT) rice lines developed for tropical lowland areas. Elite

NPT rice lines were evaluated in eight locations along with national varieties as

checks. Combined analysis across environments and several stability analyses

were performed. The results revealed the possibility of breeding high-yielding NPT

rice varieties with di�erent stability profiles, namely broad adaptation (IPB189-

F-13-1-1 (G5), bi = 0.91), suited for favorable environments (IPB187-F-37-1-2

(G1), bi = 1.47), and adapted to marginal environments (IPB193-F-30-2-1 (G9),

bi = 0.54). G1 and G5 belonged to di�erent groups of grain characteristics,

each with low and high amylose content, respectively. The highest yielding line

(IPB189-F-23-2-2 (G6), 8.68 ton ha−1) had an advantage of 19.39% over the

highest yielding check, i.e., Inpari 32 (7.27 ton ha−1). This increase in yield was

contributed by the success of breeding with a greater 1000-grain weight (11.91%)

and number of filled grains per panicle (42.37%) than Inpari 32; meanwhile, the

plant height also increased by 19 %. In addition, the rank correlations among three

stability parameters, s2
di
, W2

i
, and σ

2
i
were positive and highly significant. This study

enlightens the prospect of breeding NPT rice varieties with di�erent adaptations

in tropical lowland areas.

KEYWORDS

genotype by environment interaction, multi-environment trial, rice breeding, yield

potential, amylose content

1. Introduction

Rice is a world staple food with an incredible story. It has been amodel monocot with the

smallest genome ofmajor cereals which is cultivated throughout the world, except Antarctica

(International Rice Genome Sequencing Project and Sasaki, 2005; Muthayya et al., 2014).

The average world rice productivity reaches about 4.61 tons per hectare (FAO, 2019). This

has further declined during the first decade of 21′s century (Powell et al., 2012). In order

to meet the challenges of the ever-increasing world population and climate change, rice
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productionmust be increased through breeding programs that have

major goals to achieve high yielding cultivars.

The total area of rice production is ∼167 million hectares, of

which 15 dan 25% are irrigated and rainfed lowland fields (Dogara

and Jumare, 2014). Hence, these two types of rice fields have a

great diversity of environmental conditions. Yield is an example

of quantitative traits whose expressions are strongly influenced by

environments (Wang et al., 2008; Li et al., 2019). For that reason,

multi-environment trials (METs) are needed to identify a superior

genotype with stable and high yield potential, and as part of the final

stages to release a variety.

Genotype-by-environment interaction (GEI) is inevitable in

plant breeding and crop production (Yan, 2016). The presence

of GEI refers to the differential response of genotypes among a

range of environments (Kang, 1997). Considering GEI through

stability analysis models could facilitate the accurate cultivar

recommendation for the target environment (Huang et al., 2021).

Stability analyses through univariate stability models have been

developed by Roemer (1917), Francis and Kannenberg (1978),

Finlay and Wilkinson (1963), Eberhart and Russell (1966), Wricke

(1962), Shukla (1972), Perkins and Jinks (1968), Tai (1971), Plaisted

and Peterson (1959), Plaisted (1960), Lin and Binns (1988).

Rice is a crop suitable for tropical climates. Most of the annual

rice production comes from tropical climate areas including India,

Bangladesh, and all Southeast Asian countries such as Indonesia.

However, the intervention of the green revolution in Asia has

changed the status of biotic stresses from low to high. Other

constraints on rice production in the tropical environment were

drought, flooding, and lack of fertile soil. Meanwhile, the genetic

potential of the green revolution rice architecture has become

stagnant (Peng and Khush, 2003). It is therefore challenging to

increase the production per hectare from the variety standpoint.

From the latest research information on rice ideotypes (Dingkhun

et al., 1991; Khush, 1995; Peng et al., 2008), the new plant

type (NPT) architecture can leverage the trend of increasing

production per hectare, pushing the limit of rice yield upwards. The

development of new NPT rice varieties with higher yield potential

has been conducted by Donald (1968), Rasmusson (1991), Laza

et al. (2003), Yan et al. (2007), Uddin et al. (2016), and Tomita and

Fukuta (2019). The NPT ideotype has unique agronomic traits such

as fewer tiller numbers and heavy panicle architecture.

Consumer preferences for grain quality vary from region to

region (Custodio et al., 2019). The ratio of amylose and amylopectin

in rice is an important indicator of cooking and consumption

quality. In the Philippines and Indonesia, there is a preference

for medium amylose grains that are not as hard as in India,

but not as sticky as favored in Japan. Grain quality will become

more important in the future when the demand for higher quality

increases due to the improved economic situation. The objective of

Abbreviations: NPT, new plant type or number of productive tillers; PH,

plant height; DTH, days to harvest; NFG, number of filled grains per panicle;

PUG, percentages of unfilled grains; TGW, thousand grains weight; LSD,

least significant di�erence; ICRR, Indonesian Center for Rice Research;

IRRI, International Rice Research Institute; PCoA, principal coordinate

analysis; GGE, genotype + genotype by environment; GEI, genotype by

environment interaction.

TABLE 1 Rice genotypes evaluated in the multi-environment trial.

No. Genotype No. Genotype

G1 IPB187-F-37-1-2 G8 IPB193-F-17-2-3

G2 IPB187-F-43-1-2 G9 IPB193-F-30-2-1

G3 IPB187-F-65-1-2 G10 IPB194-F-39-1-2

G4 IPB187-F-88-1-3 G11 IPB194-F-74-3-1

G5 IPB189-F-13-1-1 G12 IPB194-F-77-1-1

G6 IPB189-F-23-2-2 G13 Ciherang

G7 IPB191-F-27-1-3 G14 Inpari 32

this study was to elucidate the stability, agronomic performance,

and grain quality of elite NPT rice lines developed for tropical

lowland areas. We hypothesized that there is an NPT rice line

having a significantly greater yield than the check varieties and

stability across diverse environments.

2. Materials and methods

2.1. Genetic materials and experimental
sites

The genetic material evaluated were 12 elite NPT rice lines

and two national varieties as checks, namely Ciherang and Inpari

32 (Table 1). The elite lines were derived from a modified bulk

breeding method conducted in the NPT rice breeding program at

IPB University, Bogor, Indonesia. The “Ciherang” and “Inpari 32”

varieties have similar characteristics to the IR64 variety (Mackill

and Khush, 2018), as they are the progeny of it. These standard

checks become a popular variety in Indonesia for their excellent

grain quality, i.e., intermediate amylose content. The mature plant

height is ∼100–115 cm, with a relatively short growth duration

of about 116–125 days after sowing. Compared to the NPT rice

ideotype proposed by Khush (1995), these checks have greater grain

filling dan higher tillering capacity. All genotypes were evaluated

in 8 environments in Indonesia in 2020 and 2021 (Table 2 and

Figure 1). Experimental design and crop management.

The field experiment was arranged in a randomized complete

block design with three replications in each environment. Seedlings

aged 16–18 days were transplanted to a plot of 4m x 5m with a

plant spacing of 20 cm x 20 cm, with three to four seedlings per hill.

Fertilizers of urea (45% N), Phonska (15% N, 10% P2O5, 12% K,

10% S), and KCl (60% K2O) were applied. Dosages of 60 kg ha−1

N, 30 kg ha−1 K, 10.9 kg ha−1 P and 25 kg ha−1 S were applied

at transplanting, 82.5 kg ha−1 N, 12 kg ha−1 K, 4.4 kg ha−1 P at 3

weeks after planting (WAP), and 24.9 kg ha−1 K at 7 WAP. Pests,

diseases, and weeds were carefully managed, and optimum water

management was performed.

2.2. Phenotypic observations

Agronomic traits observed were plant height (PH), number of

productive tillers (NPT), days to harvest (DTH), number of filled
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TABLE 2 Characteristics of 8 environments used for evaluation of rice genotypes.

No. Location Elevation (m asl) Coordinates Annual rainfall (mm) Avg. temperature Soil typea

Min (◦C) Max (◦C)

E1 Sragen, Central Java 80 7◦28′S 110◦55′E 2,960 19 31 Litosol

E2 West Pasaman,

West Sumatra

348 0◦8′N 99◦52′E 4,000 17 35 Andosol

E3 Jember, East Java 35 8◦7′S 113◦50′E 2,680 23 31 Alluvial

E4 Brebes, Central Java 500 7◦9′S 108◦48′E 3,270 23 33 Alluvial

E5 Metro, Lampung 300 5◦7′S 105◦16′E 1,840 20 35 Podzolic

E6 Sleman, Yogyakarta 140 7◦43′S 110◦17′E 3,060 17 35 Grumusol

E7 Bandung, West Java 661 6◦59′S 107◦38′E 2,100 17 32 Latosol

E8 Bireuen, Aceh 10 5◦15′N 96◦56′E 1,050 22 34 Alluvial

aAlluvial: has a high porosity, soft texture with high mineral content, and can be found along the riverside; Andosol: located on volcanic terrain, considered fertile because of its high water-

holding and organic content; Grumosol: considered marginal land type, has a dry texture and low organic content; Litosol: consists of gravel grains, has characteristics are similar to sand;

Latosol: has a clay texture and yellowish-red color which comes from the iron oxide content; Podzolic: generally less fertile owing to its strongly acidic pH value.

FIGURE 1

Locations of the multi-environment trial of rice genotypes in Indonesia. See Table 2 for the description of E1–E8.

grains per panicle (NFG), percentages of unfilled grains (PUG), and

thousand grains weight (TGW). These traits were measured from

five randomly selected plants in each plot. PH was measured from

the soil surface to the tip of the tallest panicle. NPT was counted as

the number of tillers that produce panicles. DTH was recorded as

the number of days when 95% of plants in each plot were ready

for harvest. NFG was calculated as the sum of filled grains per

panicle. PUG was calculated by dividing the number of unfilled

grains by the total number of grains, and multiplying by 100%.

TGW was measured as the weight of 1,000 filled grains at 14%

moisture content. Grain yield per plot was measured by weighing

harvested grain from each plot excluding border rows and then

converted to ton ha−1 at 14% moisture content.

Grain quality analysis was carried out in the quality laboratory

at Indonesian Center for Rice Research (ICRR), Subang, Indonesia.

The analysis and classification mainly followed the IRRI standard

evaluation systems (IRRI, 2013). Head rice is a rice grain that is 60–

100% intact in length. The head rice percentage was calculated on

100 g of polished milled rice, using the following equation: Head

rice (%) = (Weight of head rice/Weight of milled rice) x 100%.

Analysis of amylose content was carried out using the standard

colorimetric iodide method (Juliano, 1971). Based on amylose
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content, rice texture could be classified as waxy (0–2%), very low

(3–9%), low (10–19%), intermediate (20–25%) and high (>25%)

(Dela-Cruz and Khush, 2000). Ten milled grains of each genotype

were taken for measuring the length and shape traits. Length was

measured using a dial caliper, and could be classified as: very long

(> 7.50mm), long (6.61–7.50mm), medium (5.51–6.60mm), and

short (< 5.51mm) (IBPGR-IRRI Rice Advisory Committee, 1980).

Grain shape is determined by the length:width ratio of the grain.

A ratio > 3.0 was classified as slender, 2.1–3.0 medium, and 1.0–

2.0 bold. Grain chalkiness was calculated as the average percentage

of the amount of chalkiness on rice grain in each genotype, and

could be classified as: > 20% large, 11–20% medium, < 10% small,

0% clear.

2.3. Statistical analyses

The combined analysis of variance over environments was

conducted to elucidate the main effects of the genotype,

environment, and genotype by environment interaction. The

genotype was considered a fixed effect and the environment was

random. The linear model is as follows:

Yijk = µ + Gi + Ej + (GE)ij + Bk/j + εijk

where i is the genotype (i = 1,2,3,. . . ,14), j is the environment (j

= 1,2,...,8), k is the block (k = 1,2,3); Yijk is the observed response

value; µ is the grand mean; Gi is the effect of genotype; Ej is the

effect of environment; (GE)ij is the interaction effect of genotype

and environment; Bk/j is the effect of block nested in environment;

Eijk is the experimental error.

The LSD test at the.05 level was performed to compare the

means of test genotypes with the check varieties. A principal

coordinate analysis (PCoA) was conducted for grouping the

genotypes based on grain characteristics. The modified Gower

dissimilarity coefficients were calculated, and then the PCoA

biplot was drawn based on the dissimilarity matrix. Furthermore,

an independent t-test between PCoA groups was conducted to

reveal the distinguishing traits. The analysis of variance, LSD,

and t-tests were conducted using SAS On-Demand for Academics

(welcome.oda.sas.com). Stability analyses and Spearman rank

correlations among stability parameters were performed using

PBSTAT-GE 3.0.3, and the PCoAwas carried out using PBSTAT-CL

2.1.1 (www.pbstat.com).

3. Results

3.1. Yield and stability

The mean grain yield of genotypes ranged from 6.75 ton

ha−1 (G11) to 8.68 ton ha−1 (G6) across diverse environments.

Six NPT rice lines, namely G1, G3, G5, G6, G8, and G9 had a

higher yield (Yi) and yield-stability index (YSi) than the two widely

grown lowland rice varieties in Indonesia, Ciherang and Inpari 32

(Table 3). Among these lines, G3, G5, and G8 had a regression

coefficient (bi) not significantly different from one, indicating that

these lines had average stability. G1 and G6, on the other hand,

TABLE 3 Average yield and stability parameters of 14 rice genotypes

evaluated in 8 environments.

Geno
type

Yi CVi bi s2
di

W2
i σ

2
i YSi

G1 7.89 ab 32.20 1.47∗∗ 1.13∗∗ 11.78 5.70 5+

G2 7.41 25.71 1.15∗ 0.21 2.88 1.25 5+

G3 7.82 ab 22.06 1.02 0.26∗ 2.77 1.19 9+

G4 7.34 24.48 0.88 1.33∗∗ 9.46 4.54 −2

G5 8.24 ab 18.58 0.91 0.16 2.37 0.99 15+

G6 8.68 ab 24.39 1.22∗∗ 0.70∗∗ 6.30 2.96 9+

G7 7.13 26.37 0.97 1.21∗∗ 8.52 4.07 −5

G8 8.04 ab 20.40 0.89 0.66∗∗ 5.41 2.51 6+

G9 7.70 ab 13.58 0.54∗∗ 0.23 6.29 2.96 2

G10 6.87 20.20 0.83∗ 0.06 2.07 0.84 0

G11 6.75 26.94 1.12 0.03 1.65 0.63 −2

G12 6.90 27.89 1.12 0.49∗∗ 4.41 2.01 −7

Ciherang 7.05 23.26 0.97 0.21 2.53 1.07 0

Inpari 32 7.27 21.68 0.91 0.30∗ 3.16 1.39 1

Average 7.51 23.41 1.00 0.50 4.97 2.29 2.57

∗Yi is the average genotype yield across 8 environments (means followed by a and b

are significantly higher than Ciherang and Inpari 32 check varieties, respectively); CVi

is the coefficient of variations (Francis and Kannenberg, 1978); bi is the regression

coefficient of average genotype yield on environmental index (Finlay and Wilkinson, 1963)

(∗,∗∗significantly different from bi = 1.0 at p < 0.05 and p < 0.01, respectively); s2
di

is the

deviation from regression (Eberhart and Russell, 1966) (∗,∗∗significantly different from s2
di
=

0.0 at p< 0.05 and p< 0.01, respectively);W2
i is the ecovalence ofWricke (1962). σ2i is Shukla’s

stability variance; YSi is yield and stability index (Kang, 1993) (+: greater than average YSi).

TABLE 4 Spearman’s rank correlations among stability parameters of 14

genotypes evaluated in 8 environments.

Yi CVi bi s2
di

W2
i σ

2
i

CVi 0.29

bi −0.14 0.15

s2di −0.34 0.36 0.01

W2
i −0.41 0.32 0.31 0.93∗∗

σ
2
i −0.41 0.32 0.31 0.93∗∗ 1.00∗∗

YSi 0.86∗∗ 0.47 −0.04 0.13 0.06 0.06

∗∗significant at p < 0.01.

may be adapted to a high-yielding environment as their bi (1.47

and 1.22) were significantly greater than one. Conversely, G9 had a

bi significantly lower than one (0.54), indicating that this genotype

may be adapted in a marginal environment. This genotype also had

a small coefficient of variation (13.58%), indicating the possession

of static stability (Table 3).

The genotype rank correlations among average yield and

stability parameters are shown in Table 4. The average yield had a

positive and highly significant correlation with the yield-stability

index, YSi (r = 0.86, p < 0.01). This is understandable because

the yield rank is one of the two main components in building the

YSi. Additionally, Wricke’s ecovalence W2
i and Shukla’s stability

variance σ
2
i had a rank correlation of 1.00 (p < 0.01). Both W2

i
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FIGURE 2

The “which-won-where” view of GGE biplot based on yield of 14 rice genotypes evaluated in 8 environments. The genotypes were labeled as

G1–G14 and the environments were labeled as E1–E8.

and σ
2
i were significantly correlated with Eberhart-Russell’s squared

deviation from regression s2
di
. These results indicated that one

parameter could be an alternative to the other for the case of

stability analysis in a multilocation trial with a similar setting to the

present study.

From the genotype and genotype by environment (GGE)

analysis, the first two principal component axes (PC1 and PC2)

explained 68.3% of the total G+GE variances in yield (Figure 2).

This indicates some complexity in the GE interaction, but still, a

considerable amount of variance could be captured and visualized

by a two-dimensional biplot. The biplot is divided into nine sectors,

but only two sectors have at least one environment in them.

A sector with environments within may be considered a ‘mega-

environment’, and a genotype located in the vertex is the best

genotype for such a mega-environment. Figure 2 indicated that

genotypes G5 and G6 were well adapted to their respective groups

of environments. Additionally, E7 and E8 had a more ability to

discriminate the genotypes compared to the others, as they were

located farther away from the center of the biplot.

3.2. Growth and yield components

The average agronomic traits and yield components of each

genotype across eight environments are shown in Table 5. Large

phenotypic variations were recorded for all traits, except the

number of productive tillers (NPT) and days to harvest (DTH).

Plant height (PH) ranged from 100 cm to 121 cm, and number of

filled grains (NFG) varied from 118 to 190 (Figure 3A). All NPT

lines (G1–G12) had significantly higher NFG than Ciherang and

Inpari 32 varieties, even though their percentage of unfilled grain

(PUG) is generally also higher. Regarding the plant architecture,

the NPT lines had a significantly higher PH and lower number

of productive tillers than both checks. Moreover, all NPT lines

except G10 seemed to have a similar or larger grain size than

both checks as indicated by their weight of 1,000 grains (TGW)

(Figure 3B).

3.3. Grain quality

There are six traits of grain quality used in this present study.

The length, shape, and percentage of head rice and chalky grain

were classified as physical properties. The chemical properties

used were amylose content and texture. The results showed that

grain length ranged from 6.29mm to 7.57mm. All genotypes were

classified as long grain, except G8 was identified as extra long grain.

The percentage of head rice ranged from 64.7 to 96.3% and the

percentage of chalky rice ranged from 0.04% to 1.01%. Amylose

content varied from 11.6 to 23.5%. A lower amylose content will

make the texture of the rice fluffier, and nine lines had a fluffy

texture. Details are presented in Table 6.

The principal coordinate biplot revealed two groups based on

the first axis, which were annotated with green and orange colors

(Figure 4). The orange group consisted of G5, G7, G9, Ciherang,

and Inpari 32, whereas the green group consisted of the other

genotypes. Themain differentiating traits among those groups were

amylose content and texture, which were related to each other.

The green group had a highly significantly lower average amylose

content (12.8%) than the orange group (22.1%) (p < 0.01) which

lead to a different texture, fluffy vs. medium. Additionally, the
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TABLE 5 Means of agronomic traits of rice genotypes across 8

environments.

Genotype PH (cm) NPT DTH (d) PUG (%)

G1 109 13 105 23

G2 108 13 104 22

G3 108 14 105 23

G4 113 13 106 30

G5 114 13 106 17

G6 119 13 108 24

G7 113 13 105 19

G8 121 13 108 23

G9 117 12 104 21

G10 113 14 106 24

G11 117 13 105 29

G12 111 13 105 24

Ciherang 104 15 107 18

Inpari 32 100 17 107 16

LSD 0.05 2.0 1.0 0.8 2.8

PH, Plant height (cm); NPT, number of productive tillers; DTH, days to harvest (d); PUG,

percentage of unfilled grains per panicle (%).

percentage of head rice also tended to be different among the green

group (88.5%) and the orange group (77.8%) (p= 0.11). Two high-

yielding genotypes, G5 and G9, had similar grain characteristics

to the Ciherang variety which has been widely favored for its

grain quality.

4. Discussion

In the present study, a total of 14 genotypes were evaluated

across eight locations in the tropical lowland ecosystem. Even

though these locations belong to the same ecosystem, the

environmental conditions, including elevation, annual rainfall,

temperature, and soil type varied substantially among the

locations (Table 2). Hence, these conditions allow for studying the

adaptations of different genotypes across the test environments.

The NPT rice ideotype approach has been used in a rice

breeding program at IPB University for over the last 20 years.

Nine varieties having the NPT rice architecture have been released

from this program. One of these varieties that has been cultivated

relatively widely, IPB 3S, has an average of 7–11 tillers per hill,

± 118 cm plant height, 220 grains per panicle, and 11.2 ton ha−1

yield potential. Most of these characteristics meet the initial NPT

rice ideotype described by Peng et al. (1994) and Khush (1995),

i.e., the plants have 8–10 tillers, 90–100 cm plant height, 200–250

grains per panicle, 100–130 days to harvest, and 11–13 ton ha−1

yield potential. The features of all elite rice lines in this study

represented the ideotype of improved new plant type (NPT) rice.

These NPT ideotype had a greater average number of productive

tillers than the previously released NPT varieties. Productive tillers

which formed on the unelongated basal internode are essential to

yield components because the grain yield is mostly determined by

the number of panicles per unit area (Yan et al., 1998; Li et al.,

2003).

Plant height is an important growth trait since it alters yield

contributing traits. The average plant height of 12 NPT rice lines

was 114 cm, indicating that the plant statures of those genotypes

are taller than Ciherang (104 cm) and Inpari 32 (100 cm) check

varieties (Table 5). This slightly tall staturemay contribute to higher

yield, however, very tall plant stature with insufficient strength

is not desirable because it is prone to lodging (Corbin et al.,

2016). Even if lodging is closely related to many external factors,

increasing the culm diameter and shortening the internode could

be a promising approach.

Grain filling is influenced by genetics, through a physiological

mechanism called auxin apical dominance (Parida et al., 2022).

High apical dominance can limit rice yield potential through poorer

grain filling, especially among new plant type rice (Chang et al.,

2020). On the other hand, environmental factors also play a role in

grain filling. A high percentage of unfilled grain could be associated

with low light capture and high moisture status (Zhu et al., 2007).

A higher net photosynthesis per unit thermal time will result in

higher yield potential, through the increase of sink capacity (Jing

et al., 2010).

The stability of a genotype can be studied through parametric

and non-parametric approaches. There are two concepts of

stability in the parametric approach, namely biological stability

and agronomic stability (Becker and Leon, 1988). A genotype was

assumed to be biologically stable when the coefficient of variation is

small (Francis and Kannenberg, 1978). Simultaneous consideration

of both biological stability and average yield is needed because a

biologically stable genotype does not necessarily have a high yield.

In the present study, G9 seemed to have biological stability (CV =

13.58%) and a higher yield than the two check varieties.

Analysis models in agronomic stability were divided into two

types depending on the definition of stable genotypes (Lin et al.,

1986). A genotype is considered to have average stability when the

regression coefficient (bi) is equal to one (Finlay and Wilkinson,

1963). Based on this criteria, G3, G4, G5, G7, G8, G11, and G12

were classified as stable genotypes. However, according to Eberhart

and Russell (1966), a stable genotype is a genotype that not only has

the values of bi = 1 but also the squared deviations from regression

(s2
di
) equal to zero. Therefore, only G5 and G11 meet these criteria.

Considering their mean yield, it seemed that G5 was widely adapted

to all environments, whereas G11 was the opposite.

Wricke (1962) suggested the ecovalence parameter as ameasure

of stability. Ecovalence measures the contribution of genotype

to the sum of squares of genotype by environment interaction

(GEI). Genotypes with the lowest ecovalence were considered

stable, contributing the least to GEI variance. Shukla (1972)

modified the ecovalence in order to give an unbiased estimation

of GEI variance for each genotype through stability variance

(σ2i ). A significant σ
2
i indicates that a genotype’s performance

was unstable. Conversely, genotypes with small stability variance

were considered stable. Moreover, Kang (1993) uses the yield-

stability index (YSi) method based on the average yield and

stability variance (σ2i ). Finally, there are seven NPT rice lines

had a YSi greater than both check varieties (Table 3), indicating
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FIGURE 3

Mean of number of filled grains per panicle (A) and thousand-grains weight (B) of 12 elite NPT rice lines and two checks across 8 environments. I32,

Inpari 32; CHR, Ciherang. Error bars are ± LSD 0.05.

TABLE 6 Characteristics of the grain and cooked rice of rice genotypes.

Genotype Head rice (%) Amylose (%) Texture Length (mm) Shape Chalkiness (%)

G1 96.27± 0.01 11.58± 0.20 Fluffy 7.49± 0.13 Slender 0.43± 0.02

G2 91.80± 0.03 12.28± 0.12 Fluffy 7.42± 0.06 Slender 0.10± 0.03

G3 94.64± 0.07 11.88± 0.10 Fluffy 7.48± 0.06 Slender 0.14± 0.03

G4 80.19± 0.07 12.12± 0.09 Fluffy 7.16± 0.02 Slender 0.10± 0.03

G5 65.55± 0.07 21.05± 0.20 Medium 7.29± 0.07 Slender 0.30± 0.02

G6 86.45± 0.34 12.76± 0.20 Fluffy 7.35± 0.09 Slender 0.24± 0.01

G7 64.70± 0.06 21.32± 0.32 Medium 7.48± 0.05 Slender 0.11± 0.02

G8 86.47± 0.04 11.96± 0.17 Fluffy 7.57± 0.01 Slender 0.39± 0.00

G9 87.41± 0.07 21.45± 0.28 Medium 7.31± 0.07 Slender 0.08± 0.01

G10 89.72± 0.06 13.43± 0.14 Fluffy 7.29± 0.08 Slender 0.23± 0.04

G11 86.06± 0.04 13.59± 0.14 Fluffy 7.01± 0.07 Slender 1.01± 0.04

G12 84.74± 0.03 15.51± 0.12 Fluffy 7.39± 0.07 Slender 0.21± 0.01

Ciheranga 81.44 23.02 Medium 6.97 Slender 0.18

Inpari 32a 82.23 23.46 Medium 6.92 Medium 0.04

Values are mean± SD.
aData were adapted from a research report of the Indonesian Center for Rice Research, 2010 (unpublished).

the potential of NPT ideotype for increasing yield without

neglecting stability.

Genotype and GEI are important in determining the best-

performing genotypes in different environments (Yan et al., 2000).

Correspondingly, these factors were graphically shown through a

GGE biplot (Figure 2). The markers of the farthest genotypes from

the biplot origin served as corners of the polygon. The polygon was

divided into nine sectors by perpendicular-broken lines, namely

equality lines. Genotypes located at the vertex of the polygon were

identified as the winning or poorest genotypes (Yan, 2002; Yan and

Tinker, 2006; Yang et al., 2007). G6 was the winning genotype in

a mega-environment that consisted of E1, E3, E4, E6, E7, and E8,

while G5 performed best in a mega-environment that consisted of

E2 and E5. Interestingly, G5 was located closely at the boundary of

two mega-environments, indicating that it has stable performance

across environments. G2 located closely at the biplot origin would

rank the same in all environments since it was not responsive to

the environments.

The grain quality is determined by physical and chemical

properties which are highly influenced by genetics, aside from

environmental factors (Fitzgerald et al., 2009; Han et al., 2021).

Grain size is a key breeding target as it influences yield and quality

(Wang et al., 2012). The grain length-width ratio fundamentally

determines the grain shape. According to Juliano (1985), grain
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FIGURE 4

Principal coordinate analysis (PCoA) biplot of 14 rice genotypes based on grain quality traits.

shape is classified as bold, medium, and slender. Most genotypes

had the grain shape slender which is the preferred shape by

consumers from Southeast Asian countries, such as Indonesia,

Thailand, and the Philippines (Hairmansis et al., 2013; Diaz et al.,

2014; Velasco et al., 2015).

Chalky is an opaque area in the grains, resulting in a lower

eating quality (Chun et al., 2009). All genotypes have a percentage

of chalky grain below 2%. It is interesting because the chalky grain

proportion that is higher than 2% is not accepted in markets (Lisle

et al., 2000). The amylose content of rice grain is directly related to

the preference of consumers, as it determines the texture of cooked

rice. The texture of rice is influenced by several factors, but amylose

content has the most one (Yu et al., 2009). Amylose is hydrophobic

due to its straight molecular shape. This indicated that genotypes

with low amylose content had higher water uptake (Choi et al.,

1999; Shivani et al., 2007). As a result, the lower amylose content

makes the texture fluffier, as it easier to leach out during cooking

time. In the present study, we are able to identify 3 genotypes with

a medium texture. Such grain texture has been widely accepted by

consumers in South and Southeast Asia (Mackill and Khush, 2018).

In countries where rice is widely consumed, grain quality has a

central role in the adoption of new varieties (Nirmaladevi et al.,

2015).

5. Conclusion

We revealed the possibility of breeding a high-yielding new

plant type (NPT) rice variety with agronomical stability and good

grain quality. Genotypes IPB189-F-13-1-1 (G5), IPB187-F-37-1-2

(G1), and IPB193-F-30-2-1 (G9) had a higher yield (Yi) and yield-

stability index (YSi) than the two check varieties but with different

stability profiles. G5 had an average stability (bi = 0.91), whereas

G1 might be suited for favorable environments (bi = 1.47), and G9

could be adapted to marginal environments (bi = 0.54). In terms

of grain characteristics, G1 and G5 belonged to different groups,

each with low and high amylose content, respectively. These three

genotypes may therefore be used as genetic materials for NPT

rice breeding programs. In addition, we confirmed that the rank

correlations among three stability parameters, s2
di
, W2

i, and σ
2
i were

positive and highly significant, and therefore onemay be chosen for

a similar design of the multi-environment trial.
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